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Abstract 
In this paper, a fully non-linear three-dimensional Numerical 
Wave Tank (NWT) is developed for studying propagation and 
scattering of non-linear random sea wave over bottom submerged 
bars. The simulation of fully non-linear free-surface is based on 
Non-Uniform Rational B-Spline formulation (NURBS) as a novel 
approach and Mixed Eulerian-Lagrangian method (MEL). High-
order boundary integral equation is used to solve the Laplace 
equation in the Eulerian frame. To update the free-surface, time 
marching approach including material node method and fourth 
order Runge-Kutta time integration scheme is used. To obtain 
appropriate numerical solutions for wave propagation problem, 
damping zone is set at the downstream. Also, the NURBS approx-
imation is employed to evaluate the velocity of the free-surface 
particles. Propagation of regular and irregular waves in a NWT is 
investigated and compared with the available experimental and 
numerical data. Transmission of the random sea wave over sub-
merged bars is also compared with the experimental and prior 
numerical studies. 
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1 INTRODUCTION 

Description of free-surface in the numerical simulation of free-surface flow is important to obtain 
accurate solutions for the problem. Numerous remedies have been developed to find accurate ap-
proximation of free-surface. They sometimes are complicated to implement and some of them are 
time consuming. Polynomial interpolation functions have been widely used as shape function to 
define marine structures and boundary geometry. Eight-node quadrilateral elements were used by 
Ning and Teng (2006) and Ning et al. (2009) to simulate free surface with biquadratic shape func-
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tion in time marching scheme. To achieve more accurate results, higher order shape function can be 
used by more nodal points. Numerical procedure becomes time consuming with increment of nodal 
points and by decrement of the mesh size, numerical instability may occur. Also, influence coeffi-
cient matrix of boundary integral may become near singular by use of the fine mesh size. 
 A two dimensional potential wave tank was developed by Tang and Huang (2008) for propaga-
tion of the second-order wave and simulation of Bragg bottom effect on the free surface evolution. 
They employed the linear boundary element method to solve the non-linear problem. Third order 
shape function with twelve-node quadrilateral curvilinear elements was employed by Shao (2010) in 
weakly non-linear wave-body interaction. Flow field around an offshore monopile was computed 
using FEM method by Li et al. (2011) where eight-node quadrilateral elements with second-order 
shape function were used to describe the hull boundary geometry. 
 In the two past decades, Non-Uniform Rational B-Spline surface (NURBS) has been widely ap-
plied to define the complex shape of marine structures. Diffraction problem of floating body was 
solved by Datta & Sen (2006) in which hull shape was approximated with NURBS. Review of the 
past studies shows that using of B-spline surface for free-surface modeling is a new approach in time 
domain simulation. Desingularized boundary integral equation, in both direct and indirect formula-
tions was given by Cao et al. (1991). Three-dimensional NURBS indirect Boundary Integral Equa-
tion (BIE) was proposed by Gao and Zou (2008). Two dimensional B-spline boundary element for-
mulations for different degree of continuity of the geometric boundary and variables are developed 
by Cabral et al. (1990, 1991). A two dimensional super-parametric boundary element method was 
formulated by Damanpack et al. (2013) to solve Poisson equation for bending analysis of thin func-
tionally graded plates based on Green second identity. Two dimensional potential numerical wave 
tank based on NURBS boundary integral equation is developed by Abbasnia and Ghiasi (2014) to 
simulate interaction between non-linear wave and truncated breakwater. 
 To keep the stability of solutions, free-surface particle velocity has to be evaluated accurately. 
To obtain tangential velocity for isoparametric linear elements, double node approach was devel-
oped by Grilli and Svendsen (1990). A polynomial formulation was presented by Grilli et al. (2001) 
for biquadratic and high-order curvilinear elements.  For time marching scheme, first-order and 
second-order finite difference formulation in time was employed in Numerical Wave Tank (NWT) 
by Wu et al. (2005) and Xiao et al. (2009) as low-order time integration methods. Fourth-order 
Runge-Kutta method was used by Koo (2003), and fifth-order Runge-Kutta-Gil and fourth-order 
Adams-Bashforth-Moulton methods were used by Zhang et al. (2005) as high-order integration 
scheme to update the free-surface. 
 Different types of wave-makers on the inflow boundary were reviewed by Tanizawa (2000) and 
Newman (2010). In the opposite side of the wave-maker, the wave absorber is adopted to prevent 
wave reflection from the end wall. Artificial damping zone has also been applied by Cointe (1991) 
on the free surface boundary to minimize the wall effect on computational domain.  During the 
free-surface simulation of nonlinear waves, the non-physical saw-tooth instability may occur. Insta-
bilities may also occur due to variable mesh size or natural singular treatment at the intersection of 
the wave-maker and the free-surface. To treat the so-called saw-tooth instability, different smooth-
ing schemes can be used such as Chebyshev five-point smoothing scheme presented by Koo and 
Kim (2004) and the B-spline smoothing scheme applied by Tanizawa (2000). 
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 This paper is mainly focused on the development of three-dimensional potential NWT based on 
NURBS approximation. Desingularized direct boundary integral coupled with NURBS formulation 
is developed to solve the boundary value problem in the Eulerian frame. In the material node ap-
proach based on Mixed Eulerian-Lagrangian (MEL) method presented by Longuet-Higgins and 
Cokelet (1976), nodal points on the free surface are allowed to move freely with the free-surface 
particles and are traced in the Lagrangian frame. Derivatives of B-spline basis function are used to 
obtain tangential derivations of potential. The fourth-order Runge-Kutta time integration scheme is 
applied into the fully non-linear free-surface boundary condition to obtain instant position of the 
moving boundary for the next time step. To avoid non-physical saw-tooth instability, five-point 
Chebyshev smoothing scheme is applied on the obtained instantaneous variables for every few time 
steps. 
 Series of tests are performed to verify the present numerical procedure. Superposition of several 
first-order and second-order regular waves at a certain spot is measured as focused wave. Three 
random waves are propagated in the present NWT and their propagations are compared with the 
experimental measurements and available numerical results. Effect of bottom profile on the free 
surface elevation is also investigated. For a submerged bar on the bottom the wave transformations 
are investigated and compared with the experimental data and the numerical results. 
 
