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Abstract	
In	 this	work	 it	 is	 presented	 a	 coupling	 between	 the	Boundary	 Ele‐
ment	Method	 BEM 	and	the	Finite	Element	Method	 FEM 	for	two‐
dimensional	elastostatic	analysis	of	frame‐solid	interaction.	The	BEM	
is	used	 to	model	 the	matrix	while	 the	reinforcement	 is	modeled	by	
the	FEM.	Regarding	the	coupling	formulation	a	third	degree	polyno‐
mial	 is	 adopted	 to	 describe	 the	 displacement	 and	 rotations	 of	 the	
reinforcement,	 while	 a	 linear	 polynomial	 is	 used	 to	 describe	 the	
contact	 force	 among	 the	 domain	 matrix 	 and	 the	 reinforcement.	
Perfect	 bounding	 contact	 forces	 are	 improved	 by	means	 of	 redun‐
dant	 equations	 and	 Least	 squares	method.	 Slip‐bounding	with	 two	
and	three	paths	written	as	function	of	relative	displacement	are	used	
to	 calculate	 the	 transmitted	 contact	 forces.	 Examples	 are	 used	 to	
demonstrate	that	the	proposed	slip‐bounding	procedure	regularizes	
the	contact	force	behavior.	
	
Keywords	
Boundary	Element	Method,	Finite	Element	Method,	BEM/FEM	cou‐
pling,	adherence	models.	
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1	 INTRODUCTION	

The	combination	of	 the	 finite	element	method	 FEM 	and	boundary	element	method	 BEM 	to	solve	
structural	analysis	is	attractive	because	it	allows	for	an	optimal	exploitation	of	the	respective	advantage	
of	the	methods	 Zienkiewicz	et	al.,	1977 .	The	main	strength	of	the	BEM	for	boundary‐value	problems	
governed	 by	 linear,	 homogenous,	 and	 elliptic	 differential	 equations	with	 constant	 coefficients	 is	 the	
reduction	of	 the	dimensionality	of	 the	problem	by	one	unit	 for	 linear	constitutive	relations	 Brebbia,	
1978;	Brebbia,	1980 .	Particularly,	BEM	is	useful	to	model	special	situations	such	as	very	large	or	un‐
bounded	domains,	geometrical	singularities	 e.	g.	cracks 	or	to	obtain	very	accurate	results	in	regions	of	
complicated	shape	 Aliabadi,	1997;	Bonnet,	1999;	Frangi	et	al.,	2002 .	Thus,	coupling	the	BEM	and	the	
FEM	allows	exploiting	their	complementary	advantages.	By	the	other	hand,	the	FEM	is	appropriate	to	
solve	a	lot	of	problems,	including	e.	g.	those	with	heterogeneous	or	non‐linear	constitutive	properties,	
or	finite	deformations.		
	 The	 idea	 of	 combining	 these	 two	methods	 goes	 back	 to	 Zienkiewicz	 et	 al.	 1977 .	One	branch	of	
BEM/FEM	 coupling	 is	 the	 iterative	 coupling	 in	 which	 the	 individual	 sub‐domains	 are	 treated	 inde‐
pendently	by	either	method.	The	procedure	starts	with	an	initial	guess	of	the	interface	unknowns	that	
will	be	improved	by	solving	each	sub‐domain	and	returned	to	interface.	This	procedure	repeats	until	an	
error	 tolerance	 is	 achieved.	Although	 this	 iterative	 coupling	 is	 very	 attractive	 to	 software	design,	 its	
convergence	 commonly	 depends	 on	 relaxation	 parameters	 which	 are	 rather	 empirical	 Estorff	 and	
Hagen,	2005 .	For	this	reason,	a	direct	coupling	approach	is	adopted	in	this	work.	
	 Standard	BEM	formulations	to	deal	with	solids	stiffened	by	bars	or	fibers	are	derived	by	combining	
the	BEM	and	FEM	algebraic	equations.	The	domain	 continuum	or	matrix 	is	analyzed	by	BEM,	while	
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finite	 elements	 are	used	 to	 represent	 inclusions	 bars	 for	 instance .	The	 coupling	 is	 always	done	by	
enforcing	displacement	compatibility	and	traction	equilibrium	at	interface	nodes.	Practical	applications	
for	non‐slipping	or	slipping	coupling	using	BEM/FEM	coupling	are	presented,	for	instance,	in	Beer	and	
Watson	 1996 ,	 Coda	 and	 Venturini	 1995 ,	 Coda	 2001 ,	 Leite	 et	 al.	 2002 ,	 Botta	 and	 Venturini	
2005,	2003 ,	Leonel	 2009 ,	Rocha	 2010 .	
	 As	contribution,	 the	present	work	 is	able	 to	capture	bending	effects	 in	 the	analysis	of	 frame‐solid	
interaction,	which	 includes	bending	 stiffness	 in	 reinforcements	 immersed	 in	 2D	 continuum.	For	 this	
purpose,	in	this	study	it	is	adopted	a	Rissner‐Mindlin	type	frame	finite	element	with	third	order	of	ap‐
proximation	 for	both	displacement	and	rotations	resulting	 in	 four	nodes	and	12	degrees	of	 freedom.	
However,	the	contact	force	is	modeled	by	linear	approximation	resulting	in	only	4	independent	values	
which	 leads	 to	a	not	 square	 force	matrix.	These	approximations	 displacements	and	 tractions 	were	
used	because	it	is	the	lowest	order	that	satisfies	the	differential	equation	governing	the	problem.	In	this	
approach,	 the	boundary	element	 force	 lines	are	build	 in	a	compatible	way,	 that	 is	 there	are	4	source	
points	generating	a	third	order	approximation	for	displacements,	but	the	contact	force	approximation	
is	linear,	also	resulting	in	a	not	square	force	matrix.	
	 The	 least	Squares	 technique	 is	used	 to	eliminate	 the	dependent	equations	due	 to	 the	above	men‐
tioned	difference	in	approximation	order	for	displacement	and	tractions.	Moreover	some	authors,	Botta	
and	Venturini	 2005,	2003 	and	Leonel	 2009 ,	claim	that	this	procedure	reduces	contact	force	oscilla‐
tions.	
	 This	paper	 is	organized	as	 follows.	 It	 is	presented	 in	section	2	 the	FEM	formulation	 to	model	 the	
frame	structure,	which	 is	shown	the	kinematics	adopted.	 In	section	3	 is	shown	the	BEM	formulation	
adapted	to	domain	modeling.	In	section	4	it	is	presented	the	proposed	coupling	formulation	between	
BEM	and	FEM	considering	both	perfect	bonding	and	debonding	cases.	This	section	is	divided	in	subsec‐
tion	4.1	in	which	there	are	presented	the	basic	equations	to	perfect	bonding	and	an	example	to	verify	
this	 formulation.	 In	 sub‐section	4.3	 it	 is	 presented	 the	 coupling	 formulation	 considering	 the	 slip	 be‐
tween	reinforcement	and	domain.	Debonding	models,	basic	equations	and	the	non‐linear	formulation	
to	solve	slipping	are	presented	in	sub‐sections	4.3.1,	4.3.2	and	4.3.3,	respectively.	The	sub‐section	4.4	
presents	two	examples.	The	first	simulates	a	pullout	test	and	the	second	solve	a	soil‐structure	interac‐
tion	case.	Finally,	in	section	5	the	final	remarks	and	conclusions	are	given.	
	
