
www.lajss.org
Latin American Journal of Solids and Structures 2 (2005) 269–290

Sudden contraction in a turbulent flow with a porous insert
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Abstract

The purpose of this work is to investigate the influence of a porous insert in an incom-
pressible turbulent flow in a pipe that suffers a sudden contraction. The Reynolds number
considered is 158,000 based on the pipe outlet diameter. The flow equations are discretized
by using the control volume method and the SIMPLE algorithm is applied for the velocity-
pressure coupling. In all cases, the macroscopic k − ε Low-Reynolds turbulence model is
employed. For an initial numerical validation a simulation is carried out without the porous
insert in order to be compared with an experimental result. Subsequently, a porous insert
is considered in the numerical simulations. The flow losses obtained with the porous insert
are calculated and compared with those obtained from the calculations without the porous
insert.
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1 Introduction

There are several applications in industry and science which involve flows through permeable
media, such as, engineering systems in oil extraction, filters, flow through forests, crops and
cooling in electronic equipment. Further, when a flow passes through a sudden contraction,
the flow direction changes abruptly and a recirculating bubble is observed past the contraction.
This phenomenon is known in the literature as vena contracta.

Analysis of flows in pipes with sudden contraction has been subject of numerous publications
since the middle of the 19th century. In the work of [38], experimental values of the minimum
jet contraction area, Sc, as a function of σ, where σ is the ratio between the pipe outlet cross
section area (Sex) and its inlet section area (Sin), were presented. In [34], experimental values
of minor losses were shown as a function of σ for turbulent flows. Also in [18], experimental
data of minor losses for laminar and turbulent flows for a wide range of contraction ratios were
presented. Measurements of pressure drop for low Reynolds numbers and a discussion about
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Notation
σ Contraction area ratio, dimensionless
Sin, Sex Respectively, the inlet and outlet pipe cross section area
Sc Minimum jet contraction area
k Turbulent kinetic energy per mass unity
ε Dissipation rate of k

x Axial coordinate
r Radial coordinate
Uin, Uex Respectively, the inlet and outlet pipe streamwise bulk velocity
din, dex Respectively, the inlet and outlet pipe diameter.
rin, rex Respectively, the inlet and outlet pipe radius
lin, lex Pipe length, respectively, upstream and downstream the pipe contraction
a Porous insert thickness
ūD Time average Darcy or superficial velocity vector
ū Time average velocity vector
φ Porosity
cF Forchheimer coefficient
p Thermodynamic pressure
ρ Density
µ Dynamic viscosity
K Porous medium permeability
µtφ Macroscopic turbulent viscosity
cµ, σk, σε,
c1, c2, ck

Non-dimensional constants of the turbulence model

f2, fµ Damping function used in the k − ε Low Reynolds Model
n Coordinate normal to the wall
np Distance of the first volume from the wall
µt Turbulent viscosity
n+

p Non-dimensional distance of the first volume from the wall
n+ Non-dimensional distance from the wall
uτ Friction velocity
ν Kinematic viscosity
τw Shear stress on the wall
Rein, Reex Reynolds number, respectively, based on the inlet and outlet pipe diameter
hc Minor losses due to the contraction
kc Contraction minor loss coefficient
Cp Pressure coefficient
pref Reference pressure
KN Normalized turbulent kinetic energy, values between 0 and 1
Cf Friction coefficient
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the pressure drop problem due to a sudden contraction for laminar flows was reported in [11].
Numerical results for streamlines, velocity profiles and pressure losses were presented in [36],
which have considered three different contraction ratios for a Reynolds numbers based on the
pipe inlet diameter ranging from 0 to 200. Experimental and numerical results of velocity
profiles for some cross sections upstream and downstream the contraction and the dimensions
of the recirculating bubble past the contraction were reported in [15]. In their work, it was
investigated laminar flows for σ = 0.285.

