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Abstract 
This paper studies free vibration and bending behavior of single-
walled carbon nanotubes (SWCNTs) embedded on elastic medium 
based on three-dimensional theory of elasticity. To accounting the 
size effect of carbon nanotubes, non-local theory is adopted to 
shell model. The nonlocal parameter is incorporated into all cons-
titutive equations in three dimensions. The surrounding medium is 
modeled as two-parameter elastic foundation. By using Fourier 
series expansion in axial and circumferential direction, the set of 
coupled governing equations are reduced to the ordinary differen-
tial equations in thickness direction. Then, the state-space method 
as an efficient and accurate method is used to solve the resulting 
equations analytically. Comprehensive parametric studies are 
carried out to show the influences of the nonlocal parameter, ra-
dial and shear elastic stiffness, thickness-to-radius ratio and ra-
dius-to-length ratio. 
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1 INTRODUCTION 

In the last two decades, carbon nano-tubes (CNTs) have attracted the attention of many research 
groups due to its exceptional mechanical, chemical and electrical properties. The mechanical charac-
teristics of CNTs is of great interest for engineering design and manufacture especially in nano-
electro-mechanical systems (NEMS) and numerous techniques for modeling the CNTs has been 
carried out along with experimental researches. Since experimental investigations are expensive at 
nano-scale systems, theoretical modeling of CNTs has received increasing attention in recent years. 
 There are several works studies the mechanical behavior of CNTs by using classical theories. He 
et al. (2005) presented an explicit definition of the vdWs coefficient and studied the axial buckling 
of CNTs. Hu et al. (2007) and Hu et al. (2008) utilize string-elastic shell model for studying the 
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vibration and buckling forces of a carbon nanowire. An excellent survey of the research work on the 
classical model of CNTs can be found in the work done by Gibson et al. (2007). Recently, Ansari 
and his co-workers (Ansari, Hemmatnezhad, et al. (2011), Ansari and Sahmani (2011)) used various 
beam models to study the vibration and buckling of  single-walled carbon nano-tubes (SWCNTs). 
     However, both experimental and atomistic simulations have shown that nanostructures have 
size-dependent behavior so that well-known classical theories cannot capture this behavior of 
nanostructures. It means when the size of the structure becomes small, as well as the nanostructure, 
the small length effect (such as lattice spacing between individual atoms) becomes gradually more 
important and thus its effects can no longer be ignored (Sun and Zhang (2003),  Aydogdu (2012))  . 
Nonlocal theory is one of the well known continuum models that includes internal length scale and 
has good accuracy compared with experimental results (Eringen (2002)). This theory includes 
length scale effect and long-range atomic interactions so that it can be considered as a continuum 
model for atomic lattice dynamics. Many researchers incorporated nonlocal theory into beam model 
to study vibration, bending and buckling of CNTs. Wang et al. (2006) utilized Timoshenko beam 
theory to analyzed buckling of nano tubes based on nonlocal elasticity. They compared nonlocal 
results with classical beam theories and showed that small scale effect reduces the critical buckling 
load. Reddy (2007) studied bending, vibration and buckling of nanobeams and reformulated various 
beam theories by using the nonlocal theory. Wang and Liew (2007) studied bending behavior of 
SWCNs by using nonlocal Euler–Bernoulli and Timoshenko beam theory. Based on nonlocal theory, 
Thai (2012) used shear deformation beam theory to study deflection, buckling and natural frequen-