2	 THE	FRAME	ELMENT	MODELING	–	FEM	FORMULATION		

	 As	mentioned	 before,	 the	 FEM	 is	 used	 to	model	 frame	 elements	 and	 structures.	 Here,	 elements	
which	have	three	degrees	of	freedom	per	node	and	cubic	approximation	for	displacement	and	rotation	
are	employed.	This	way,	the	elements	have	four	nodes	and	these	nodes	present	two	translations	 verti‐
cal	and	horizontal 	and	one	rotation.	Moreover,	the	distributed	applied	forces	will	follow	linear	approx‐
imation.	
	
2.1	Kinematics	

	 For	any	point	on	the	structure,	the	horizontal	and	vertical	components	of	displacements	are	given	
by,	respectively:	
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where	 x 	and	 y 	are	the	reference	system	in	the	center	of	the	layer,	as	shown	in	figure	1	and	 pU 	and	

pV 	are	the	displacements	of	point	 P .	
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Figure	1:	Kinematics	of	point	“P”.	

	
	 From	equation	 1 ,	one	can	apply	the	differential	operator	to	obtain	the	linear	strain	components:	
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	 Applying	the	constitutive	law	for	the	isotropic	materials,	the	stress	components	at	the	point	“p”	are	
obtained:	
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where	E	and	G	are	the	longitudinal	and	shear	elastic	moduli,	respectively.		 	
	 To	write	the	equilibrium	equation	it	is	used	the	Principle	of	Minimum	Total	Potential	Energy.	Using	
equations	 2 	and	 3 	one	writes	the	Total	Potential	Energy	equation	as,		
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where	 eU 	and	 pU 	are	the	internal	and	potential	energy	of	external	forces,	 xt 	and	 yt 	are	the	compo‐

nents	of	 the	distributed	 loading	 contact	 tractions 	applied	to	the	structure,	 L 	and	 A 	are	the	 length	
and	cross	sectional	area	of	the	frame	element,	respectively.	For	approximate	unknowns	 0U ,	 0V 	e	 0q 	

cubic	independent	approaches	were	used,	as	shown:		
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with	 0

iu ,	 0
iv 	e	 0

iq 	being	the	nodal	values	 unknown 	.	Since	 ( )ij x and	 ( )jy x 	are	shape	functions:	
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	 Minimizing	the	energy	functional,	equation	 4 ,	one	finds	the	algebraic	equilibrium	system	given	by:	
	

    = +
3 ,3 3 ,1 3 ,2 3 ,12 ,1extr extr

E E E E

NF NF NF NF NF NFNF

K U G f F
7 	

	

where:	 EK 	 is	 stiffness	matrix,	 EG 	 is	 equivalence	 force	matrix,	 EU 	 unknown	vector	with	displace‐
ments	 and	 rotations,	 Ef 	 is	 the	 vector	 containing	 the	nodal	 values	of	 the	distributed	 load,	 F is	 the	
concentrated	force.	Labels	NF 	and	 extrNF 	are	node	numbers	for	the	displacements	 and	rotations ,	

four	per	element,	and	node	numbers	for	forces	 two	per	element ,	respectively	
	
3	 THE	DOMAIN	MODELING	–	BEM	FORMULATION		

	
	 Let	us	consider	the	domain	W 	and	its	boundary	 G .	For	an	elastic	body	defined	by	the	domain	W ,	
the	equilibrium	equation,	written	in	terms	of	displacements,	is	given	by:	
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where	u	represents	the	displacement	vector,	G 	is	the	shear	modulus	and	n 	is	the	Poisson’s	ratio.	
	 For	a	domain	W 	with	boundary	 G ,	the	integral	representation	of	displacements	is	derived	by	ap‐
plying	reciprocity	theorem	 or	Green’s	second	identity .	
	