 
2 NUMERICAL MODEL 

Consider a three-dimensional numerical wave tank with depth d , width B and length L . A layout 
of the computational domain is illustrated in Figure 1. A wave generator is placed on the upstream 
wall of the tank. A right-hand Cartesian coordinate system (Oxyz ) is defined on the mean water 

surface where the origin is on the corner of the tank, the x -axis is laid on the length of the tank 
and the positive z -axis directed vertically upwards. An artificial damping zone is defined at adja-
cent of the end tank wall. 
 

 

Figure 1: A definition sketch and coordinates system. 
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2.1 Governing equation and boundary conditions 

It is assumed that the fluid is homogeneous, incompressible and inviscid and the flow is irrotational 

and surface tension on the free-surface is neglected. Therefore, velocity potential ( ), , ,x y z tf  can be 

introduced. Velocity potential satisfies the Laplace equation in the fluid domain W : 
 

2 0      in  f = W  (1)
 

There are fully non-linear boundary conditions, Kinematic Free Surface Boundary Condition 

(KFSBC) and Dynamic Free Surface Boundary Condition (DFSBC) on the free-surface (
f
S ) which 

can be written as the following (Tanizawa, 2000):  
 

2

  (KFSBC)
   on  

1
  (DFSBC)

2

f
t z x x y y S

gz
t

h f f h f h

f
f

¶ ¶ ¶ ¶ ¶ ¶
= - -

¶ ¶ ¶ ¶ ¶ ¶
¶

= - - 
¶

 (2)

 

where, ( ), ,x y th  is the wave elevation measured from still water level, t  shows the time of simula-

tion and g  is the gravitational acceleration. Both boundary conditions are satisfied on the exact 

free-surface. 

