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Abstract 
The mathematical model for wave motion in a fractured porous 
solid is solved for the propagation of harmonic plane wave along a 
general direction in 3-D space. The solution is obtained in the 
form of Christoffel equations, which are solved further to define 
the complex velocities and polarisations of five attenuated waves 
in the medium. Four of these waves are longitudinal waves and 
the one is transverse wave. For any of these five attenuated waves, 
a general inhomogeneous propagation is considered with a complex 
specification of slowness vector involving a finite non-dimensional 
inhomogeneity parameter. The phase velocities and attenuation 
coefficients are calculated for the inhomogeneous propagation of 
each of the five attenuated waves in the medium. A numerical 
example is studies to analyse the effect of wave frequency, 
saturating pore-fluid, volume fraction of fractures and 
inhomogeneity parameter on the phase velocity and attenuation.  
The phenomenon of reflection is studied to calculate the partition 
of wave-induced energy incident at the plane boundary of the 
fractured porous solid. The effect of wave frequency, volume 
fraction of fractures, saturating pore-fluid and inhomogeneity 
parameter on the energy partition are studied in the numerical 
example. 
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1 INTRODUCTION 

Fractures play a significant role in hydrology and in many oil and gas reservoirs. In recent years, 
fractured reservoirs attracted more attention in the research of exploration and production 
geophysics. The direct prediction of fracture is difficult due to the complexity of the fracture 
development system. Generally, seismic wave propagation through the Earth (or reservoir rocks) 
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is strongly affected by the presence of fractures and micro-pores. The type and state of the fluid 
(liquid or gas) can make a large difference in the response of seismic waves, when these fractures 
are filled with fluids (oil, gas, water, CO2, etc.). The studies of elastic wave propagation and 
related phenomena in fractured porous medium are of great interest in various fields, namely 
hydrology, nuclear waste industry, petroleum engineering, mining engineering, seismology and 
exploration of subsurface resources. 

The dynamical equations formulated by Biot (1956, 1962a, b) are, generally, used to derive 
mathematical models for wave propagation studies in poroelastic media. Biot established the 
fundamental theory for wave propagation in fluid-saturated porous media. It is still well-accepted 
and forms the basis for wave propagation studies in porous media. This theory successfully 
predicted the existence of the second compressional wave (the slow compressional wave), which 
had been observed in the laboratory (Plona 1980; Berryman 1980). Deresiewicz & Skalak (1963) 
applied the Neumann's uniqueness theorem to poroelasticity and derived the boundary conditions, 
further which are used to define the boundary value problems for particle dynamics in saturated 
porous materials. 

In general, fractured reservoirs are more complex due to the presence of fractures and pores. 
Generally, we consider reservoirs containing fractures that are embedded in a porous background. 
Several treatments of the porous media with fractures have been developed in recent years, which 
are much closer to real fractured rocks. In addition to matrix porosity and permeability, fracture 
porosity and fracture permeability also need to be included. As available in the literature, the 
early models were based on the single porosity or continuum concept. In this approach, a 
fractured porous medium was grossly treated as an equivalent continuum with a single fluid 
constituent. A major departure from the single porosity approach was first made by Barenblatt et 
al. (1960) and Warren & Root (1963). They proposed a phenomenological double porosity model 
to investigate fluid transport in hydrocarbon reservoirs. They modelled flow through rigid 
fractured porous media as a complex of two interacting flow regions: one representing the fracture 
network and the other the porous blocks. The fracture network was characterized by high 
permeability and low storage, and the porous blocks were characterized by low permeability and 
high storage. The two flow regions were in turn coupled through a leakage term controlling the 
transfer of fluid mass between the pores and fractures. An extension of Barenblatt's model to 
deformable fractured porous media was later given by Duguid & Lee (1977). Aifantis (1977, 1979, 
1980) used the theory of mixtures and proposed a coupled double-porosity model for deformable 
fractured porous media. Alternatives to Aifantis’ formulation were given by Wilson and Aifantis 
(1982), Khaled et al. (1984), Valliappan & Khalili- Naghadeh (1990), Khalili-Naghadeh & 
Valliappan (1991), Auriault & Boutin (1993) and Bai et al. (1993), among others. Aifantis and 
his co-workers (Wilson & Aifantis 1982; Beskos & Aifantis 1986; Khaled et al. 1984) published 
interesting and important series of papers on saturated fractured porous media. It is noted that 
the final set of governing equations is a direct generalization of Biot's consolidation theory. 
Wilson & Aifantis (1984) studied the propagation of waves in a saturated fractured porous 
medium and showed the existence of an extra compressional wave (which appears due to the 
presence of fractures in the medium), in addition to those encountered in Biot's theory. However, 
Aifantis model was incomplete, in the sense that it related pore and fracture volume changes only 
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to the overall volume change of the fractured porous medium. More specifically, it ignored the 
cross-coupling effects between the volume change of the pores and fractures within the system. 
This deficiency was eliminated in the formulations proposed by Khalili & Valliappan (1996), 
Tuncay & Corapcioglu (1996), Wang & Berryman (1996), Khalili et al. (1999), and Loret & Rizzi 
(1999). Khalili (2003) highlighted the significance of the cross-coupling effects on the pore and 
fracture fluid pressure response of double-porosity media. Then the credit for comprehensive 
discussion on wave propagation in fractured porous media saturated with two immiscible viscous 
fluids goes to Tuncay & Corapcioglu (1996a, b). They derived a general set of coupled partial 
differential equations to describe the wave propagation through an fractured porous medium 
permitted by two immiscible viscous fluids. In the absence of volume fractions of the fractures, 
the constitutive relations reduce to those obtained by Tuncay & Corapciaglu (1997) in the theory 
of porous media without fractures. Tuncay & Corapcioglu (1996b) studied the propagation of 
body waves in a fractured porous medium containing two immiscible fluids. They showed that 
there may exists four compressional waves and one rotational wave. Berryman & Wang (2000) 
extended Biot's theory of poroelasticity to incorporate the concept of fractures or cracks in the 
medium, in addition to the generalization to double porosity modelling done in their previous 
work (Berryman & Wang 1995). 