G G
⋅ = - ⋅ G + ⋅ Gò ò* *d dc u P u U p 9 	

	
Where	the	symbols	“*”	is	used	to	indicate	fundamental	solution	 equation	10 	and	 p 	represent	bound‐
ary	traction	values.	
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where	 ,ˆ i ir r r= =r 	with	 r 	being	the	distance	between	the	source	and	field	points,	 ( )1 2
i ir rr= ,	 ir 	are	

components	of	the	vector	 r ,	 n̂	is	the	boundary	normal	unit	vector	and	 I is	the	second	order	identity	
tensor	 or	Kronecker	delta .	
	 For	 numerical	 solution,	 u	 and	 p 	 are	 approximate	 by	 polynomial	 functions	 over	 boundary	 ele‐
ments,	in	this	work	linear	polynomials	are	used	for	boundary	elements	 internal	force	lines	are	further	
discussed ,	and	the	integral	equation	 9 	is	converted	into	an	equivalent	algebraic	system	as	follows:	
	

=U PH G 11
	
where	matrix	 H is	obtained	from	the	left	terms	in	equation	 9 	and	matrix	G from	the	terms	on	the	
right	side.	U 	is	a	vector	which	contains	the	nodal	values	of	displacements	for	all	boundary	nodes	and	
P 	is	the	nodal	traction	vector.	
	 After	substitution	of	the	prescribed	boundary	conditions,	the	algebraic	equations	may	be	written	as	
	

= =X YA B F 12
The	vector	 X 	contains	all	the	unknown	boundary	displacements	and	tractions,	 A is	a	coefficient	ma‐
trix	which	is	usually	non‐symmetric	and	densely	populated,	and	B 	is	a	matrix	which	contains	the	coef‐
ficients	corresponding	to	the	prescribed	boundary	conditionsY .		
	 One	can	differentiate	equation	 9 	to	derive	the	integral	representation	of	strains	and	then	apply	the	
Hooke’s	law	to	obtain	the	stress	integral	equation,	written	for	internal	points,	as	follows,	

G G
= - ⋅ G + ⋅ Gò ò* *d dS u D ps 13

Where	 *S 	and	 *D 	are	well	known	third‐order	tensor	for	the	stress	equation	obtained	by	applying	the	
Hooke’s	law	on	the	fundamental	solution	at	the	source	point	 Brebbia	and	Domingues,	1992 .	
	
4	 BEM/FEM	COUPLING	FORMULATION		

	 In	this	section,	additional	terms	inserted	in	the	classical	formulations	of	BEM	and	FEM	as	well	as	the	
coupling	between	BEM	and	FEM	are	shown.	
	
4.1	Basic	equations	–	perfect	bonding	

	 In	this	subsection	the	perfect	bounding	situation	is	described.	 It	 implies	a	direct	compatibility	be‐
tween	displacements	and	contact	force	equilibrium	 or	continuity .	Thus:	

= -R Df f 14
	

=D RU QU 15
	

Where	 RU 	 and	 DU 	 are	vectors	 containing	nodal	displacements	 for	 frame	element	and	domain,	 re‐

spectively;	 Rf 	and	 Df 	are	nodal	distributed	force	vector	applied	on	the	frame	finite	elements	and	on	

the	force	line	boundary	element	 in	the	2D	domain ,	respectively.	Once	vector	 RU 	contains	three	com‐
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ponents	 two	translations	and	one	rotation 	and	vector	 DU 	 contains	 two	components	 two	 transla‐
tions ,	the	correlation	between	these	two	vectors	is	done	by	Q 	matrix.	

	 The	components	of	the	vectors	 , ,R D RU U f 	and	 Df are	shown	in	figure	2.	
	

	
Figure	2:	Force	and	displacement	approximation	at	frame	interface.	

	

	 For	3D	solids	the	unknown	forces, Df ,	would	be	distributed	over	 internal	surfaces.	For	2D	solids	
this	forces	appears	distributed	along	internal	lines,	which,	roughly,	work	as	internal	“boundaries”	dedi‐
cated	only	for	tractions.	Thus,	the	integral	equation	 9 	is	modified	to	include	the	additional	term:	
	

G G G
⋅ = - ⋅ G + ⋅ G + ⋅ Gò ò ò* * *

R

D
Rd d dc u P u U p U f 16 	

where	 Df is	 the	 internal	 force	acting	along	 the	 interface,	 GR ,	between	 the	 two	materials	and	repre‐

sents	 the	 fiber	effect	applied	 in	 the	domain.	Similarly,	 the	 integral	equation	 13 	 including	 this	addi‐
tional	effect	is	written	as:	
	

G G G
= - ⋅ G + ⋅ G + ⋅ Gò ò ò* * *

R

D
Rd d ds S u D p D f 17 	

	
	 Selecting	a	proper	number	of	collocation	points	 source	points 	at	the	boundary	and	at	the	frame	
element,	two	sets	of	algebraic	equations	are,	respectively,	written	from	equation	 16 ,	as	follows:	
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= + D
bb b bb b brU P fH G G 18

	
= - + +D D

rb b rb b rrU U P fH G G 19

	
where	index	b 	denotes	boundary	and	index	 r 	denotes	frame,	respectively.	Additionally,	the	first	index	
denotes	source	points	and	the	second	index	denotes	field	points,	which,	are	on	boundary	or	load	line.	
	 The	 superimposed	 frame	 element	 reinforcement 	 and	 load	 line	 representations	 can	 be	 seen	 in	
figure	3	 in	which	 n 	 elements	 finite	and	 line 	are	employed.	The	displacement	nodes	 for	each	 finite	
element	 are	 represented	 by	 squares	 and	 crosses	 represent	 the	 collocation	 points	 of	 equation	 19 	
where	displacements	are	calculated.	It	is	observed	that	for	fiber	ends	BEM	equations	are	not	written	in	
the	same	position	of	the	finite	element	nodes	to	avoid	singularities;	however	displacements	are	extrap‐
olated	 to	 the	nodal	positions	 in	order	 to	make	 them	compatible.	Moreover,	 this	modeling	allows	 the	
reinforcement	 frame 	ends	to	reach	the	body	boundary	without	interfering	in	basic	BEM	equations.	