cy of nano-beam. He presents analytical solution for simply supported beam by implementing series 
expansion. Eltaher et al. (2012) studied free vibration behavior of functionally graded (FG) nano-
beams by using Euler–Bernoulli beam theory. In their work, the size-dependent behavior is consid-
ered by utilizing nonlocal constitutive relation. Shen et al. (2012) modeled CNT-based biosensor by 
using nonlocal Timoshenko beam theory. They assumed that multiwall CNT carrying a spherical 
nanoscale bio- object at the free end and used transfer function method to determine the natural 
frequencies of CNTs. On the basis of nonlocal theory, Aydogdu and Filiz (2011) used classical beam 
model to study the small-scale effect on axial vibration behavior of SWCNTs. They showed that the 
axial vibration frequencies of SWCNT with attached mass are highly overestimated by using the 
classical beam theory. Based on nonlocal theory, Murmu et al. (2011) used nonlocal beam model to 
study the torsional vibration behavior of SWCNTs with added buckyballs at one end.  
 There are several studies, in which the mechanical behaviors of CNTs are investigated by using 
nonlocal shell model. Arash and Ansari (2010) used first order shear deformation shell theory to 
model SWCNTs. They considered that SWCNT is subjected to initial strain and solved the non-
local equations by radial point interpolation method. Yan et al. (2010) investigated the small scale 
effect on the buckling behavior of triple-walled carbon nanotubes (TWCNTs) with nonlocal theory. 
They modeled TWCNTs as three elastic shells and considered axial load in thermal environment. 
Khademolhosseini et al. (2010) developed modified nonlocal continuum shell model based on non-
local theory and studied torsional buckling of SWCNTs. They showed that classical shell models 
overestimate the buckling torques. Hao et al. (2010) used nonlocal theory to study the small-scale 
effect on the torsional buckling of multi-walled carbon nano-tubes (MWCNTs). They used multiple-
shell model for the MWCNT surrounded by an elastic medium and subjected to the thermal load. 
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Ansari, et al. (2011) studied free vibration response of double-walled carbon nanotubes based on 
Rayleigh–Ritz technique. They incorporated nonlocal elasticity theory into the classical Donnell 
shell theory. Ansari et al. (2011) investigated the buckling behavior of CNTs by using nonlocal shell 
theory. They used Rayleigh–Ritz method in conjunction with the set of beam functions. Wang et al. 
(2012) investigated the effect of nonlocal parameters on the vibration of CNTs based on nonlocal 
shell and beam models. They showed that circumferential nonlocal effect is considerable in vibration 
of CNTs compared with existing molecular dynamics simulations. Recently, authors used three di-
mensional theory of elasticity to analysis the vibration behavior of nano-plate and CNTs (Alibeigloo 
(2011); Alibeigloo (2012); Alibeigloo and Pasha Zanoosi (2013); Alibeigloo and Shaban (2013)).  
 To the best of author knowledge, the three dimensional bending and vibration behavior of CNTs 
surrounded by polymer matrix in conjunction with nonlocal theory has not yet been investigated, 
and the present work attempts to consider this analysis. The surrounding matrix is assumed to have 
both shear and transverse flexibilities, so that the two parameters elastic foundation based on Win-
kler and Pasternak model is considered  (Yoon (2003); Murmu and Pradhan (2009)). The partial 
differential equations are reduced to the ordinary equations by expanding the field variables to dou-
ble Fourier series along the axial and circumferential coordinates. Due to its efficiency, the state-
space technique is applied to the equations in radial direction and obtain the stress and displace-
ment fields.  
 