Recently, Arora & Tomer (2010) have considered the reflection and refraction of plane 
harmonic waves at the boundaries of fractured porous media saturated by two immiscible fluids. 
In this study, pore-fluids were assumed non-viscous so as to avoid the involvement of attenuation. 
For the same reason, the incidence was restricted to pre-critical angles. Unfortunately, this is in 
contrast to the realistic flow mechanics in crustal rocks where the equilibration of fluid pressure 
produces a great deal of seismic attenuation (Sams et al., 1997). Moreover, the displacements of 
constituent particles in fractured porous aggregate were subjected to an unintended restriction, 
which implies that dilatational contribution to the displacement in different constituents comes 
from different but only one of the four longitudinal waves. However, Sharma & Kumar (2011) 
and Kumar & Saini (2012) ignored all these restrictions. Sharma & Saini (2012) studied the wave 
propagation in porous solid containing liquid filled bound pores and two-phase fluid in connected 
pores. Kumar & Sharma (2013) studied the reflection and transmission of attenuated waves at 
the boundary between two dissimilar poroelastic solids saturated with two immiscible viscous 
fluids. 

This study considers the propagation of attenuated waves in fractured porous solids saturated 
with two immiscible viscous fluids. The equation of motion from Tuncay & Corapcioglu (1996a) 
are solved for propagation of harmonic plane waves. The solution is obtained in the form of 
Christoffel equations, which provide the complex velocities and polarisations of four attenuated 
waves in the medium. A particular specification of complex slowness vector is considered to define 
a general inhomogeneous propagation of attenuated waves. Reflection is studied for the incidence 
of an inhomogeneous wave at the free plane boundary of the fractured porous medium. An energy 
matrix is calculated, which defines the shares of five reflected waves in the incident energy. This 
matrix also identifies the energy due to the interaction between various inhomogeneous waves in 
the medium. This is required to ensure the conservation of incident energy at the boundary. The 
effect of wave frequency, volume fraction of fractures, saturating pore-fluid and inhomogeneity 
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parameter on the energy partition are studied in the numerical example. For convenience, the two 
immiscible pore-fluids are identified as gas and liquid. 

 
2 FRACTURED POROUS SOLID 

2.1 Fundamental equations 

In the theory of Tuncay & Corapcioglu (1996a), the presence of fractures in the porous medium is 
assumed to have two part one can be identified as fractured and other can be non-fractured part. 
The pores in the non-fractured (fractured) part of the porous medium are referred as primary 
(secondary) pores. The secondary pores are assumed to be saturated by the wetting fluid, whereas 
the primary pores are assumed to be saturated by the wetting and non-wetting fluids. Therefore, 
there are four phases in the system i.e. solid phase, wetting fluid phase in secondary pores, wetting 
and non-wetting fluid phases in the primary pores. Following Tuncay & Corapcioglu (1996a), under 
the assumption of no mass exchange between the porous blocks and fractures, the equations of 
motion for the low-frequency vibrations of constituent particles in isotropic fractured porous solid, 
in the absence of body forces, are given by 
 

𝜏! !",! = 𝜌! 𝑠! − 𝑑! 𝑢! − 𝑠! − 𝑑! 𝑣! − 𝑠! − 𝑑! 𝑤! − 𝑠! , 
𝜏! !",! = 𝜌! 𝑢! + 𝑑! 𝑢! − 𝑠! ,                                                                                                           

   𝜏! !",! = 𝜌! 𝑣! + 𝑑! 𝑣! − 𝑠! ,                                                                                                               
       𝜏! !",! = 𝜌! 𝑤! + 𝑑! 𝑤! − 𝑠! ,                                                                                                                 

(1) 

 
where the subscripts 0, 1, 2, and f identify the four phases of the fractured porous solid, i.e. solid 
phase, non-wetting phase, wetting phase in the primary pores, and wetting fluid phase in the 
fractures, respectively. The  𝜏's are used to define stresses and 𝜌's are partial densities. The 
𝑠!   , 𝑢!   , 𝑣! and 𝑤! denote the components of displacements of solid, non-wetting fluid, wetting fluid 
particles in the primary pores, and wetting fluid particles in the fractures, respectively. The indi-
ces can take values 1, 2 and 3. A repeated index implies summation. Dot over a variable implies 
partial derivative with time and comma before an index implies partial space differentiation. 
Darcy's law relates viscous dissipation to the motion of wetting particles in the secondary pores, 
wetting and non-wetting fluid particles in the primary pores relative to the pore-walls. The dissi-
pation coefficients for wetting fluid (𝑑!), non-wetting fluid (𝑑!), in primary pores and wetting 
fluid (𝑑!) in secondary pores are defined as follows. 
 