	
Figure	3:	Compatibility	between	BEM	and	FEM	nodes.	

	
Therefore,	the	displacement	compatibility	is	rewritten	as:	
	

=

=



D RU TU

T TQ
20

Where	 T̂ 	 is	 the	matrix	 that	 relates	 the	nodal	positions	and	direction	of	 the	 DU 	vector	with	 the	 RU 	
vector.	Furthermore,	the	


T 	matrix	has	dimension	 3NF columns	by	 int2N 	rows,	for	which	 intN 	is	the	

amount	of	BEM	interface	points.	
	 According	to	figure	3,	the	amount	of	finite	element	nodes	is	equal	to	the	amount	of	boundary	inter‐
face	nodes,	i.	e.	 intNF N= ,	therefore	the	determination	of	the	coupling	parameters	and	the	boundary	

values	can	be	summarized	by	the	following	system	of	equations:	
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	 The	 1N 	values	of	 bU 	and	 2N 	values	of	 bP 	are	known	on	 1G 	and	 2G ( )1 2G=G +G 	respectively,	

hence	 there	 are	 only	 2N 	 unknowns	 in	 the	 system	 of	 equations	 21 .	 As	 usual,	 to	 introduce	 these	
boundary	conditions	into	 21 	one	has	to	rearrange	the	system	by	moving	columns	of	 bbH ,	 rbH 	with	

bbG ,	 rbG 	from	one	side	to	the	other,	respectively.	Once	all	unknowns	are	passed	to	the	left‐hand	side	

and	applying	conditions	of	equations	 14 	and	 20 	one	can	write	the	new	system	of	equations	as:	
	

     

       

    

ìïïï = +

+ = +í

= - +



int int int
int intint
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R R R D

N N N N NF NNF

X F f

X T U F f

K U G f F
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ïïïïïïï
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	 22 	

	
Or	in	matrix	form,	
	

 

{ } { }
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23 	

	
	 As	described	above,	at	the	fiber	element	level,	the	number	of	displacement	values	is	larger	than	the	
number	of	bonding	 or	contact 	force	nodal	values.	This	occurs	because	in	equation	 19 	the	number	of	
algebraic	 relations	 is	much	 larger	 than	 the	number	of	 force	values	 in	 Df .	 To	 reduce	 the	number	of	
equations	to	the	same	as	the	number	of	unknowns	one	can	apply	the	Least	Square	Method	 LSM .	In	
this	work	the	LSM	is	applied	over	equation	 21 	or	 19 ,	as	follows:	
	

          + = +
   

int
int int int int intint int

2 ,1 2 ,12 ,2 2 ,2 2 ,2 2 ,2 2 ,22 ,2 2 ,1 2 ,2 2 ,1 extrextr extr extr extr extr

D D
rr rb b rr rr rb b rr rr

N NFNF N NF N NF N NF N N NFN N N N N N

U U P fG H G G G G G 	
24 	

	
Or,	

           + = +
   

int int int
int int int int int intint

2 ,3 3 ,12 ,1 2 ,12 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,22 ,2 2 ,1 extrextr extr extr extr extr

R D
rr rb rr rr rb b rr rr

N N NN NFNF N NF N NF N N N NF N N NFN N N

X T U F fG A G G B G G 	
25 	

	
Where	the	matrix	


rrG 	defined	for	each	fiber	and	


rrG 	is	the	transpose	matrix	of rrG ,	i.e.	 =


T

rr rrG G .		

	 Therefore,	the	system	of	equations	 23 	turns	into	a	square	system	as:	
	


+ ++ + + + + +
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26 	
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4.2	Numerical	example	–	perfect	bonding	

	 In	 this	 section,	one	numerical	 example	 is	analyzed	 to	 check	 the	performance	and	accuracy	of	 the	
proposed	BEM/FEM	coupling	for	two‐dimensional	reinforced	solids.	
	 The	 reinforced	 simple	 supported	 beam	 subjected	 to	 homogeneous	 transversal	 surface	 load		

710q N= - ,	shown	in	figure	4,	is	analyzed.	This	plane	structure	is	five	meter	length ( )L ,	one	meter	

height	 ( )H 	and	the	position	of	the	reinforcement	is	25	centimeter 0( )h 	from	the	lower	part	of	the	ma‐

trix	and	is	four	meters	long	 0L .	The	following	properties	for	domain	 ( )D 	and	reinforcement	 ( )R 	are	

considered:	 Elasticity	 modulus	 2.8DE = 10 210 N m 	 and	 2.8RE = 11 210 N m ,	 Poisson’s	 ration	

0.2Dn = 	and	 0.0n = ,	 inertia	moment	 1.78891RI = 7 410 m- 	and	cross‐sectional	area	 1.29RS =
2 210 m- .	

	
Figure	4:	Geometry	of	the	structure	under	analysis.	