 Impermeable condition is applied on the rigid bottom boundary (
b
S ) and sides and downstream 

end walls boundaries (
sw
S ,

d
S ) so that, 

 

0  on    ,    and  
b d sw
S S S

n

f¶
=

¶
 (3)

 

where, n


 is the normal vector directed outward of the fluid. Inflow boundary condition can be 
written as (Tang and Huang, 2008): 
 

   on  I
w
S

n x

ff ¶¶
= -

¶ ¶
 (4)

 

where, 
I

f  is the theoretical input wave potential. For instantaneous free-surface, the initial condi-

tions are defined as: 
 

( )
( )

, , 0 0
   on  

, , , 0 0 f

x y t
S

x y z t

h

f

£ =

£ =
 (5)

 

The direct boundary integral equation based on the Green's second identity is used to solve the 
boundary value problem in the Eulerian frame (Brebbia and Dominguez, 1992): 
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( ) ( ) ( ) ( ) ( ) ( ),
,

p G q p
c q q G q p p d

n n

f
f f

G

æ ö¶ ¶ ÷ç ÷ç ÷= - Gç ÷ç ÷¶ ¶ ÷çè ø
ò  (6) 

 

where, ( )c q  equals zero when the point is outside of the fluid domain and for a point on and inside 

the boundary domain (
f b d sw
S S S SG Î    ), it is solid angle i.e., 2p  for a point on the 

smooth boundary and 4p  for a point inside the boundary. For three-dimensional problems, 

( ),G q p  is given as (Brebbia and Dominguez, 1992): 
 

( ) ( )
1 1

,
,

q p

G q p
r q pc c

= =
-

   (7) 

 

where, 
q

c


 and 
p

c


are the source and field points location, respectively. 

 
 
2.2 Desingularized NURBS boundary integral equation 

An arbitrary nodal point on the curved free surface can be described by the NURBS as (Piegl and 
Tiller, 1996) 
 

( )
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 (8) 

 

where, 
,i j

R


 and 
,i j

v  are control points and weighted function, respectively. ( ), 0,1u v é ùÎ ê úë û  indicates 

two directions of the surface, and ,m n  are the numbers of control points in u  and v  directions, 

respectively. k  and l are the orders of the B-spline basis functions 
( ) ( )i
u

kB  and 
( ) ( )l

j
vB  which are 

defined as (Piegl and Tiller, 1996): 
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where, 
i
u  is the knot given by Piegl and Tiller (1996). 

( ) ( )l

j
vB  is evaluated analogously. The unit 

normal n


 and tangential vectors s


 and t


 for an arbitrary point on the surface can be obtained as 
follows: 
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( ) ( )
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Á


 

  (12)

 

where, 
u

Á


 and 
v

Á


are  partial derivatives of NURBS surface in u  and v  directions shown 

in Figure 2. 
 

 

Figure 2: Partial derivatives and unit normal vector. 
 

Location of a nodal (field) point p  on the surface is expressed as (Piegl and Tiller, 1996) 
 

( ) ( ), ,
0 0

, ,
m n

p i j i j
i j

u v u vc
= =

= Á = Â Råå
 

 (13)

 

where, 
 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

,
0 0

,

l

ij i j

i j m n
K l

i j i j
i j

u v
u v

u v

kv

v
= =

B B
Â =

B Båå
 

(14)

 

While source point 
q

c


 is hold outside of W  and 
p

c


 on the boundary integration surface. Equation 

6 can be written as: 
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Equation 15 can be rearranged on the boundaries as (Cao et al. 1991): 
 

( ) ( ) ( ) ( ) ( )

( )

,
, ,

,

N D
N

D

p p

p

G q p p
p d G q p d G q p d

n n

G q p
d

n

f
f y

j

G G
G

G

¶ ¶
G - G = G

¶ ¶

¶
- G

¶

ò ò ò

ò

 



 (16) 

 

where, 
N

G  represents the boundaries in which the normal flux of potential is known and 
D

G  indi-

cates boundary in which the known potential is applied, whereas 
N D

G Î G G  in which 

N
 

b d sw w
S S S SG Î     with  f j=  and 

D f
SG Î  with  nf y¶ ¶ = . 

 Since 
q

c


 and 
p

c


 are not coincident, integrand singularity is removed. To find the location of 

q
c


, the desingularization distance is used which is a function of local grid sizes on the boundary 

surface as shown in Figure 3. Distance of a source point from the boundary has been proposed as 
(Cao et al. 1991): 
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Figure 3: Distribution of source points and collocation points. 
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where, 
d
L  and u  are constant and equal to 1.0 and 0.5, respectively, and 

m
D  is the square root of 

the panel area. 
 The boundary integral is computed by Gaussian quadrature scheme. Gaussian points are dis-

tributed over ( ),u v  plane ( 0,1 0,1é ù é ù´ê ú ê úë û ë û ) and field points
p

c


 are located on each boundary surface. 