𝑑! = 𝛼!!𝜎!𝜇!/ 𝜒!𝐾! , 
                        𝑑! = 𝛼!!(1− 𝜎)!𝜇!/ 𝜒!𝐾! , 

𝑑! =
𝛼!!𝜇!
𝐾!

,                                         
(2) 
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where 𝜇! and 𝜒! define the viscosity and the relative permeability of fluid phase k. 𝐾! 𝐾!   deno-
tes the intrinsic permeability of the fractures (non-fractured porous medium). The constitutive 
relations for four phases system are defined as follows. 

𝜏! !" = 𝑎!!∗ 𝑠!,! + 𝑎!"𝑢!,! + 𝑎!"𝑣!,! + 𝑎!"𝑤!,! 𝛿!" + 𝐺!" 𝑠!,! + 𝑠!,!   ,   
𝜏! !" = 𝑎!"𝑠!,! + 𝑎!!𝑢!,! + 𝑎!"𝑣!,! + 𝑎!"𝑤!,! 𝛿!" ,                                                                   
𝜏! !" = 𝑎!"𝑠!,! + 𝑎!"𝑢!,! + 𝑎!!𝑣!,! + 𝑎!"𝑤!,! 𝛿!" ,                                                                   
𝜏! !" = 𝑎!"𝑠!,! + 𝑎!"𝑢!,! + 𝑎!"𝑣!,! + 𝑎!!𝑤!,! 𝛿!" ,                                                                   

(3) 

 
where 𝛿!" is Kronecker symbol. 𝐺!" is the shear modulus of solid matrix. The elastic constants 
used in the above equations are given in Appendix. 

In terms of the displacement components, the equations of motion are expressed as follows. 
 

  𝑎!!∗∗𝑠!,!" + 𝑎!"𝑢!,!" + 𝑎!"𝑣!,!" + 𝑎!"𝑤!,!" + 𝐺!"𝑠!,!! + 𝑑! 𝑢! − 𝑠!  
                                                                    +𝑑! 𝑣! − 𝑠! + 𝑑! 𝑤! − 𝑠! = 𝜌! 𝑠!, 

𝑎!"𝑠!,!" + 𝑎!!𝑢!,!" + 𝑎!"𝑣!,!" + 𝑎!"𝑤!,!" − 𝑑! 𝑢! − 𝑠! = 𝜌! 𝑢! , 
𝑎!"𝑠!,!" + 𝑎!"𝑢!,!" + 𝑎!!𝑣!,!" + 𝑎!"𝑤!,!" − 𝑑! 𝑣! − 𝑠! = 𝜌! 𝑣! , 
𝑎!"𝑠!,!" + 𝑎!"𝑢!,!" + 𝑎!"𝑣!,!" + 𝑎!!𝑤!,!" − 𝑑! 𝑤! − 𝑠! = 𝜌! 𝑤! . 

(4) 

 
2.2 Plane wave propagation 

To seek the harmonic solution of system of equations (4), for the propagation of plane waves, the 
displacement components are written as follows. 
 

𝑠! ,𝑢! , 𝑣! ,𝑤! = 𝑆! ,𝐺! , 𝐿! ,𝐾! 𝑒𝑥𝑝 𝜄𝜔(𝑝!𝑥! − 𝑡) ,                               𝑗 = 1,2,3  (5) 
 
where 𝜔 is angular frequency and (𝑝!, 𝑝!, 𝑝!) is slowness vector 𝐩.  The vectors 
𝑺 = 𝑆!, 𝑆!, 𝑆! ! ,𝑮 = 𝐺!,𝐺!,𝐺! ! and   𝑳 = 𝐿!, 𝐿!, 𝐿! ! , and 𝑲 = 𝐾!,𝐾!,𝐾! ! define, respectively, 
the polarizations for the motions of the solid, non-wetting fluid and wetting fluid particles in pri-
mary pores, and wetting fluid particles in secondary pores in the composite medium. Substituting 
(5) in (4) yields a system of twelve equations, given by 

 

a!!∗∗𝐩!𝐩− < ρ! > +
ι
ω d! + d! + d! − G!"𝐩𝐩! 𝐈 𝐒+ a!"𝐩!𝐩+

ι
ω d!𝐈 𝐆                  

+ a!"𝐩!𝐩+
ι
ω d!𝐈 𝐋+ a!"𝐩!𝐩+

ι
ω d!𝐈 𝐊 = 0, 

(6) 

 
a!"𝐩!𝐩 +

ι
ω
d!𝐈 𝐒 + a!!𝐩!𝐩 − ρ!𝐈 𝐆 + a!"𝐩!𝐩𝐋 + a!"𝐩!𝐩𝐊 = 0,        ρ! =< ρ! > +

ι
ω
d!, (7) 

 
a!"𝐩!𝐩 +

ι
ω
d!𝐈 𝐒 + a!"𝐩!𝐩𝐆 + a!!𝐩!𝐩 − ρ!𝐈 L + a!"𝐩!𝐩𝐊 = 0,        ρ! =< ρ! > +

ι
ω
d!, (8) 

 
a!"𝐩!𝐩 +

ι
ω
d!𝐈 𝐒 + a!"𝐩!𝐩𝐆 + a!"𝐩!𝐩𝐋 + a!!𝐩!𝐩 − ρ!𝐈 𝐊 = 0,        ρ! =< ρ! > +

ι
ω
d!, (9) 
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where 𝐩! denotes the transpose of 𝐩. The equations (7), (8) and (9) of this system are solved into 
three relations, given by 
 