	
	 The	beam	is	discretized	by	120	 linear	boundary	elements	with	the	same	 length.	Three	discretiza‐
tions	are	employed	to	model	the	reinforcement,	with	25,	50	and	100	finite	elements.	The	same	number	
of	 force	 line	 BEM	 elements	 is	 employed	 to	model	 the	 interface.	 The	 results	 are	 compared	with	 the	
commercial	 software	ANSYS	employing	100	BEAM3	elements	 to	model	 the	 reinforcement	 and	2800	
PLANE42	2D	solid	elements	to	model	the	domain.	Figures	5,	6	and	7compare	results	 axial,	transverse	
displacements	and	rotations 	achieved	using	the	BEM/FEM	coupling	discretizations	and	ANSYS.	

	
Figure	5:	Axial	displacement	graphics	on	interface,	BEM/FEM.	
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Figure	6:	Transverse	displacement	graphics	on	interface,	BEM/FEM.	

	
Figure	7:	Graphic	shows	the	rotation	on	interface,	BEM/FEM.	

	 The	above	results	make	evident	that	even	the	poorest	BEM/FEM	coupling	discretization	has	good	
accuracy	when	compared	with	the	reference	result.	
	 Regarding	tractions	at	the	interface,	the	BEM/FEM	results	can	be	seen	in	Figures	8	and	9.	
	

	
Figure	8:	Axial	contact	force	graphics	on	interface,	BEM/FEM.	
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Figure	9:	Transverse	contact	force	graphics	on	interface,	BEM/FEM.	

	
	 According	 to	Figures	8	 and	9,	 for	perfect	 bonded	 elastic	 reinforcement,	 it’s	 observed	 that	 for	 the	
three	BEM/FEM	discretizations	there	 is	a	perturbation	in	the	traction	values	at	the	ends	of	 the	fiber.	
The	behavior	of	axial	forces,	as	shown	in	Figure	8,	had	been	observed	by	Botta	and	Venturini	 2005 ,	
however,	the	behavior	shown	in	Figure	9	has	not	been	reported	before.	Moreover,	the	use	of	LSM	par‐
tially	smoothes	the	behavior	of	contact	force	when	compared	with	results	that	do	not	apply	this	strate‐
gy	 for	 the	 coupling,	 Leite	 et	 al.	 2003 .	At	 this	point	 an	 important	 result	of	 this	 study	 should	be	 ad‐
vanced;	 when	 debondig	 is	 allowed	 always	 occurs	 in	 a	 small	 vicinity	 of	 infinity	 contact	 stress 	 the	
above	perturbation	disappears.		
	 When	using	nonlinear	constitutive	relations	for	matrix,	there	are	evidences	of	smooth	solutions	for	
this	kind	of	problems	which	were	reported	by	Coda	 2001 .	Moreover,	one	may	note,	in	Figure	9,	that	
the	extension	of	the	contact	force	perturbation	reduces	as	discretization	increases.	
	 	
	
4.3	Coupling	formulation	–	debonding	

	 In	this	section,	the	previous	coupling	is	extended	to	accomplish	debonding.	The	adopted	models	to	
represent	 debonding	 as	well	 as	 the	 nonlinear	 formulation	 to	 simulate	 the	 slip	 between	domain	 and	
frame	elements	are	presented.	The	feasibility	of	this	formulation	is	shown	through	numerical	examples.	
	
4.3.1	Debonding	models	

	 Fibers	embedded	in	the	domain	play	an	important	role	to	improve	solid	stiffness	and	loading	capaci‐
ty	if	enough	internal	forces	along	the	interface	can	be	sustained.	Sliding	along	the	interface	may	be	al‐
lowed	when	a	certain	amount	of	strength	is	preserved.	The	ideal	situation	for	which	perfect	bonding	is	
assumed,	as	shown	in	previous	section,	is	impossible	in	practice;	at	least	in	the	vicinity	of	fiber	ends,	as	
the	 interface	 forces	approach	the	 infinity	 Radtke	et	al,	2011 .	Therefore,	a	certain	amount	of	sliding	
occurs	according	to	the	bonding	carrying	capacity.	
	 To	model	the	slip	that	may	occur	in	the	fiber‐domain	interface,	a	debonding	criterion	should	be	con‐
sidered.	In	this	work,	two	models	were	implemented	together	with	the	proposed	BEM‐FEM	coupling.		
	 The	curves	shown	in	Figure	10	and	11	represent	the	debonding	criterion	that	relates	the	bonding	
force	 f 	with	the	relative	displacement	at	interface	 slip 	 s .	The	following	parameters	define	the	two	
models:	model	1	depends	only	on	the	maximum	bonding	force	 maxf 	and	model	2	depends	on	the	max‐

imum	force	 maxf ,	residual	bonding	force	 resf 	and	slip	characteristic	values	 1s 	and	 2s .	



F.C.	Rocha,	W.	S.	Venturini	and	H.B.	Coda	/	Sliding	frame‐solid	interaction	using	BEM/FEM	coupling	1387	

Latin	American	Journal	of	Solids	and	Structures	11	 2014 	1376‐1399	
 

	 From	the	Figure	10	and	11,	the	following	relationships	are	written	for	the	adopted	models,	respec‐
tively:		
	
	 Model	1		

max 0f f for s= > 27 	
	
	 Model	2	

max 1[0, ]f f for s= 28 	
	

max 1 max 2
1 2

1 2 1 2
[ , ]res resf f f s f s

f s for s s
s s s s

- -
= +

- - 29 	

	
2resf f for s s= > 30 	

	

	
Figure	10:	Deboding	Model	1	

	
Figure	11:	Deboding	Model	2	
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4.3.2	Basic	equations	