2 GOVERNING EQUATION 

Here, we applied three-dimensional elasticity theory in combination with nonlocal theory to study 
the bending and vibration behavior of SWCNs. In the nonlocal theory, unlike the conventional local 
theories, it is assumed that the stress at a point in a continuum body is function of the strain at all 
neighbor points of the continuum. Constitutive model that expresses the nonlocal stress tensor is as 
follow: 

( )21 ij ij ijkl klt cm s e-  = =  (1) 

where µ is the nonlocal parameter, tij is the nonlocal stress tensor, σij is the local stress tensor, cijkl 
is the fourth-order elasticity tensor and εij is the local strain tensor. Fig. 1 shows SWCN in cylin-
drical coordinate (r,θ,z) surrounded by polymer matrix. L, Ri, Ro, and h is the length, inner radi-
us, outer radius and thickness. As shown in Fig. 1, the surrounding matrix is modeled as two-
parameter elastic foundation. Governing equations of motion for SWCNs, in cylindrical coordi-
nate are 
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Based on non-local theory, the constitutive relations in three-dimensional theory of elasticity are 
written as 

( ) ( )2 1r r r zC qs m s n e n e eé ù-  = - + +ê úë û  
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The stress-displacement relations for the SWCN by using Eqs. (3) and (4) can be written as 
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The equations of motion in term of displacement components can be written as below Alibeigloo 
and Shaban (2013) 
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3 EXACT SOLUTION 

The following non-dimensional parameters are adopted to present a more general solution, 
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R is the inner radius and P is the external pressure. The exact solution to SWCNTs with simply 
supported edges should satisfy the following edges conditions: 
 

(8) 0 0,r zu u at z Lq s= = = =
 

The following solutions satisfy the simply supported boundary conditions,  
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( ) ( ) ( )*, , sin cosz z nr z p z ms q s q=

( ) ( ) ( )*, , cos sinz z nr z p z mq qt q t q=

(9)( ) ( ) ( )*, , sin cosnr z p z mq qs q s q=

 
where npn   and ********* ,,,,,,,,   zrrzzrzr UUU  are functions of r. Substitution of relations (9) 

into the Eqs. (6-1) - (6-3) yields the following state equations  
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The general solution to Eq. (11) explicitly expressed as 
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where      10  rr .  

 
3.1 Free Vibration 

In the free vibration analysis, the inner surface is traction free and the outer surface is surrounded 
by elastic medium. The elastic foundation is assumed to have both shear and transverse flexibili-
ties. So that, the boundary conditions are as follow; 
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where kr and kg are transverse and shear elastic foundation, respectively. By using Eq. (11), a 
relationship between the state vectors on the outer and inner surfaces of the shell is established as 
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boundary conditions Eqs. (12) can be written in terms of displacements and their derivatives; 
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where [A] and [B] are constant coefficient matrixes, respectively (appendix). To obtain nontrivial 
solution for Eq. (14), the determinant of matrix coefficient in the left hand should be set to zero. 
By solving the obtained equation, natural frequency of CNTs is obtained. 
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3.2 Bending Analysis 

In the bending analysis, it is assumed that the outer surface is exposed to uniform pressure. The 
boundary conditions in the inner and outer surface for bending analysis are considered as below; 

(15) 2
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From Eqs. (5-1), (5-4) and (5-5) the surface boundary conditions, Eqs. (15), are changed to the 
displacement components and can rewritten as below; 
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By solving Eq. (16), the displacements and their derivatives, δ0, at the inner surface are obtained. 
The other state variables can be obtained by using Eq. (11). Unlike the local theory, the stress 
components cannot calculate directly from displacement components. On the other hand for ob-
taining stress component, one should solve the nonlocal differential equations of stress-
displacement relations (Eqs. (5)). Here, the state space technique is used again to reformulating 
the stress components. By applying state space technique to the stress-displacement relations, Eq. 
(5), and using the obtained displacement components, the through the thickness stress distribu-
tion is derived as follow 
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where H and *( )if u  are coefficient matrix and scalar, respectively (see appendix). Eq. (17) can be 

solved by using a similar manner like Eq. (10). From Eq. (16) as well as surface boundary condi-
tions, Eq. (15), the transverse stresses can be derived and then from Eq. (2) the in-plane stress is 
determined. 
 
4 NUMERICAL RESULTS AND DISCUSSION 

In this section, the following material and geometrical properties are assumed for SWCNTs: 
Young’s modulus E=1.06 Tpa, inner radius R=2.32 nm and Poisson’s ratio ν=0.3 [28] Alibeigloo 
and Shaban (2013) . For comparison study, at first, the results of free vibration for thin and thick 
cylindrical shell (µ=0) with finite length are obtained and compared respectively with the results 
of Murmu and Pradhan (2009) according to Table 1 and Qatu (2004) as mention in Table 2. Ex-
cellent agreement between results can be observed for thin and thick cylinders. Secondly, valida-
tion of the bending analysis is carried out by using commercial finite element code ABAQUS. 
Table 3 shows the numerical results of radial deflection for isotropic cylinder subjected to uniform 
internal pressure (Pin = 80 Mpa). As the table shows, the obtained results are in good agreement 
with numerical analysis.  
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n M Results Qatu (2004) 