𝐆 = 𝐀𝐒,                      𝐀 =
ι
ω
d!
ρ!
𝐈+

Z!!Λ+ Z!"
a!Λ! + b!Λ+ c! 𝐩

!𝐩,                Λ = 𝐩𝐩!,   (10) 

         
                                                          𝐋 = 𝐁𝐒,                      𝐁 = !

!
!!
!!
𝐈+ !!"!!!!"

!!!!!!!!!!!
𝐩!𝐩,                                                                            (11) 

 

𝐊 = 𝐂𝐒,                      𝐂 =
ι
ω
d!
ρ!
𝐈−

Z!"Λ! + Z!"Λ+ Z!"
a!!Λ− ρ! (a!Λ! + b!Λ+ c!)

𝐩!𝐩, (12) 

 
which relate the polarisations (or displacements) of particles of solid, non-wetting and wetting fluid 
phases in the primary pores, and wetting fluid in secondary pores in the composite medium. Using 
these relations in (6) yields a system of three equations, given by 
 
                                                              Γ𝐒 = 𝟎,                    Γ = γ!𝐩!𝐩+ γ! Λ𝐈− 𝐩!𝐩 , (13) 
 
which are the Christoffel equations for the propagation of harmonic plane waves in the fractured 
porous medium saturated by two immiscible fluids. The coefficients used in various relations are 
defined as follows. 
 

𝛾! = 𝐺!" + 𝑑! Λ+
Γ!"Λ! + Γ!"Λ! + Γ!!Λ+ Γ!"
𝑟!Λ! + 𝑟!Λ! + 𝑟!Λ+ 𝑟!

Λ− 𝜌!,              𝛾! = 𝐺!"Λ− 𝜌!, 

 

𝜌! =< ρ! > +
ι
ω d! 1−

ι
ω
d!
ρ!

+
ι
ω d! 1−

ι
ω
d!
ρ!

+
ι
ω d! 1−

ι
ω
d!
ρ!

, 

 
𝑎! = 𝑎!!𝑎!! − 𝑎!"𝑎!", 𝑏! = − 𝑎!!𝜌! + 𝑎!!𝜌! , 𝑐! = 𝜌!𝜌!, 
 

𝑑! = 𝑎!!∗∗ +
𝜄
𝜔 𝑎!"

𝑑!
𝜌!
+ 𝑎!"

𝑑!
𝜌!
+ 𝑎!"

𝑑!
𝜌!

  , 

 
𝑟! = 𝑎!𝑎!!,        𝑟! = 𝑏!𝑎!! − 𝑎!𝜌! ,      𝑟! = 𝜌!𝜌!𝑎!! − 𝑏!𝜌! , 𝑟! = −𝜌!𝜌!𝜌! , 
 
Γ!" = 𝑎!! 𝑎!"𝑍!! + 𝑎!"𝑍!" − 𝑎!"𝑍!", 
 
Γ!" = 𝑎!! 𝑎!"𝑍!" + 𝑎!"𝑍!" +

𝜄
𝜔 𝑑!𝑍!! + 𝑑!𝑍!"    

                    −𝜌! 𝑎!"𝑍!! + 𝑎!"𝑍!" − 𝑎!"𝑍!" −
𝜄
𝜔 𝑑!𝑍!", 
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Γ!! =
𝑖
𝜔 𝑎!! 𝑑!𝑍!" + 𝑑!𝑍!" − 𝜌!

𝜄
𝜔 𝑑!𝑍!! + 𝑑!𝑍!" + 𝑎!"𝑍!" + 𝑎!"𝑍!"  

                    −𝑎!"𝑍!" −
𝜄
𝜔 𝑑!𝑍!", 

 
Γ!" = −𝜌!

𝜄
𝜔 𝑑!𝑍!" + 𝑑!𝑍!" − 𝜌!

𝜄
𝜔 𝑍!", 

 

𝑍!! = 𝑎! −
ι
ω
d!
ρ!
a!,                            𝑍!" = 𝑏! −

ι
ω
d!
ρ!
b!, 

 

𝑍!" = 𝑎! −
ι
ω
d!
ρ!
a!,                            𝑍!" = 𝑏! −

ι
ω
d!
ρ!
b!, 

 

𝑍!" = 𝑎!𝑎!" + 𝑎!𝑎!" + 𝑎! 𝑎!" +
ι
ω
d!
ρ!
𝑎!! , 

 

𝑍!" = 𝑏!𝑎!" + 𝑏!𝑎!" + 𝑏! 𝑎!" +
ι
ω
d!
ρ!
𝑎!! , 

 

𝑍!" = 𝜌!𝜌! 𝑎!" +
ι
ω
d!
ρ!
𝑎!! +

ι
ω 𝑑!𝜌!𝑎!" + 𝑑!𝜌!𝑎!" , 

 

𝑎! = 𝑎!"𝑎!" − 𝑎!"𝑎!! +
ι
ω
d!
ρ!