Concerning modeling of macroscopic transport equations in porous media, if time fluctuations
and spatial deviations of the flow are considered, there are two possible methodologies to follow:
a) application of volume-averaging operator followed by time-averaging [2, 16, 23, 37], or b) use
of time-averaging before volume-averaging is applied [20,21,24,25,35]. In fact, these two sets of
macroscopic transport equations are equivalent when examined under the recently established
double decomposition concept [13, 28, 29, 33]. The double-decomposition of flow led to a better
characterization of the flow turbulent kinetic and was a step before detailed numerical solutions
of the flow equations were carried out [31]. Calculations were needed for adjusting the model
considering both the High-Reynolds k − ε closure [32] and the low-Reynolds version of it [31].

Many articles have recently been published in the literature considering numerical simulations
for turbulent flows past a sudden expansion, [4, 6, 8, 10], or contraction, [3, 5, 7, 9], of a planar
channel partially filled with a porous insert using both linear and non-linear turbulence models.
Therein, parameters such as porosity, permeability, thickness of the porous insert were varied
in order to analyze their effects on the flow pattern. Also, the work of [26] has studied a
steady turbulent flow in a pipe with sudden contraction where a porous insert was placed
downstream the contraction. Other recent works concerning numerical simulations of turbulent
flows in channels with porous insertions should be mentioned. As such, the work of [12] has
studied a turbulent flow over a 2D backward facing step where a porous insert has been placed
immediately downstream of the step in order to investigate the influence of the porous insert
thickness, permeability and Forchheimer’s constant on the flow behavior. Also, the work of [14]
has analyzed the effect of porosity, permeability and Reynolds number on the flow pressure drop
in a parallel-plate channel containing porous fins.

Based on the foregoing, the objective of this article is to analyze the porous insert influence
on a turbulent flow in a pipe which suffers a sudden contraction. The numerical tool to be
used is the control volume technique in a generalized coordinate system. The turbulent model
employed is the macroscopic k − ε Low-Reynolds turbulence model. Firstly, the numerical
result for a clear sudden contraction is compared with the experimental results available in the
literature. Afterwards, the same pipe is investigated with a porous insert placed downstream
the contraction. The new flow behavior is analyzed by comparing the two cases, namely, with
and without the porous insert. Attention is given to the pipe minor losses and also to the flow
patterns at the pipe contraction region.
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2 Geometry and grid under consideration

Figure 1a shows the minimum jet contraction area, Sc, where the effective flow area is reduced
due to the recirculation on the pipe walls downstream the contraction. This area reduction (vena
contracta) increases even more the minor losses, mainly during the expansion past Sc section.
Figure 1b presents a sketch of the porous insert in the pipe. In Figs. 1a and 1b, Uin and Uex

are the streamwise bulk velocities, lin and lex are the pipe lengths, din and dex or 2rin and 2rex

are the pipe diameters and a is the porous insert thickness. In Figs. 1a and 1b, the subscripts
in and ex represent the pipe inlet and outlet, respectively.
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Figure 1: Simple sketch of the pipe geometry. a) vena contracta, b) Porous insert

Figure 2 shows a partial view of the computational domain at the pipe contraction region,
where a two-dimensional axisymmetric mesh is presented, having 139 x 141 and 259 x 56 control
volumes, respectively, upstream and downstream the pipe contraction. There is a high concen-
tration of grid points close to the wall and towards to the pipe contraction corner. In order to
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minimize numerical oscillations, the grid points are also concentrated at the interface between
the porous insert and the clear medium (Fig. 2). 
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 Figure 2: Partial view of the computational grid at the pipe contraction region.

3 Governing equations

Governing equations used in this work are fully documented in [29–31] and for that reason their
derivation need not to be repeated here. Basically, a macroscopic form of the time-averaged
equations is obtained by taking the volumetric average of the entire equation set. In this de-
velopment, the porous medium is considered to be rigid, homogeneous and saturated by an
incompressible fluid. Also, all physical properties are kept fixed.