Thus, the location of the source points cloud can be obtained as: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,
q p d d

L p n p u v p u v n u v u v
u

c c é ù= + = Á + L = Àê úë û
       (18)

 

where,   is Gaussian integration weight factor corresponding to Gaussian points and 

( ),
u v

u vL = Á ´Á
 

. First term of Equation 16, 
N b
SG Î , can be written as: 
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Similarly, other Dirichlet boundaries can be evaluated. Suppose that the bottom surface is divided 

into ( ) 
b

M´N = M  segments in u  and v  directions, respectively. Then, Equation 19 can be 

written as: 
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where, 
i
u  and ( ) 1,..., , 1,...,

j
v i j= M = N  are the Gaussian points located on the bottom sur-

face. For the free surface boundary (
D f
SG Î ), the second integral on the LHS of Equation 16 is 

discretized as: 
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where, M  and N  are the number of segments in u  and v  directions and 
n
d  is the normal deriva-

tive of potential on the free surface. Other integrals for the remaining boundaries can be discretized 
similarly. 
  
2.3 Time marching scheme 

Material node approach is used to transform Equation 2 from the Eulerian form to the Lagrangian 
form. Nodal points are allowed to freely move with the particles of free surface. Then, Equation 2 
can be written as (Tanizawa, 2000): 
 

21

2   on  
f

g
t S

t

df
h f

d
dc

f
d

=- + 

= 
  (22) 

 

where, c


 is the location of particles on the free-surface. The position of the particles is updated by 

the evaluation of particle velocity on the free-surface and Fourth-order Runge-Kutta time integra-
tion approach. 
  
2.4 Tangential derivatives 

Since, geometry of the free-surface is described by NURBS, the normal and tangential unit vector 
components are provided by Equations 10, 11 and 12. The potential variation on the free-surface 
can also be described by NURBS as: 
 

( ) ( ), ,
0 0

, ,
m n

i j i j
i j

u v u vf
= =

= Ã = Â Qåå  (23) 

 

where, 
,i j

Q  is potential on the control points and evaluated by potential of nodal points which do 

not participate in the basis function. Directional derivatives of f  with respect to u  and v  can be 

written as (Piegl and Tiller, 1996): 
 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

0 0

,
0 0

,

l
m n

ij i j

u i jm n
K li j

i j i j
i j

u v
u v

u
u v

kvf

v= =

= =

¢B B¶
= Ã = Q

¶ ¢B B
åå

åå
 

(24) 
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(25) 

 

where, 
( )
i

k¢B  and 
( )l
j
¢B  are derivatives of B-spline basis functions. Derivatives of free-surface bound-

ary value in tangential directions are computed as follows: 



     A. Abbasnia and M. Ghiasi/ Simulation of irregular waves over submerged obstacle on a NURBS potential numerical wave tank      2317 

Latin American Journal of Solids and Structures 11 (2014) 2308-2332 
 

( )
( )

,1

,

u

s

u

u v

s us u v

f f
f

Ã¶ ¶
= = =

¶ ¶ Á
  (26)

( )
( )

,1

,

v

t

v

u v

t vt u v

f f
f

Ã¶ ¶
= = =

¶ ¶ Á
   (27)

 

The particle velocity represented on the boundary can be represented by 
s t n
s t nf f f f = + +

 
 

in which 
n

f  is the normal derivative of potential. 

  
2.5 Artificial wave generator 

Extreme waves described by linear and second-order Stokes wave theories are imposed on the inflow 
boundary. These are written as follows: 
 

( ) ( )1 2

I I I
f f f= +  (28)

 

and also, 
 

( ) ( )1 2

I I I
h h h= +  (29)

 

where, 
( )1
I

f  and 
( )1
I
h  correspond to first-order potential and wave profile, respectively, and 

( )2
I

f  and 

( )2
I
h  correspond to the second-order Stokes wave properties (Ning et al., 2009). A ramping function 

is engaged to avoid the impulse-like behavior and keep the stability of solutions and to reach to the 
steady state properly. In the present modeling, the ramping function given by Tang and Huang 
(2008) is used: 
 

( )
1

1 cos   ,  
2

1  ,                       

m
m m

m

t
t T

f t T

t T

pì æ öï ÷ï ç ÷ï ç - £÷ï ç ÷÷= çí è øïï >ïïî

 (30)

 

where, 
m
T  is the modulation time which equals to the incident wave period in the present study.  