𝑎!"𝑎!" − 𝑎!"𝑎!! , 

 

𝑎! = 𝑎!"𝑎!" − 𝑎!!𝑎!" +
ι
ω
d!
ρ!

𝑎!"𝑎!" − 𝑎!!𝑎!" , 

 

𝑏! = 𝜌! 𝑎!" + 𝑎!"
ι
ω
d!
ρ!

+
ι
ω 𝑑!𝑎!" − 𝑑!𝑎!! , 

 

𝑏! = 𝜌! 𝑎!" + 𝑎!"
ι
ω
d!
ρ!

+
ι
ω 𝑑!𝑎!" − 𝑑!𝑎!! . 

2.3 Five attenuated waves 

In terms of velocity V, the slowness is defined as 𝐩 = 𝐍/V such that 𝐍𝐍! = 1 and Λ = 1/V!. The 
dual (complex) vector 𝐍 represents the directions of propagation and attenuation of a wave in the 
fractured porous medium. In terms of 𝐍 and V, the Christoffel equations (13) are expressed as 
 

𝛾!𝐍!𝐍 + 𝛾!(𝐈 − 𝐍!𝐍) 𝐒 = 0. (14) 
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The non-trivial solution for Christoffel equations is ensured by vanishing the determinant 
(= 𝛾!𝛾!!) of the matrix 𝛾!𝐍!𝐍 + 𝛾!(𝐈 − 𝐍!𝐍). This condition  translates into two equations as 
follows. 

The first one (i.e. 𝛾! = 0) implies that 
 

𝑟!𝜌!𝜆! + [𝑟!𝜌! − 𝑟! 𝐺!" + 𝑑! − Γ!"]𝜆! + [𝑟!𝜌! − 𝑟! 𝐺!" + 𝑑! − Γ!!]𝜆! 
+[𝑟!𝜌! − 𝑟! 𝐺!" + 𝑑! − Γ!"]𝜆 − 𝑟! 𝐺!" + 𝑑! + Γ!" = 0,      𝜆 = 𝑉!. (15) 

 
Four roots of this complex biquadratic equation define the complex velocities 𝑉! , 𝑗 = 1,2,3,4  

of four attenuating waves in the dissipative porous medium. In this case the polarization 
tor   𝑆!, 𝑆!, 𝑆! , corresponding to equation (14), is calculated to be parallel to 𝐍 and hence the four 
waves identified with velocities 𝑉!,𝑉!,𝑉! and 𝑉! are longitudinal waves. 

Another equation (i.e. 𝛾! = 0) yields 
 

𝜌!𝑉! − 𝐺!" = 0, (16) 
 

which implies a wave with complex velocity 𝑉! = 𝐺!"/𝜌!. The corresponding polarization vector 
𝑆!, 𝑆!, 𝑆! , is represented through a singular matrix (𝐈 − 𝐍!𝐍). So, the polarization vector may be 

parallel to a column (or, row) vector of this symmetric matrix. This defines the direction of pola-
risation in a plane, which is normal to the propagation vector 𝐍. This implies that the attenuated 
wave with velocity 𝑉! is a transverse wave. 

The polarisation vector 𝐒 defines the polarisation of solid particles in the fractured porous me-
dium. Polarisations of the non-wetting, wetting fluid particles in primary pores and wetting fluid 
particles in secondary pores are calculated from the relations (10), (11) and (12), respectively. For 
convenience in discussion, the four longitudinal waves with velocity order ℜ(𝑉!) > 𝑅(𝑉!) >
𝑅(𝑉!) > 𝑅(𝑉!) are named as 𝑃!,𝑃!,𝑃!,𝑃! waves, respectively. The lone transverse wave is identi-
fied as S wave. 
 
3 INHOMOGENEOUS PLANE WAVES 

The general plane waves propagating in a dissipative medium are inhomogeneous waves (Bor-
cherdt 1982). The propagation of an attenuated wave is defined with complex slowness vector. 
The real and imaginary parts of complex slowness vector are termed as propagation vector and 
attenuation vector, respectively. In general, the inhomogeneity of an attenuating wave is repre-
sented through the difference in the directions of its propagation vector and attenuation vector. 
In other words, an angle between equi-amplitude plane and equi-phase plane of an attenuating 
plane wave represent its inhomogeneous character.  However, some restrictions may be needed on 
the choice of this inhomogeneity angle. The invalid values of the inhomogeneity angle are termed 
as forbidden directions, which were discovered first in the pioneering works of Krebes & Le (1994) 
and Carcione & Cavallini (1995). As an alternative to this conventional representation, Sharma 
(2008) used a finite non-dimensional  parameter to define inhomogeneous waves in anisotropic 
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media. In terms of this inhomogeneity parameter (𝛿), the complex slowness vector p of an atte-
nuated wave is written as follows. 
 