The equations that govern turbulent flow in porous medium (neglecting the transient and
gravitational terms) are given as follow:

The macroscopic continuity equation is given by,

∇ · ūD = 0 (1)

where ūD is the seepage velocity or Darcy velocity. In Eq.(1) the Dupuit-Forchheimer relation-
ship, ūD = φ 〈ū〉i, has been used, where φ is the porous medium porosity and 〈ū〉i identifies the
intrinsic (liquid) average of the local velocity vector ū [17].
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The macroscopic momentum equation can be written as,

ρ∇ · ( ūD ūD

φ
) = −∇(φ〈p̄〉i) + µ∇2ūD +∇ · (−ρφ〈u′u′〉i)−

[
µφ

K
ūD +

cF φρ |ūD|ūD√
K

]
(2)

where the correlation −ρu′u′ appears after application of the time-average operator to the
local instantaneous momentum equation. Further, applying the volume-average procedure to
the entire momentum equation (see [29] for details), results in the term −ρφ〈u′u′〉i of Eq.(2).
This term is called here the Macroscopic Reynolds Stress Tensor (MRST). Then, making use
again of the ūD = φ 〈ū〉i results, finally, in Eq.(2). In addition, the last two terms in the right
hand side of Eq.(2) represent the Darcy-Forchheimer contribution where the constant cF is the
Forchheimer coefficient. Also, 〈p̄〉i is the intrinsic average pressure of the fluid, ρ is the fluid
density, µ represents the dynamic fluid viscosity and K is the porous medium permeability.

The term MRST, in Eq.(2), is modeled considering the Boussinesq concept for clear fluid as
follows,

−ρφ〈u′u′〉i = µtφ2〈D̄〉v − 2
3
φρ〈k〉iI (3)

where, I is the unity tensor, 〈k〉i is the intrinsic average of the turbulent kinetic energy, µtφ is
the macroscopic turbulent viscosity and,

〈D̄〉v =
1
2

[∇(φ〈ū〉i) + [∇(φ〈ū〉i)]T ]
(4)

is the macroscopic deformation tensor. The macroscopic turbulent viscosity, µtφ , used in Eq.(3)
is modeled similarly to the case of clear fluid and a proposal for it was presented in [29] as,

µtφ = ρcµfµ
〈k〉i2
〈ε〉i (5)

where 〈ε〉i is the intrinsic average of the dissipation rate of k.
The macroscopic transport equations for 〈k〉i = 〈u′ · u′〉i/2 and 〈ε〉i = µ〈∇u′ : (∇u′)T 〉i

/
ρ

in the k − ε High-Reynolds form were proposed in [29] and, also, adjusted for the k − ε Low-
Reynolds [31] as follows,

ρ∇ · (ūD〈k〉i) = ∇ ·
[
(µ +

µtφ

σk
)∇(φ〈k〉i)

]
+ P i + Gi − ρφ〈ε〉i (6)

ρ
[∇ · (ūD〈ε〉i)

]
= ∇ ·

[
(µ +

µtφ

σε
)∇(φ〈ε〉i)

]
+
〈ε〉i
〈k〉i

[
c1P i + c2f2G

i − c2f2ρφ〈ε〉i] (7)

where P i = (−ρ〈u′u′〉i : ∇ūD) is the production rate of 〈k〉i due the gradients of ūD and
Gi = ckρ

φ 〈k〉i | ūD|√
K

is the generation rate of 〈k〉i due to the action of the porous matrix. In Eqs.
(5), (6) and (7), cµ=0.09, σk=1.4, σε=1.3, c1=1.5 and c2=1.9 are non-dimensional empirical
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constants proposed by [1] for the k − ε Low-Reynolds turbulence model. Also, f2 and fµ are
damping functions of the k − ε Low-Reynolds model. If f2=1 and fµ=1, the turbulent model
becomes equal to the k − ε High-Reynolds model. Specifically for the porous medium, the
constant ck was calculated as being equal to 0.28 through numerical calculations (see [29], [31],
[30]).

3.1 Boundary Conditions

Fully developed profiles of velocity, k and ε were employed at the pipe inlet and all derivatives
in the axial direction were set to zero at the pipe outlet. Also, non-slip conditions were applied
on the walls.