	 The	slip	consideration	 introduces	a	new	variable	 in	equations	 20 .	This	new	variable	 represents	
the	relative	displacement,	 s ,	between	the	domain	and	frame	elements.	The	compatibility	equations	are	
now	expressed	by:	
	

( )= -D Rf f s 31

	
= +


D RU TU TS 32
	
Where	vector	 S 	 contains	 the	nodal	 relative	displacement	values,	T 	 relates	 the	nodal	positions	 DU 	
with	 S .	Furthermore,	T 	matrix	has	dimension	 2 extrNF 	columns	by	 int2N 	rows.	The	other	terms	in	

equations	 31 	and	 32 	have	already	been	explained,	but	now	tractions	on	interface	depend	on	rela‐

tive	displacements	 s .	In	this	work,	 DU 	and	 RU 	have	been	approximated	by	cubic	polynomial	and	 S 	
by	linear	polynomial.		
	 From	 the	 introduction	 of	 relative	 displacements,	 the	 equilibrium	 equation	 19 	 of	 the	 boundary	
element	method	may	be	rewritten	as:	
	

+ = - + +

R D

rb b rb b rrTU TS U P fH G G 33

	
	 Therefore,	the	BEM	coupling	equation	can	be	rewritten	as,:	
	

     ( )

         ( )



= +

+ + = +





int int int int

intint int

int int in

2 ,2 2 ,1 2 ,2 2 ,22 ,1 2 ,1
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  ( ) 
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R R
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G f s F

	 34

	
Applying	boundary	conditions,	the	equation	 34 	results:	
	

     ( )

         ( )



= +

+ + = +
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int intint
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	 35

	

If	 ( )Rf s 	is	known,	the	matrix	form	of	 35 	is:	
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36 	

	
By	the	other	hand,	if	S 	is	known,	one	writes:	
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	 37 	

	
	 As	 can	 be	 seen,	 in	 equations	 36 	 and	 37 ,	 there	 are	 more	 equations	 than	 unknowns,	 since	

int extrN N³ .	 Thus,	 to	 reduce	 the	number	 of	 equations	 to	 be	 equal	 to	 the	number	 of	 unknowns	 the	

Least	Square	Method	 LSM 	is	applied	over	internal	point	equations	 35 .	This	way:	
	

        

     ( )
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Where	


rrG 	is	the	transpose	matrix	of rrG .		

	 Therefore,	equations	 36 	and	 37 	become	square,	as	follows:	
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39 	

	
Or:	
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40 	

	
4.3.3	Non‐linear	formulation	

	 As	one	can	see,	equations	 39 	and	 40 	are	non	linear	regarding	slip	 s .	To	solve	them,	one	has	to	
take	 into	 account	 the	 non‐linear	 relationship	 described	 by	 the	 debonding	model	 presented	 in	 item	
4.3.1,	in	which	the	relation	between	the	debonding	force	 f 	and	the	slip	 s 	is	established.	The	equilibri‐
um	equation	 39 	is	then	rewritten	in	terms	of	the	variable	increments,	as	follows:	
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	 41

	
Isolating	D iX 	and	D R

iU 	in	first	and	second	equation,	respectively,	of	 41 ,	one	has:	

	

( ){ } { }- -é ù é ù é ù é ù é ùD = D D + Dë û ë û ë û ë û ë û
1 1R i

i bb br i i bb bb bX f s FA G A B 	 42

	

{ } ( ){ } { }
- -é ù é ù é ùD = D D + Dê ú ê ú ê úë û ë û ë û

1 1R R R R R
i i i iU K G f s K F 	 43

	
which	can	be	replaced	in	equation	 41 ,	resulting:	
	

( ) ( ){ } { } { } { }é ù é ù é ù é ùD = D D + D + D + D =ë û ë û ë û ë û1 2 3 4 0R i
i i i b i iY s M f s M F M F M S 	 44
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Where	 I 	is	the	identity	matrix.		
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	 Equation	 44 	 represents	 a	 non‐linear	 system	 of	 equations	 given	 in	 terms	 of	 the	 slip	 increment
{ }D iS .	It	can	be	solved	by	applying	the	iterative	Newton‐Raphson	scheme.	Then,	from	the	iteration	n 	

the	next	try,	 1n + ,	for	the	time	increment	 itD 	is	given	by:	

	
+D = D + D1n n n
i i iS S Sd 46 	

	
Linearizing	equation	 44 	and	using	the	first	term	of	the	Taylor’s	expansion,	results:	
	

( )
( )

0
n
in n

i in
i

Y s
Y s s

s
d

¶ D
D + D =

¶D 47 	

	
The	derivative	that	appears	in	equation	 47 	is	directly	obtained	from	equation	 44 	using	the	debond‐
ing	model	relationships	given	by	equations	 27 ‐ 30 .	Then,	one	has:	
	

( ) ( ){ }¶ D ¶ D D
é ù é ù é ù= + =ë û ë û ë û¶D ¶D

1 4

n R n
CTOi i i

n n
i i

Y s f s
M M W

s s
48 	

	

	 The	matrix	 é ùë û
CTO

W ,	in	equation	 48 ,	is	the	consistent	tangent	operator	of	the	proposed	algorithm.	