  
2.6 Artificial damping zones 

To obtain proper numerical solution in a numerical wave tanks, the artificial damping zone (sponge 
layer) is adopted at the end of wave tank. The energy dissipation scheme is used including adding 
an artificial damping term to the fully non-linear free-surface boundary condition over the region of 
the free-surface adjacent to the rigid walls boundaries and the inflow boundary. Modified non-linear 
free-surface boundary condition with damping coefficient presented by Cointe (1991) is as follows: 
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d
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where, the subscript e corresponds to the reference configuration for the fluid. The function ( )xn  

is damping coefficient defined by 
 

( ) ( )
2

0 0 1 0

2
  ,  

2

k
x x x x x x x

k

pb
n aw

p

é ù
ê ú= - £ £ = +ê úë û

 (32) 

 

in which, w  is a characteristic wave frequency and k  is a characteristic wave number. The param-

eters a  and b  control the strength and extent of the damping zone, respectively. 
0
x  and 

1
x  indi-

cate the edges of the damping zones in horizontal plane on the free-surface. The terms 
e
f  and 

e
c


 

are reference values. When reference values are set for calm water condition ( 0 , 0
e
f h= = ), 

damping zone acts as simple absorber. If a propagating wave is used as reference value, then the 
damping zone allows only this wave to pass through. In practice, the damping coefficient equals 

zero except in the damping zone ( )0 1
x x x£ £ , which is continuous and continuously differentia-

ble. 
 
3 NUMERICAL RESULTS 

3.1 Convergence test and model verification 

To perform the numerical simulation, a numerical wave tank of Ning and Teng (2006) is provided. 
The dimension of the wave tank is taken as 15.45 m  length, 0.3 m  width and 0.8 m  depth. 
Linear wave with the wavelength of 5.15 ml =  and wave slope of 0.033kA =  is specified for 
inflow boundary value. An artificial damping zone is extended along a wave length foreside of end 

wall tank. A numerical wave probe is adopted at ( )0.28 , 0.5L B  in horizontal plane. The solution 

of proposed NURBS NWT for 4 24´  nodal points in u  and v  directions respectively, time step 
40T  and B-spline basis function order 3 3lk´ = ´  are compared with analytical and the avail-

able numerical calculations in Figure 4. 
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Figure 4: Comparison of analytical and numerical modeling of linear wave, Ah  vs. dimensionless time. 

 

When the wave is fully developed, analytical solution and numerical computations with different 
number of nodal points are tabulated on Table 1. Root mean square of wave elevation for a com-
plete wave period at the raised numerical probe is defined as: 
 

2
.

1

1 Exact Num
K i i

Exacti
i

RMS
K

h h

h=

ì üï ï-ï ï= í ýï ïï ïî þ
å  (33)

 

where, K  is the number of the time steps to complete a wave period with time step 40T . 

NURBS NWT is run with a desktop PC (Intel Core 2 Quad CPU, 2.66 GHz, and 2 GB of RAM). 
It is shown that to achieve about half of RMS corresponds to 4 20´  nodal points, more than twice 
CPU time is taken for 4 48´  nodal points at each time step. 
Accuracy of the present model for different wave slopes and wave frequencies of second-order stokes 
wave is examined and given in Table 2. Hence, three wave slopes are chosen and RMS of wave ele-
vations is determined for 4 30´  nodal points on free surface and time step 40T . The order of B-

spline basis function is chosen 3 3lk´ = ´ . It is shown that increasing wave slope decreases the 
accuracy of solution. For 0.104kA = , the wave slope is greater than 0.033kA =  about three 
time but, increasing of RMS is infinitesimal. 
Effect of time step on the numerical solution is given in Figure 5. In this Figure the solutions of  
input second-order stokes wave with 0.104kA = and different time step with water depth 0.5 is 
compared. Mesh size and order of B-spline basis function is the same as for Table 2. For time step 

90T , fully development of the input wave is postponed due to the coarse time steps. For 

10t T  , the wave is fully developed for three time steps and the numerical solutions are inde-

pendent from the time step. 
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To obtain the proper solution of NWTs, the damping zones should be adopted. A part of wave en-
ergy will return back to the computational domain from downstream boundary if the damping of 
wave energy is too weak. On the other hand, if the absorbing strength is too powerful, the damping 
zone will act as a solid boundary and the waves reflect from outflow boundary. The length and 
strength of damping zone control the performance of damping zone. Therefore, for different parame-
ters a  and b  the wave elevation of free surface is compared in Figure 6 and Figure 7, respectively. 