𝐩 =
1
c
𝐧 + ιβ𝐧 + ιδ𝐦 , (17) 

 
where the propagation direction 𝐧 and an orthogonal unit vector 𝐦 identifies the propagation-
attenuation plane. The total attenuation is a vector sum of two orthogonal vectors. The first one, 
𝛽/𝑐 𝐧, defines the attenuation along the direction of propagation. Hence, it represents the homo-

geneous wave and its contribution 𝛽/𝑐 to total attenuation is termed as homogeneous attenua-
tion. The other part 𝛿/𝑐 𝐦  in (17) then represents the contribution of inhomogeneous propaga-
tion of wave to total attenuation (𝛽! + 𝛿!)/𝑐 . For 𝛿 = 0, the attenuated wave is considered to 
be propagating as homogeneous wave. This implies that inhomogeneous propagation of the atte-
nuated wave is represented through the deviation of 𝛿 from zero. Hence, the magnitude of inho-
mogeneity parameter 𝛿 is considered as the strength of the inhomogeneous wave. For known va-
lues of propagation direction 𝐧, orthogonal direction 𝐦  and inhomogeneity parameter 𝛿 ∈ 0,1 , 
we need to determine the attenuation coefficient 𝛽 and the phase velocity c . It may be noted 
that the sign of 𝛿 does not affect the values of 𝛽 and c.  Using the relations p=N/V and 𝐍𝐍! = 1  
in (17), we get 
 

𝑐! = −2𝛽
𝜆 !

ℑ 𝜆
,          𝛽 =

ℜ 𝜆
ℑ 𝜆

+
ℜ 𝜆
ℑ 𝜆

!

+ 1 − 𝛿!,       𝐍 =
1 + 𝜄𝛽 𝐧 + 𝜄𝛿𝐦

1 − 𝛽! − 𝛿! + 𝜄2𝛽
. (18) 

 
The quality factor of attenuation (i.e. Q) for a wave is defined as 
 

𝑄!! = −
ℑ 𝜆
ℜ 𝜆

=
2𝛽

1 − 𝛽! − 𝛿!
. (19) 

 
The equations (15) and (16) do not involve N. That means, for a chosen medium, the value of 

𝜆 = 𝑉!  is independent of N. It may be noted that a change in 𝛿 can affect 𝜆 only through N. 
This implies that for any value of 𝛿 (in other words, N), the 𝜆 will be same. Then, from the first 
equality in (19), this implies a constant 𝑄!! for each attenuated wave in the medium. Then the 
effect of wave inhomogeneity (i.e.  𝛿) on attenuation may be observed in an attenuation coefficient 
given by 
 

𝜁 =
𝜔 𝛽! + 𝛿!

𝑐
. (20) 

 
For the homogeneous propagation (i.e. 𝛿 = 0) of an attenuated wave, the above defined rela-

tions reduce to 
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𝑐 =
𝑉 !

ℜ 𝑉
,        𝛽 = −

ℑ 𝑉
ℜ 𝑉

,            𝐍 = 𝐧, 𝜁 = 𝜔
𝛽
𝑐
. (21) 

 
The other extreme value of 𝛿 (=1) implies 𝛽 = 0  and then slowness vector  𝐩 = 𝐧 + 𝜄𝐦 /𝑐 defi-
nes a wave with attenuation direction orthogonal to its propagation direction, i.e. evanescent 
wave. 
 
 
 
4 REFLECTION AT PLANE BOUNDARY 

The present study aims to analyse the propagation and attenuation of five reflected waves arising 
from the incidence of an inhomogeneous wave at the free plane surface of a fractured porous solid 
saturated with two immiscible fluids (non-wetting and wetting). 
 
4.1 Definition of the problem 

Consider a rectangular coordinate system (𝑥!, 𝑥!, 𝑥!) to represent a three-dimensional space. The 
half-space 𝑥! ≥ 0 is occupied by a saturated fractured porous solid with its depth increasing along 
the 𝑥!-direction. The plane 𝑥! = 0  is the surface of this medium.  The medium being isotropic, 
the propagation and attenuation of waves are considered in a plane and this plane is assumed to 
be a coordinate (i.e. 𝑥! − 𝑥!) plane. In this plane, a wave travels towards the surface and become 
incident at a point on the surface making an angle 𝜃 with the 𝑥!-axis. Then the propagation di-
rection 𝐧 = sin 𝜃 , 0,− cos 𝜃  and its orthogonal direction 𝐦 = (cos 𝜃 , 0, sin 𝜃) identify the 𝑥! − 𝑥! 
plane as the propagation-attenuation plane. The incident wave can be any of the five attenuated 
waves in the fractured porous medium. For an arbitrarily chosen value of inhomogeneity parame-
ter 𝛿 ∈ 0,1 , the values of 𝛽 and c for this incident wave are calculated from (18). Using all these 
values, the slowness vector is calculated for the incident wave as 𝑝!, 0, 𝑞!  such that 𝑞! =

!
!!!
− 𝑝!!, where 𝑉! denotes the complex velocity of the incident wave. Being a square-root of a 

complex quantity, the value for 𝑞! is chosen such that ℜ 𝑞! < 0. In the present geometry of the 
medium, this restriction ensures the propagation of incident wave towards the surface  𝑥! = 0. The 
incident wave results in five waves 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆  reflected back into the porous medium. Snell's 
law implies that horizontal slowness of each of the reflected wave will be same as that of incident 
wave, i.e. 𝑝!. Then the slowness vectors for the reflected waves are written as 𝑝!, 0, 𝑞! , 𝑞! =

!
!!
! − 𝑝!!,    𝑘 = 1,2,3,4,5 . The decay of a reflected wave along positive 𝑥!-direction is ensured 

with the positive value for imaginary part of corresponding  𝑞!.  
 