Close to the solid walls the k − ε Low-Reynolds model uses two damping functions f2 and
fµ proposed by [1]:

f2 =
{

1− exp
[
−(νε)0,25n

3, 1ν

]}2
{

1− 0, 3 exp

[
−

(
(k2/νε

6, 5

)2
]}

(8)

fµ =
{

1− exp
[
−(νε)0,25n

14ν

]}2
(

1 +
5

(k2/νε)0,75 exp

{
−

[
(k2/νε)

200

]2
})

(9)

In Eqs. (8) and (9), n is the normal distance from the wall. In order to use this model, the first
volume (whose distance from the wall is denoted np) should be placed in the sublayer region.
In this innermost region, the viscous effects are dominant comparing with the turbulent effects
(µt << µ). Thus, in order to take account the viscous effects of this region, it is advisable that
most first volumes has n+

p <1. n+ = (uτn/ν) is a non-dimensional distance from the wall, where
uτ = (τw/ρ)1/2 is the friction velocity and ν the kinematic viscosity. Also, τw is the shear stress
on the wall.

4 Numerical Method

Equations (1), (2), (6) and (7) are discretized for a bi-dimensional axisymmetric domain, in
generalized coordinates, involving both clean and porous media. In order to solve the discretized
equations system, the control volume approach is employed and, the SIMPLE algorithm is used
for handling the velocity-pressure coupling [27]. The Flux Blended Deferred scheme is used for
the interpolation functions of the convective flux (more details in [19]). For more details about
the numerical method implemented, see [31].

In order to verify grid independence, besides the grid with 34,103 control volumes, two
additional grids were generated, one in a coarser mesh with 18,441 control volumes and other
in a refined mesh with 65,188 control volumes. The grid nodes were refined toward the wall in
order to guarantee the n+

p <1 condition in most of the first grid points from the wall. The kc
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(contraction minor loss coefficient to be explained in details in the following section) numerical
values obtained were 0.601 for the coarser mesh and 0.602 for the refined mesh, with a difference
of 1.0%. Therefore, the grid with 34,103 control volumes, used for all numerical calculation in
this work, can be considered mesh independent.

Residues of all transport equations involved were calculated at each iteration, having as a
convergence criterion a maximum normalized residue equals to 10−7.

5 Results and discussion

5.1 Clear flow

The geometry here considered is a pipe that suffers a sudden contraction with σ=0.1. The
geometrical dimensions are here presented as function of the outlet pipe radius, rex= 0.32 m.
In order to consider both the pipe inlet and outlet influence on the flow pattern negligible, the
upstream and downstream pipe length were set to be, respectively, lin/rex = 9.375 and lex/rex

= 37.5. Results were obtained considering an outlet Reynolds number of 158,114 based on the
outlet pipe diameter (dex), as shown:

Reex =
Uexdex

ν
(10)

where Uex is the outlet pipe streamwise bulk velocity.
The numerical simulation (using k − ε Low-Reynolds model) was also performed in a pipe

without changes in its diameter, that is, all the pipe was kept with the pipe inlet diameter,
din. The Reynolds number used in the numerical calculations, which is based on the pipe inlet
diameter, is given by:

Rein =
Uindin

ν
= 50, 000 (11)

In order to validate the code, the velocity profile obtained from the numerical calculations for the
straight pipe was compared with the correspondent experimental results of Laufer (1954), [22],
and also with the wall logarithmic law. In the calculations, a spatial periodicity condition
between the inlet and the outlet pipe was employed. The grid points were refined on the wall
in order to have n+

p <1. Figure 3 shows that the present results have a good agreement with
the experimental results of [22] and follow the wall logarithmic law (n+ >11.225, κ=0.42 and
E=9.0) and the laminar sublayer (0 < n+ < 11.225).

Simulation considering the sudden pipe contraction without the porous insert was carried
out and the minor loss obtained from that calculations was compared with an experimental
result available in the literature, Streeter (1961), [34]. Imposed fully developed inlet profiles of
velocity, k and ε were obtained from the experimental results of [22].

The minor loss (hc) can be defined as:

hc = kc
U2

ex

2g
(12)
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 Figure 3: Comparison of velocity profile in the unchanging section pipe-flow for Rein = 50, 000.

where, kc is the contraction minor loss coefficient (non-dimensional value). This value does not
account for the major losses but only for the minor losses due to the contraction.

In [34], the experimental values of kc are presented for several geometries for turbulent flows.
Due to the fact that kc is not significantly affected with the Reynolds number in fully turbulent
flows, the experimental values of [34] are presented independently of the Reynolds number.
Thus, according to [34], for Reex = 158, 114 and σ = 0.1, one has kc = 0.46 (see [34], pp. 3-21,
Tab. 3.2).