In Figure 6, the free surface oscillations along the numerical tank ( x d ) due to the input second-

order stokes wave for 2b =  and different a  are shown. When the strength of the damping zone 

is increased the damping zone acts as the rigid walls and some portion of incident wave is reflected. 
For 3a = , increment of the wave height is happen due to wave reflection. For 1a =  and 

1.5a = , the wave reflection is reduced from the wave absorber. 
For different length of the damping zone, the wave elevation for 1a =  is given along the numeri-
cal wave tank in Figure 7. For 1b = , the wave absorber do not dissipate the incident wave and 

for long simulation the wave reflection is happened severely. For 2b =  and 3b = , the incident 

wave is fully dissipated within the wave absorber and open water condition is kept.  
 
3.2 Focused wave generation and propagation 

In the experimental work, data measurement of non-linear waves is transformed in the Fourier do-
main as presented by Ning et al. (2009) and wave spectrum ( )S f  is manifested. Indeed, it repre-

sents wave components with different amplitudes and periods which interact with each other and 

consequently make extreme wave. Amplitude of each wave component 
i
a  is obtained as: 

 

( )
( )

i

i

in

S f f
a A

S f f

D
=

Då
 (34) 

 

where, A  is the general linear focused wave amplitude given by Ning et al. (2009), ( )i
S f  is the 

spectral density of each wave component i  and fD  is the frequency step depending upon the 

number of wave components n . 
 For a wave flume with water depth of 0.5 d m= , spectrums are presented in Figure 8. Char-
acters of each wave spectrum are depicted in Table 3 based on Westphalen et al. (2012) in order to 

simulate the wave in which 
p
T  is the peak period of wave spectrum and 

p
l  is the wave length 

corresponding to the peak period. 
 In this paper, an artificial wave generator is located at 0x =  and an artificial damping zone 
with the length twice as great as the length of the wave is placed at the end of the tank. To verify 
proposed numerical procedure, a tank with the dimensions of 12 1 0.5 m m m´ ´  (L B d´ ´ ) 

is provided and the focused point and time are set to 
0

3 x m=  and 
0

9.2 t s=  for case 2, 

0
3.27 x m=  and 

0
10 t s=  for case 3 and case 4, respectively. The phase angle 

i
e  is taken 

equal to zero. 4 36´  Gaussian points are adopted on the free-surface and the rational B-spline 
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basis function of order 3 3´  is used to simulate the free-surface elevation. Other boundaries are 
flat and described by isoperimetric linear quadrilateral elements. Time step 40

p
t TD =  is used 

in high-order time integration scheme. 
 

Figure 5: Comparison of numerical modeling of linear wave for different time steps, Ah  vs. dimensionless time. 

 

Figure 6: Performance of the end wall damping zone for different strength of the damping zone. 
 

 

 
Figure 7: Performance of the end wall damping zone for different length of the damping zone. 
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No. of nodes
(u v´ ) 

B-spline order 
( lk´ ) 

Root Mean Square
(RMS ) 

CPU Time per 
Time Step (s )

4 20´  3 3´  41.820 10-´  15.33 
3 4´  41.817 10-´  15.33 
3 5´  41.819 10-´  15.33 

4 24´  3 3´  41.754 10-´  17.46 

3 4´  41.782 10-´  17.46 

3 5´  41.783 10-´  17.46 
4 30´  3 3´  41.641 10-´  22.78 

3 4´  41.580 10-´  22.78 
3 5´  41.578 10-´  22.78 

4 36´  3 3´  41.342 10-´  27.87 
3 4´  41.476 10-´  27.87 
3 5´  41.333 10-´  27.87 

4 40´  3 3´  41.118 10-´  31.42 
3 4´  41.006 10-´  31.42 
3 5´  41.006 10-´  31.42 

4 48´  3 3´  40.863 10-´  37.34 
3 4´  40.782 10-´  37.34 

3 5´  40.790 10-´  37.34 
 

Table 1:  RMS error and CPU time of linear wave simulation.  
 