1 0 0.97087 0.96852 

 1 0.59721 0.59729 

 2 0.34025 0.34038 

 3 0.20145 0.20149 

 4 0.12886 0.12908 

 5 0.09105 0.09104 

    

2 0 0.99351 0.99501 

 1 0.88357 0.88441 

 2 0.68072 0.68107 

 3 0.50059 0.50153 

 4 0.36918 0.36908 

 5 0.27671 0.27711 
 

Table 1: Comparisons of natural frequency for thin cylindrical shell 

Ωnm ( 0.285, 0.0034, 2
h L

R R
n = = = ) 

 

 

h/R m Results SOLDATOS and P. (1990) 

0.1 1 0.913 0.932 

 2 0.762 0.774 

 3 0.699 0.710 

    

0.2 1 0.993 1.043 

 2 0.936 0.966 

 3 0.999 1.051 

    

0.3 1 1.112 1.173 

 2 1.116 1.161 

 3 1.245 1.340 
 

Table 2: Comparisons of natural frequency for thick 

cylindrical shell Ωnm ( 1, 1
L

n
R

= = ) 
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h

R
 L

R
 ( )510ru m- Abaqus

0.3 5 6.6931 6.599 

 15 6.7181 6.563 

 25 6.7181 6.557 

0.5 5 4.7177 4.604 

 15 4.6409 4.639 

 25 4.6409 4.636 

1 5 3.31 3.21 

 15 3.1488 3.136 

 25 3.1491 3.134 
 

Table 3 Comparison of radial deflection for isotropic cylinder 

(E = 200 G pa, Ri = 40 mm, ν=0.3) 

 
After comparision with macro structures, furthere comparision is provided by considering sin-

gle wall armchair (15, 15) and zigzag (26, 0) nano tubes. An accurate discreate nano-scale finite 
element (FE) model was studied in work done by Seifoori and Liaghat (2013) to obtain mechani-
cal and geomertical properties of mensioned SWCNTs, and compared with other investigations. 
The mechanical and geomertical properties of (15, 15) and (26, 0) SWCNTs as a thick cylindrical 
shell are as follow (Seifoori and Liaghat (2013)): Diameter 2.04 nm, Young’s modulus E=1.04 
GPa, wall thickness t=0.34 nm, length L=20.732 nm and the mass density ρ=935 kg/m3. The 3D 
8-node brick elements (C3D8R) are used to generate the FE model in ABAQUS. The radial de-
flection and first frequency of SWCNTs computed throught state-space approach compared with 
those obtained by FE method. It is clear that the results agree very well with FE method and the 
difference is not more than 5%. 
 

 

Figure 1 Single-walled carbon nanotube surrounded by polymer matrix 
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Figure 2: Variation of non-dimensional natural frequenciesΩnm vs. radial elastic foundation 

stiffness for different values of nonlocal parameters 0, 10, 0.14g
L h

k
R R

= = =  

 

Here, numerical results for free vibration and bending behavior of SWCNT are carried out and 
presented in Tables 4-5 and Figs. 2-9. In Table 4, the first four non-dimensional natural frequen-
cies are presented for different radial and shear stiffness values. According to this table, one can 
see that Ωnm is very sensitive to elastic stiffness. For instance, the non-dimensional frequency of 
SWCNTs in the absence of elastic medium is 63% smaller than embedded SWCNTs with kr=1018. 
Fig. 2 shows the effect of variation of radial elastic foundation stiffness on the nondimensional 
frequency parameters Ωnn for different values of nonlocal parameter µ. It can be seen that in the 
absence of kg, when the kr is less than 1017, the Ωnn is independent of kr. It is also observed that 
fundamental frequencies of SWCNT increase abruptly with increasing kr from about 1017 to 1021. 
For kr larger than 1021 the Ωnn remains constant when kr varies. From this figure it is obvious 
that increasing the nonlocal parameter, µ, causes the natural frequencies to decrease. Such varia-
tions are more considerable for higher modes. In a similar manner, the influence of variation of 
nondimensional frequency parameter Ωnn versus shear elastic foundation stiffness, kg is shown in 
Fig. 3. Similar behavior can be observed due to variation of kg. According to Fig. 3, the Ωnn is not 
affected by shear elastic foundation stiffness variation when kg<1 or kg>104. From this figure, it is 
clear that increasing the nonlocal parameter for small values of the kr does not affect the nondi-
mensional frequency parameter Ωnn of SWCNTs, while, for higher values of kr, the frequency 
curves get separated as µ increases. 
 