The	derivatives	on	the	right	hand	side	of	equation	 48 	depend	on	the	updated	slip	value,	computed	
appropriately	 according	 to	 the	 adopted	model	defined	 in	equations	 27 ‐ 30 .	These	derivatives	 are	
locally	defined	by:	
	
To	model	1		
	

( )¶ D
= >

¶D
0 0

R n
i i

n
i

f s
for s

s
49 	

To	model	2	
	

( )¶ D
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i
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50 	
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( )¶ D
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¶D
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i

f s
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s

52 	

	 Reaching	the	convergence	in	equation	 44 	for	the	time	increment	 itD 	after	n 	iterations,	one	has	to	
compute	the	slip	variable	 s 	to	start	the	next	increment,	as	follows:	
	

+ = + D1
n

i i is s s 53 	
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After	 finding	 +D = -1i i is s s ,	 other	variables	 are	directly	obtained.	The	 internal	 displacements,	 and	

boundary	 tractions	 and	 displacements	 are	 computed	 from	 equation	 41 .	 The	 debonding	 forces	 are	

computed	from	the	constitutive	relation	 ( )D DR
i if s .	

	
4.4	Numerical	example	–	debonding	

	 In	this	item,	two	numerical	examples	are	analyzed	to	examine	the	performance	and	accuracy	of	the	
proposed	BEM/FEM	combination	using	two	models	to	consider	the	debonding	between	a	straight	bar	
and	a	two‐dimensional	solid.	
	
4.4.1	Example	1	

	 In	this	example	the	capability	of	the	formulation	to	model	the	bonding	shear	contact	force	distribu‐
tion	along	the	bar‐matrix	interface	during	a	classical	pulling	test	is	analyzed.	In	figure	12,	a	bar	is	par‐
tially	embedded	 into	a	2D	domain	and	a	small	part	 to	 the	bar	 is	not	 immersed	to	allow	applying	the	
pulling	 force.	 The	 adopted	 geometric	 dimensions	 are	 1.0H m= ,	 0 4.0L m= 	 and	 5.0L m= ,	 see	

figure	12.	Null	displacements	are	prescribed	along	the	left	vertical	side	of	the	two‐dimensional	domain.	
Whereas	at	the	opposite	side	the	load	is	applied	by	prescribing	the	displacement,	 4.0U = 710 m- ,	at	
the	bar	extremity;	the	2D	domain	right	end	is	free	to	move.	As	U 	is	applied,	its	conjugate	force	 P 	is	
calculated.	
	 The	adopted	domain	elastic	properties	are:	Young’s	modulus,	 2.8DE = 10 210 N m 	and	Poisson’s	

ratio	 0.0n = .	 The	 bar	 properties	 are:	 Young’s	 modulus,	 2.8RE = 11 210 N m ,	 inertia	 moment,	

1.79RI = 7 410 m- 	and	cross	sectional	area	 1.29RA = 2 210 m- .	For	this	example	it	is	considered	the	

debonding	 model	 2,	 with	 the	 following	 parameters: 1 1.0s = 910 m- ,	 2 1.0s = 810 m- ,	 max 1.40f =
2 210 N m 	and	 1.30resf = 2 210 N m .	

	
Figure	12:	Pullout	test.	

	
	 A	boundary	mesh	with	120	 linear	elements	 is	adopted	to	approximate	 the	matrix,	while	100	uni‐
form	cubic	finite	elements	were	adopted	to	model	the	single	bar.	Finer	meshes	have	been	tested	to	con‐
firm	that	the	discretization	adopted	was	enough	fine	to	give	accurate	results.	

	 In	the	Figure	13	it	is	presented	the	traction	curves	 ( )N m 	along	the	interface	 at	bar 	to	nine	dif‐

ferent	 imposed	 displacements,	 which	 shows	 the	 evolution	 of	 the	 bar	 pullout.	 As	 one	 can	 see,	 the	
debonded	region	keeps	the	constant	value,	 resf ,	at	all	increments.	When	the	pulling	out	is	completed	

the	final	load	is	exactly	the	expected.	
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Figure	13:	Shear	contact	force	along	the	interface,	BEM/FEM.	

	
	 Figure	 14	 shows	 the	displacement	 curves,	 in	meter,	 at	 the	 bar‐domain	 interface.	 It	 is	 possible	 to	
verify	a	decrease	on	the	slope	of	displacements	for	the	points	located	near	the	load	application,	as	the	
loading	progresses.	
	

	
Figure	14:	Evolution	of	the	domain	displacements	along	the	interface,	BEM/FEM.	

	
	 Figure	15	shows	 the	relative	displacements	between	bar	and	domain.	According	 to	 the	definition	
given	in	equation	 32 ,	the	bar	displacements	are	obtained	by	subtracting	the	results	of	figure	14	from	
figure	15.	
	 The	evolution	of	decoupling	is	illustrated	in	figure	16	wherein	the	domain	displacements	are	une‐
qual	to	the	bar	displacements.	At	the	first	displacement	increment	it	is	verified	that	almost	all	nodes	are	
perfectly	coupled,	except	the	ends	nodes.	As	the	free	end	displacement	is	increased,	other	nodes	begin	
to	decouple	until	the	ninth	increment	situation	in	which	the	bar	displacements	continue	increasing	and	
domain	displacement	decreasing.	
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Figure	15:	Relative	displacement	 s 	

	

	
Figure	16:	Decouple	evolution	between	domain	and	bar.	