 

Wave slope Wave celerity Root Mean Square

(kA ) (C kw= ) (RMS ) 

0.015  2.7146  59.971 10-´  

0.033  2.4580  41.641 10-´
0.104  1.5924  41.809 10-´

 

Table 2:  RMS error and CPU time of linear wave simulation. 
 

The maximum linear and nonlinear wave elevations max.h  for the cases given in Table 3 are comput-

ed and compared with the physical measurements and numerical results of Ning et al. (2009) and 
Westphalen et al. (2012). The comparisons are presented in Table 4. Meanwhile, numerical results 
include a three-dimensional potential numerical wave tank computations based on the boundary 
integral equation with isoparametric quadratic element developed by Ning et al. (2009). In addition, 
the numerical wave tank calculations based on commercial CFD packages with both FV and CV-
FE solvers were conducted by Westphalen et al. (2012). 
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Figure 8: Wave spectrum of focused wave and properties of simulated cases. 
 
 

Test Case ( )
range
f Hz  n   ( )A m   ( )

p
T s   ( )

p
ml  

Case 2 0.6-1.3 16 0.0632 1.2 2.00 
Case 3 0.6-1.4 20 0.0875 1.25 2.18 
Case 4 0.5-1.8 16 0.1020 1.25 2.18 

 

Table 3: Properties of wave cases for simulation. 
 

For case 2, the highest crest of the first-order wave input with NURBS NWT is higher than the 
evaluations with CV-FE and FV solver. For the second-order wave components, NURBS NWT 
predicts the maximum wave elevation closer to the experimental measurement than the FV solver. 
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For case 3, the trend is similar. For case 4, the numerical results show good agreements with the 
experimental data. It should be mentioned that in this case, the focused wave almost broke in the 
real wave tank and the nonlinearity predominates on the simulation. 

 

Test Case CV-FE FV NURBS Exp. Data  
max.

A

h  ( ). Dist m

 

max.

A

h  ( ). Dist m

 
 

max.

A

h  ( ). Dist m

 

max.

A

h  ( ). Dist m

 
 

Case 2         
 1st ord. 1.08 3.00 0.93 2.61  1.10 3.00 NA NA  
 2nd ord. 1.12 3.68 1.24 3.29  1.19 3.24 1.03 3.00  

Case 3         
 1st ord. 1.13 3.68 1.17 3.68  1.08 3.46 NA NA  
 2nd ord. 1.17 4.08 1.23 4.08  1.21 4.13 1.10 3.29  

Case 4         
 1st ord. 1.07 3.68 1.26 3.68  1.13 3.46 NA NA  
 2nd ord. 1.27 3.00 1.28 3.68  1.16 3.46 1.22 3.29  

 

Table 4:  Maximum wave elevation of three focused wave. 
 

Time series of wave elevations of the cases 2-4 are depicted at focused point in Figure 9 and Fig-
ure 10, respectively. The comparison of computed crest and trough focused waves using linear and 
nonlinear theory with experimental results is presented. For case2, computational wave crest on the 
center of wave group is reached to the experimental measurement by NURBS NWT. When the 
input wave includes the second-order wave components, prediction of the central wave group trough 
coincides with physical wave tank measurement as shown in Figure 10. The results of the surround-
ing crests and troughs are generally improved from the first-order to the second-order. For both 
input wave cases, the surrounding trough elevations are slightly higher than the physical experi-
ments with respect to the surrounding crests and somewhat, NURBS NWT decreases the small 
differences.  
For case 3, it can be said that the numerical evaluations are closer to the physical experiments bet-
ter than case 2 and the slight difference of the surrounding troughs and crests are decreased. It 
shows that moving from input linear wave components to the second-order wave components im-
proves trough elevations. 
 In the physical measurement, wave breaking almost occurs due to the steepness of the wave in 
case 4. Hence, severe nonlinearity is attended in the wave simulation. Nevertheless, computational 
results for central crest reasonably agree with the experimental measurements for both input wave 
cases. There are substantial differences in surrounding crests and troughs and the wave trends 
found by Ning et al. (2009). Capability of NURBS to predict sharp mutation of the free surface 
accommodates computations to agree with the physical measurements. As well, symmetry around 
the maximum crest of wave group in case 2 is retained by NURB NWT and for steeper wave is lost 
while the nonlinearity dominates in the numerical modeling. 
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Figure 9: Comparison of time history of wave elevation of the first-order focused wave cases 2-4. 
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Figure 10: Comparison of time history of wave elevation of the second-order focused wave cases 2-4. 
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Experimental investigation on propagation of incident irregular waves over a submerged bar is car-
ried out by Beji and Battjes (1993) and its numerical simulations based on Boussinesq equations 
and mild-slope equations are conducted by Hsu et al. (2007) and (2002), respectively. JONSWAP 
spectrum of Hsu et al. (2007) given in Equation 35 is chosen to pass over a submerged bar. Dimen-
sions of numerical wave tank is equal to the experimental wave flume of Beji and Battjes (1993) 
with the length of 37.7 m , the breadth of 0.8 m  and the water depth of 0.4 m . 