 

Number of solid elements ur (nm) ω11 (THz) 

Along the 
circumference 

Along 
the axis 

Along the thick-
ness 

analytical Abaqus analytical Abaqus 

58 163 3 3.26 3.38 44.37 46.7 
 

Table 4: Comparison of radial deflection and first frequency of armchair (15, 15) 
and zigzag (26, 0) obtained from analytical solution with 3D finite element results 
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rk  gk  
11W  

12W  
21W  

22W  

0 0 0.064 0.085 0.190 0.109 

 2 0.078 0.123 0.193 0.141 

 4 0.088 0.155 0.197 0.169 

1018 0 0.102 0.120 0.204 0.137 

 2 0.113 0.151 0.211 0.165 

 4 0.120 0.180 0.214 0.186 

1020 0 0.543 0.805 0.582 0.781 

 2 0.547 0.809 0.582 0.784 

 4 0.547 0.812 0.582 0.788 

1022 0 0.578 0.960 0.652 0.987 

 2 0.578 0.960 0.652 0.987 

 4 0.578 0.960 0.652 0.987 
 

Table 5: The first four non-dimensional natural frequencies Ωnm for different radial 

and shear stiffness values 210, 0.14, 0.75
L h

nm
R R

m= = =  

 
Figs. 4 show variation of non-dimensional frequencies versus radial elastic foundation stiffness 

for different shear stiffness coefficients. It is observed that non-dimensional frequency increases 
rapidly with increasing kr or kg, as expected. Such increments are more considerable for small 
values of kg and for higher values of that parameter, increasing the shear elastic foundation will 
cause the natural frequencies of SWCNT to increase very slightly so that for kg≥10

4, the frequen-
cy remains constant. Considering the prior discussions, it is clear that shear elastic stiffness is 
dominant compared with radial stiffness and more affects the Ωnm.  

Figs. 5a-b show the effect of radial elastic foundation stiffness on the non-dimensional radial 
stress for different values of nonlocal parameter µ. Similar to Fig. 2, it can be seen that increase 
of kr from about 1017 to 1021, cause dramatic increase in the

r . It can be seen that for the same 

values of geometrical parameters, the nonlocal parameter has more effect in the higher values of 
kr on the frequency parameter. Furthermore, the discrepancy between different values of non-local 
parameters increases as the h/R ratio increases. Figs. 6 show variation of non-dimensional radial 
deflection 

ru  and stress 
r versus radial elastic foundation stiffness for different values of shear 

elastic foundation stiffness. It is observed that 
ruand 

r  decreases abruptly with increasing kr or 

kg. For kg>1021 the 
ru becomes zero, implying that at this elastic foundation coefficient, the foun-