Figure 4 shows the pressure coefficient, Cp which is obtained through numerical calculations
and can be defined as:

Cp =
p− pref

0.5ρU2
ex

(13)

where pref is a reference pressure adopted as zero and p is a pressure of any point in the flow
domain. Thus, according to kc and Cp definitions and with some algebraic manipulation, the
value of kc is given by:

kc = (Cpin − Cpex) + (U2
in/U2

ex)− 1 (14)

where subscripts in and ex refer to the inlet and outlet pipe, respectively. As shown in Fig.
4, Cpin and Cpex can be determined from the Cp values upstream and downstream the duct
contraction by extrapolating their linear pressure courses to the transitional cross section.

According to the numerical calculations, the kc value obtained is 0.596, which is 30% higher
than the experimental result of kc (see [34], pp. 3-21, Tab. 3.2). The difference between
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Figure 4: Numerical results of Cp along the pipe walls for Reex= 158,114, without porous insert.

experimental and numerical results is probably due to limitations of the turbulence model used
and to the lack of information about the experimental procedure employed.

6 Porous Insert

In this section, results for a pipe with a sudden contraction and with a porous insert are pre-
sented. Four values of permeability, K, and two different thicknesses (a) are used in the numerical
simulations. The Reynolds number is 158,114 and the porosity, φ, is 0.99. In all figures below,
results are shown along the axial coordinate and the radial position is fixed on the wall.

The vena contracta is the main responsible for the minor losses due to the contraction.
Therefore, one of the objectives of the porous insert is to reduce or suppress the recirculating
bubble, although the porous insert itself increases the losses. So, there is a compromise between
the losses caused by the porous insert and the gain in eliminating or diminishing the recirculating
bubble. Thus, as a first approach, a porosity of 0.99 is here adopted in order to minimize the
minor losses caused by the porous insert. An example of such porous insertion with high porosity
could be represented as a set of parallel thin blades. Additionally, four different permeabilities
are considered in order to analyze the influence of the porous insert permeability on the flow
behavior.

Figures 6 and 7 show the influence of the porous insert permeability on the Cp values along
the pipe length. According to Figs. 6 and 7, it is noted that the lower the permeability, the higher
the variation of Cp values through the porous insert. Also, it is observed that the minimum
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Cp values increase when the permeability is decreased which can possibly minimize occasional
cavitation problems.

It is import to emphasize that, the region used to show the results in Figs. 8-11 is represented
by the area surrounded by dashed lines located at the pipe contraction region showed in Fig. 5.

Figures 8 and 9 present the recirculating bubble streamlines attached to the wall past the
contraction. It is observed that, as the value of the porous insert decreases, the recirculation
length is reduced, which indicates a damping effect on the recirculating bubble due to the porous
insert. Also, it is noticed that the recirculation length is not significantly affected when the two
different thicknesses (a = 0.312 and a = 0.625) with same permeability are considered.

Figures 10 and 11 show the normalized kinetic turbulent energy field (KN). According to
Figs. 10 and 11, it is observed that, as the permeability decreases, the higher KN values are
found to be more confined inside the porous insert, mainly in the vicinity of the contraction
corner, due to the higher generation of turbulent kinetic energy in such region.

 
 
 

Sin Sex 

  
 

Figure 5: Sketch of the pipe with a sudden contraction showing an area surrounded by dashed
lines.
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Figure 6: Cp values along the pipe walls, with and without the porous insert, Reex = 158, 114
and a/rex = 0.312.
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Figure 7: Cp values along the pipe walls, with and without the porous insert, Reex = 158, 114
and a/rex = 0.625.
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Figure 8: Streamlines at the region surrounded by dashed lines showed in Fig. 5 – Reex =
158,114 - a/rex = 0.312.
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Figure 9: Streamlines at the region surrounded by dashed lines showed in Fig. 5 – Reex =
158,114 - a/rex = 0.625.
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Figure 10: Normalized turbulent kinetic energy (KN) field at the region surrounded by dashed
lines showed in Fig. 5, Reex = 158,114 and a/rex = 0.312.
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Figure 11: Normalized turbulent kinetic energy (KN) field at the region surrounded by dashed
lines showed in Fig. 5, Reex = 158,114 and a/rex = 0.625.