 Spectrum of the fully propagated incident wave with significant wave height of 
1 3

0.03 H m=  

and the significant period of 2.5 
s
T s=  is compared with the theoretical result and numerical 

computation in Figure 11. 

( ) ( )
2

2
0

4 exp 1 2
2

2 5
1 1 3

exp 1.25
p

f

f

p
p

f
S f f H f

f

s

s

é ùæ öê ú÷ç ÷- çê ú÷- -ç ÷ê úç ÷ç ÷ê è ø ú- ê úë û

é ùæ öê ú÷ç ÷çê ú= - Ã÷ç ÷ê úç ÷çè øê úë û

 (35)

 

where, the peak period 
p
T  is related to the significant period, and the coefficients are 3.3Ã = , 

1
0.2189s = , 

0
0.07s = for 

p
f f£  and 

0
0.09s = for 

p
f f> . 

 

 

Figure 11: Comparison of JONSWAP spectrum recorded in physical and numerical wave tank. 
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merical results is remained on the higher frequency domain, but it seems that NURBS NWT model 
is closer to the proposed spectrum. To measure the irregular wave evolution due to a submerged 
trapezoidal bar, eight wave probes are arranged along the wave flume as shown in Figure 12. 
 It is worth mentioning that the wave breaking does not occur during the simulation and the 
observation is conducted at the first wave probe. Comparison of the experiments and the numerical 
results is given in Figure 13. At the peak point of energy density at every wave probes, NURBS 
NWT is better than the other numerical computations, whereas the mild slop simulation for wave 
probes 5-8 and the Boussinesq simulation for wave probe 2 and 4 are overestimated. In addition, 
these simulations do not touch peak measurement at wave probes 1 and 3. For higher frequency, 
substantial deviation occurs at wave probes 5-8 for numerical simulation showing that computations 
are partly improved by NURBS NWT. 
 

 
 

Figure 12: Wave probe arrangement along the wave flume of Beji and Battjes (1993). 

 
 
4 CONCLUSIONS 

Development of a fully non-linear 3D NWT is considered in this paper for investigation of propaga-
tion and scattering of non-linear random sea wave due to bottom submerged bars. The simulation 
of fully non-linear waves using NURBS in a potential three-dimensional numerical wave tank is 
successfully completed. 
 MEL method and desingularized boundary element method is employed for numerical simula-
tion. To keep numerical accuracy and avoid instability in MEL, five points Chebyshev smoothing 
scheme was adopted in time marching. To obtain appropriate numerical solutions for wave propa-
gation problem in a numerical wave tank artificial damping zones (sponger layer) is adopted. Per-
turbation sources are placed on the fixed inflow boundary to make the free-surface oscillating during 
the simulation. Also, the NURBS is used to evaluate velocity of the free surface particles accurately. 
It is a novel procedure to calculate the free-surface kinematics. 
 The stability and accuracy of NURBS NWT were examined and verified to model the free-
surface. It is shown that the present approach gives accurate solution, whereas the computation 
time was saved and the computational nodes were reduced. Simulations of propagation of irregular 
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wave spectrum and wave transformation of a random sea waves due to submerged bar are present-
ed and compared with the experimental and available numerical results. It is shown that the appro-
priate solution with sufficient accuracy can be obtained by the proposed numerical procedure. 
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Figure 10: Comparison of irregular wave transformation when propagating over the submerged bar. 
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