4.2 Displacements 

The displacement of solid particles in the fractured porous medium due to the presence of an 
incident wave and five reflected waves is expressed as follows. 
 



1216      M. Kumar et al. / Reflection of attenuated waves at the surface of a fractured porous solid saturated with two immiscible viscous fluids 

Latin American Journal of Solids and Structures 11 (2014) 1206-1237 
 

𝑠! = 𝑆!
! 𝑒𝑥𝑝 𝜄𝜔 𝑝!𝑥! + 𝑞!𝑥! − 𝑡 + 𝑓!𝑆!

! 𝑒𝑥𝑝 𝜄𝜔 𝑝!𝑥! + 𝑞!𝑥! − 𝑡 ,       𝑗 = 1,3 ,
!

!!!

 (22) 

 
where 𝑓! are the excitation factors for reflected waves relative to incident wave. The complex 
vector 𝑆!

! , 0, 𝑆!
!  defines the polarisation and phase shift of the motion of solid particles for 

incident wave (k=0) and reflected  waves (k=1,2,3,4,5). The corresponding displacements of the 
non-wetting, wetting fluid particles in primary pores and wetting fluid particles in secondary po-
res can be calculated from the relations (10), (11) and (12) using the wave-specific values of the 
matrices  A, B and  C, respectively.  
 
4.3 Boundary conditions 

Surface of the fractured porous solid is considered to be free of stresses. Hence, at every point on 
the surface of material, the resultant energy must vanish. This is achieved through the equation 
 

< 𝜏! >!" 𝑠! +< 𝜏! >!! 𝑢! +< 𝜏! >!! 𝑣! +< 𝜏! >!! 𝑤! = 0.
!!!,!

 (23) 

 
The index n (or, t) is used to denote the component normal (or, tangential) to the surface. 

The repetition of index n in this section does not imply summation. The boundary conditions at 
the surface  
are obtained from the physical conditions there, subjected to the energy constraint defined in 
(23). So, at the stress-free surface of fractured porous medium, the aggregate stress from the solid 
phase (i.e., < 𝜏! >!"), non-wetting phase < 𝜏! >!!, wetting phase < 𝜏! >!! in the primary pores, 
and < 𝜏! >!! wetting fluid phase in secondary pores together should vanish. For sealed surface 
pores, there will be no fluid discharge (i.e. 𝑢! − 𝑠! = 𝑣! − 𝑠! = 𝑤! − 𝑠! = 0) at the surface. Hence, 
the appropriate boundary conditions to be satisfied at the stress-free surface 𝑥! = 0 are given by  
 
𝑖)   < 𝜏! >!!+< 𝜏! >!!+< 𝜏! >!!+< 𝜏! >!!= 0, 𝑖𝑖)     < 𝜏! >!"= 0, 
𝑖𝑖𝑖)𝑢! − 𝑠! = 0,      𝑖𝑣)    𝑣! − 𝑠! = 0,      𝑣)      𝑤! − 𝑠! = 0. 
 
The equations (3) relate the stress components in different phases to the displacements of parti-
cles.  The above boundary conditions are satisfied through a system of five linear inhomogeneous 
equations in 𝑓!, 𝑓!, 𝑓!, 𝑓! and 𝑓!. This system of equations is given by, 
 

𝑏!"𝑓! = −𝑏!!,       𝑖 = 1,2,3,4,5 ,
!

!!!

 (24) 

 
where the coefficients 𝑏!", (i=1,2,3,4,5; j=0,1,2,3,4,5), are expressed as follows. 
 
𝑏!! = 𝑊!!

! + 𝑋!!
! + 𝑌!!

! + 𝑍!!
! 𝑝!𝑆!

! + 𝑊!!
! + 𝑋!!

! + 𝑌!!
! + 𝑍!!

! + 2𝐺!" 𝑞!𝑆!
! , 
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𝑏!! = 𝑞!𝑆!
! + 𝑝!𝑆!

! , 
𝑏!! = 𝐴!"

! 𝑆!
! + 𝐴!!

! − 1 𝑆!
! , 

𝑏!! = 𝐵!"
! 𝑆!

! + 𝐵!!
! − 1 𝑆!

! , 

𝑏!! = 𝐶!"
! 𝑆!

! + 𝐶!!
! − 1 𝑆!

! . 
 