Latin American Journal of Solids and Structures 2 (2005)



Sudden contraction in a turbulent flow with a porous insert 285

Figure 12 and 13 show the Cf (friction coefficient) values along the pipe outlet wall, where
Cf is defined as follows:

Cf =
τw

ρU2
ex/2

(15)

In Figs. 12 and 13, the negative Cf values indicate the existence of a recirculation. Thus,
it is possible to evaluate the recirculation length by taking the distance from the contraction
corner to the point where the Cf value becomes positive. Then, according to Figs. 12 and
13, it is noticed that the recirculation length is not significantly affected when the two different
thicknesses (a/rex = 0.312 and a/rex = 0.625) are compared considering the same permeability,
which is in accordance with the remarks of Figs. 8 and 9.  
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 Figure 12: Cf values along the pipe outlet wall - Reex = 158,114 – a/rex = 0.312

Considering the Cp values plotted as function of the pipe length from its inlet until its
outlet for each porous insert and, then, extrapolating its courses upstream and downstream the
contraction to the transitional cross section (as shown in Fig. 4), the kc value for each case can
be obtained. Thus, Tables 1 and 2 present the obtained kc values as function of K for a/rex =
0.312 and a/rex = 0.625, respectively.

In addition, in order to show the behavior of the kc values as function of the permeability,
the present results of Table 1 and 2 are also shown in Fig. 14.

Latin American Journal of Solids and Structures 2 (2005)



286 R.M. Orselli and M.J.S. De Lemos

 
 

-100

-75

-50

-25

0

25

50

0 0.5 1 1.5

x/r ex

C
f*

10
00

Porous Insert

K  = 1.0 m 2 and φ  = 0.99

K  = 0.1 m
2 

and φ  = 0.99

K  = 0.01 m 2 and φ  = 0.99

K  = 0.001 m 2 and φ  = 0.99

Without porous Insert
 

 
Figure 13: Cf values along the outlet pipe wall, Reex = 158,114 and a/rex = 0.625.

Table 1: kc values as function of K for a/rex = 0.312

a/rex = 0.312
K [m2] 0.001 0.01 0.1 1.0

kc 4.09 1.74 0.98 0.72

Table 2: kc values as function of K for a/rex = 0.625

a/rex = 0.625
K [m2] 0.001 0.01 0.1 1.0

kc 7.52 2.84 1.33 0.84
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 Figure 14: Behavior of kc (pipe minor loss coefficient) with K (permeability) for a/rex = 0.312

and a/rex = 0.625.

7 Concluding remarks

This work study the porous insert influence on a turbulent flow in a pipe which suffers a sudden
contraction. The numerical tool employed is the control volume technique in a generalized co-
ordinate system. The turbulent model used is the macroscopic k − ε Low-Reynolds turbulence
model. First, the numerical result of the flow in the pipe without porous insert was compared
with an experimental result available in the literature. Afterwards, the same pipe was investi-
gated with a porous insert placed past the contraction.

According to the numerical calculations, the kc value obtained for a sudden contraction
without a porous insert was 30% higher than the experimental result of [34]. The difference
between experimental and numerical results is probably due to limitations of the turbulence
model used and to the lack of information about the experimental procedure employed.

It was noticed that all porous inserts considered reduce the recirculation size past the con-
traction when compared with the case without the porous insert. Also, the recirculation length
is not significantly affected when the two different thicknesses with same permeability, K, are
considered. Although the recirculation size is reduced due to the porous insert, the minor losses
are always higher than the case without porous insert. Therefore, according to the numerical
results, one can conclude that the losses caused by the porous insert itself are more significant
than the gain due to the reduction of the recirculating bubble. Despite of the increase of the
pressure losses due to the porous insert in the pipe, the attenuation or even the suppression of
the recirculating bubble could be useful in some industrial process, in order to regulate the flux
downstream the pipe contraction.
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For future works, the authors intend to analyze the pipe by employing a non-linear turbulence
model since, in [10], better results were obtained with the use of such model.
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