dation behaves rigidly. Table 5 shows the effect of thickness (h/R) on the non-dimensional dis-
placement and radial stress. According to Table 6 and as expected, increase the thickness-to-
radius ratio, cause the non-dimensional radial deflection and stress of the SWCNTs to decreases. 
Figs. 7a-b shows the effect of dimensionless ratio L/R on the first and second non-dimensional 
frequency. As shown in Figs. 7, when the length-to-radius ratio increased, the dimensionless fre-
quency, decreased. Fig. 8 presents the ratio of nonlocal stress to local stress at the mid surface of 
SWCNT for various nonlocal parameter µ. From this figure one can conclude that for small 
length-to-radius ratio, the local continuum model tends to overestimate the stress. Also it can be 
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seen that by decreasing the L/R ratio, the effect of nonlocal parameter decreased and in this work 
this effect is negligible.  
In Fig. 9, variation of radial stress at the mid radius along the axis of CNT subjected to uniform 
radial pressure with respect to different values of nonlocal parameter is presented. From Fig. 9 it 
can be concluded that by increasing the nonlocal parameter, the radial stress decrease.  
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0 0 -.4031 -.4429 -.0528 -.4966 -.0149 -.5265 

 1016 -.4031 -.4429 -.0528 -.4966 -.0149 -.5265 

 1018 -.3272 -.4431 -.0506 -.4962 -.0147 -.5259 

1018 0 -.3852 -.4428 -.0519 -.4964 -.0148 -.5260 

 1016 -.3852 -.4430 -.0519 -.4964 -.0148 -.5260 

 1018 -.3165 -.4431 -.0498 -.4960 -.0146 -.5255 

1020 0 -.0712 -.4420 -.0191 -.4902 -.0074 -.5043 

 1016 -.0712 -.4422 -.0191 -.4902 -.0074 -.5043 

 1018 -.0710 -.4425 -.0190 -.4902 -.0074 -.5043 
 

Table 6: Non-dimensional radial deflection and radial stress for different radial and shear  

stiffness values 210, 0.75
L

nm
R

m= =  and various h

R
 ratios  

 

 

Figure 3: Variation of non-dimensional natural frequencies 
nm  vs. shear elastic foundation 

stiffness for different values of nonlocal parameters 0, 10, 0.14r
L h

k
R R

= = =  

 
 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7


11

kg

 

 

 = 0.00

 = 0.25

 = 0.50

 = 0.75

 = 1.00

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4


22

k
g

 

 

 = 0.00

 = 0.25

 = 0.50

 = 0.75

 = 1.00



                                                M. Shaban, A. Alibeigloo / Three dimensional vibration and bending analysis of carbon nano-tubes       2134 

Latin American Journal of Solids and Structures  11 (2014) 2122-2140 
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Figure 6: Variation of non-dimensional radial deflection ru  and r  vs. radial elastic foundation stiffness for 
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Figure 7: Variation of non-dimensional natural frequencies vs. radial elastic foundation stiffness for different 
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Figure 8 Effect of nonlocal parameter µ	in the radial stressat 0.5, 0.6, 0r g
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Figure 9 Axial distrubution  of radial stress and displacement with various  nonlocal parameter µ	at
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5 CONCLUSION 

An accurate solution procedure based on the three-dimensional theory of elasticity for the bend-
ing and free vibration analysis of embedded SWCNTs is presented. It is assumed that SWCNT is 
surrounded by elastic medium with both radial and shear stiffness. The nonlocal elasticity is 
adopted to constitutive relations to investigate the size effect of CNTs. Using the series expansion 
of stress and displacement components through the axial and tangential directions, equations of 
motion and the related boundary conditions were developed. After that, the state-space method 
was used to solve the resulting equations of motion along the thickness direction. The obtained 
solutions provide a better representation of the bending and vibration behavior of short nano-
tubes where the effects of small scale and elastic medium are significant. It is concluded that 
small scale parameter has a substantial effect on the natural frequency and radial stress and dis-
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placement of SWCNTs and neglecting this effect leads to significant errors. In addition, it is pre-
sented that higher modes of natural frequencies are more sensitive to the small length scale. This 
study shows that the static and vibrational behaviors of SWCNTs are strongly affected by elastic 
medium. It is observed that radial and shear stiffness in a special interval become more pro-
nounced, and cause the natural frequency and radial stress and displacement to be increased rap-
idly. Also, the effect of length to radius ratio is examined. The presented nonlocal shell model is 
useful for study and design of embedded nanotube-based devices. 
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