	
	 One	 important	 aspect	 shown	by	 this	 example,	more	 evident	 in	 figure	13,	 is	 that	 the	 limitation	of	
adherence	force	by	the	debonding	process	regularizes	the	shear	contact	force	and	other	variables.	
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4.4.2	Example	2	

	 The	structure	analyzed	in	this	example	is	shown	in	Figure	17,	it	is	important	to	note	that	this	exam‐
ple	cannot	be	solved	without	considering	bending	stiffness	and	transverse	contact	forces	as	did	in	this	
work.	This	structure	is	a	2D	deep	foundation,	i.e.,	a	pile	embedded	in	an	infinite	soil.	In	order	to	simu‐
late	 the	presence	of	nearby	 structures	and	a	 rigid	 supporting	 rock	mass,	 some	soil	displacement	 re‐

strictions	are	imposed.	The	pile	is	considered	inclined	at	an	angle	of	10 ( )a .	A	soil	region,	with	5	me‐

ters	 length	 ( )L 	and	20	meters	depth	 ( )H ,	 is	 considered.	The	pile	has	4	meters	 in	 length	 ( )0L 	and	a	

prescribed	load	of	 0.11xP kN= ,	 1.2yP kN= 	and	 0.003 .M N m= - 	at	its	top.	Loads	increase	from	

zero	to	the	reference	values	in	50	equal	increments.	
	 A	mesh	of	300	linear	elements	is	used	to	model	the	soil	and	100	finite	elements	 line	elements 	are	

used	to	model	the	pile.	The	soil	elastic	properties	are:	 2.8DE = 10 210 N m 	and	 0.2Dn = .	The	pile	

properties	 are:	 2.8RE = 11 210 N m ,	 0.0Rn = ,	 1.79RI = 2 210 m- 	 and	 1.29RA = 2 210 m- .	 Both	

adherence	 models	 are	 considered.	 The	 model	 2	 parameters	 are: 7
1 10s m-= ,	 2 8.0s = 610 m- ,	

max 3.0f = 2 210 N m 	and	 2.7resf = 2 210 N m .	For	model	1	it	is	adopted:	 max 2.0f = 2 210 N m .	

	

	
Figure	17:	Inclined	pile	embedded	in	infinite	domain.	

	
	 Figure	17	shows	the	analyzed	structure	and	the	reference	nodes	 for	which	results	are	presented.	
Figure	18	shows	curves	of	the	pile/soil	interface	forces	at	reference	nodes.	This	figure	also	shows	the	
development	of	those	interface	forces	as	the	loading	steps	are	increased	for	both	slip’s	models.	
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Figure	18:	Shear	contact	force	along	the	pile.	

	
	 Figures	19‐21	show	the	displacement	in	the	axial	and	transverse	directions,	as	well	as	the	rotation	
along	the	pile	for	each	reference	node.	

	
Figure	19:	Axial	displacement	at	the	interface	pile/soil.	

	

	
Figure	20:	Transverse	displacement	at	the	interface	pile/soil.	
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Figure	21:	Rotation,	 q ,	of	the	pile.	

	
	 As	 can	 be	 seen	 in	 figures	 19‐21,	 the	 pile	 behavior	 for	 model	 1	 presents	 severe	 changes.	 These	
changes	occur	when	the	maximum	load	capacity	is	reached	 increment	35 ;	then	slip	occurs	without	
further	gain	of	resistance.	It	is	important	to	mention	that	over	the	load	capacity	the	solution	is	unstable	
and	the	system	loss	objectivity.	
	 For	model	2	as	the	interface	forces	do	not	reach	the	residual	part	of	the	model	the	maximum	load	
capacity	 is	not	achieved	and	no	abrupt	change	occurs	 in	 the	pile	behavior.	However,	 if	 the	 total	 load	
capacity	is	reached	 all	contact	points	reach	the	residual	part	of	the	model 	the	collapse	occurs.	
	 Figure	22	 a 	and	 b 	 show	 the	displacements	 in	 the	 y 	 direction,	 in	meters,	 for	 the	 soil	 internal	

points	considering	the	models	1	and	2,	respectively.	Figures	23	 a 	and	 b 	show	the	stress	values,	 ys ,	

for	the	soil	internal	points	for	models	1	and	2.		
	

	
Figure	22:	Soil	displacement	in	the	y	direction		
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Figure	23:	Soil	stress,	 ys ,	for	different	adherence	models.	

5	 CONCLUSIONS		

	 In	this	work	a	BEM/FEM	coupling	among	frame	bars	and	2D	continuum	is	successfully	developed	
and	implemented.	The	domain	is	modeled	by	BEM	and	reinforcement	is	modeled	by	FEM.	The	combi‐
nation	of	 the	 two	methods	 is	made	by	writing	displacement	 compatibility	 and	 interface	equilibrium.	
The	most	important	feature	of	the	formulation	is	the	consideration	of	sliding	at	frame/continuum	inter‐
face.	This	procedure	is	able	to	model,	for	example,	the	progressive	failure	of	pile‐soil	interaction	until	
reaching	the	collapse	 load,	or	 the	progressive	 failure	of	 fiber	reinforced	bodies	considering	the	 influ‐
ence	of	shear	and	normal	contact	forces.		
	 Regarding	the	solution	behavior	an	important	conclusion	should	be	stated.	As	boundary	elements	
are	able	to	model	high	stress	concentrations,	the	values	of	contact	forces	at	the	beginning	or	ending	of	
any	perfect	bounding	region	present	a	strong	perturbation.	The	use	of	redundant	algebraic	equations	
and	the	least	squares	method	are	tested	here	and	result	in	a	small	improvement	of	this	phenomenon.	
The	increasing	of	discretization	reduces	the	extension	of	perturbation	but	increases	the	near	singular	
stresses.	
	 The	complete	solution	for	 this	problem	results	when	using	a	more	realistic	model	 that	allows	the	
natural	stress	relaxation	at	singularities.	The	developed	non	linear	behavior	of	contact	forces,	consider‐
ing	the	sliding	or	decoupling	between	reinforcement	and	continuum,	completely	regularizes	the	contact	
force	behavior,	leading	to	reliable	solutions	for	low	or	high	load	situations.	Further	developments	are	
the	consideration	of	non‐linear	behavior	for	both	continuum	and	frame	media.	
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