The matrices used in the above expressions are defined as  
 
𝐖 ! = a!!∗ 𝐈 + a!"𝐀 ! + a!"𝐁 ! + a!"𝐂 ! , 
𝐗 ! = a!"𝐈 + a!!𝐀 ! + a!"𝐁 ! + a!"𝐂 ! , 
𝐘 ! = a!"𝐈 + a!"𝐀 ! + a!!𝐁 ! + a!"𝐂 ! , 
𝐙 ! = a!"𝐈 + a!"𝐀 ! + a!"𝐁 ! + a!!𝐂 ! , 
 
where the superscript ´(j)´ on matrices  A, B and C means the matrices are evaluated for slow-
ness vector  p of the corresponding wave represented with a value of j (=0,1,2,3,4,5). 
 
4.4 Energy ratios 

Distribution of incident energy among different reflected waves is considered across a surface ele-
ment of unit area at the plane 𝑥! = 0. Following Achenbach (1973), the scalar product of surface 
traction and particle velocity per unit area, denoted by 𝑃∗, represents the rate at which the 
energy is communicated per unit area of the surface. The time average of 𝑃∗,  over a period, deno-
ted by  < 𝑃∗ >, represents the average energy transmission per unit surface area per unit time.  
For a surface with normal along the 𝑥!-direction, the average energy flux is represented through 
the components < 𝑃!"∗ > given by 
 
                              < 𝑃!"∗ >= ℜ < 𝜏! >!"

! ℜ 𝑠!
! + ℜ < 𝜏! >!!

! ℜ 𝑠!
! + ℜ < 𝜏! >!!

! ℜ 𝑢!
!  

                                                      +ℜ < 𝜏! >!!
! ℜ 𝑣!

! + ℜ < 𝜏! >!!
! ℜ 𝑤!

! .                                                                                                 
(25) 

 
The incidence of a general inhomogeneous wave involves the concept of interaction energy 

(Borcherdt 1982; Krebes 1983) or the interference energy (Ainslie & Burns 1995) between the 
dissimilar pairs of incident and reflected waves in the medium. To explain the distribution of 
incident energy at the free surface of a dissipative fractured porous medium, a matrix is defined 
with its elements given by 
 

𝐸!" = −
ℜ 𝐹!"𝑓!𝑓!
ℜ 𝐹!!

,                       𝑖, 𝑗 = 0,1,2,3,4,5 , (26) 

 
where bar over an entity implies its complex conjugate. The elements of matrix F are defined as 
follows. 
 

𝐹!" = 𝐺!"𝑞! + 𝑋!!
! 𝐴!"

! + 𝑌!!
! 𝐵  !"

! + 𝑍!!
! 𝐶!"

! 𝑝! 𝑆!
! 𝑆!

!  (27) 
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                + 𝐺!"𝑝! + 𝑋!!
! 𝐴!"

! + 𝑌!!
! 𝐵  !"

! + 𝑍!!
! 𝐶!"

! 𝑞! 𝑆!
! 𝑆!

!  

+ 𝑊!!
! + 𝑋!!

! 𝐴!!
! + 𝑌!!

! 𝐵!!
! + 𝑍!!

! 𝐶!!
! 𝑝!𝑆!

! 𝑆!
!  

                              + 2𝐺!" +𝑊!!
! + 𝑋!!

! 𝐴!!
! + 𝑌!!

! 𝐵!!
! + 𝑍!!

! 𝐶!!
! 𝑞!𝑆!

! 𝑆!
! . 

 
Solving the system of equations (24), by Gauss elimination method, provides the values for ex-

citation factors (𝑓!), which are required to calculate the matrix (26) for 𝑥! = 0. This energy ma-
trix explains the energy partition at the boundary 𝑥! = 0  of the porous solid. The sum of all the 
non-diagonal entries of this energy matrix calculates the share of interaction energy in the me-
dium. The diagonal entries 𝐸!!,𝐸!!,𝐸!!,𝐸!! and 𝐸!! of this matrix denote the energy shares of 
reflected 𝑃!,𝑃!,𝑃!,𝑃!  and S waves in the incident energy. The energy due to the interaction of 
incident wave with the five reflected waves is given by 𝐸!" = 𝐸!" − 𝐸!!!

!!!
!
!!! . The energy due 

to the interaction among the five reflected waves is given by 𝐸!! = 𝐸!" − 𝐸!!!
!!!

!
!!! . Then the 

conservation of energy at the free-surface is ensured through the relation 
 

𝐸!! + 𝐸!! + 𝐸!! + 𝐸!! + 𝐸!! + 𝐸!" + 𝐸!! = −𝐸!! = 1. (28) 
 

5 NUMERICAL RESULTS AND DISCUSSION 

5.1 Numerical example 

In order to investigate the dependence of velocities, amplitude ratios and energy ratios on the 
various material parameters, a numerical study was conducted in MATLAB for an illustrative 
example. A fractured sandstone (rock) saturated with air and water is chosen for the numerical 
model of fractured porous medium (Tuncay & Corapcioglu 1996). The solid grains of the rock 
with bulk modulus 𝐾! = 35.00𝐺𝑃𝑎, shear modulus 𝐺!" = 1.02𝐺𝑃𝑎,  and density 𝜌! = 2650𝐾𝑔/𝑚! 
form a porous frame of porosity 𝜙 = 0.25. The primary pore space (i.e., non-fractured part) is 
filled with the gas of bulk modulus 𝐾!! = 0.145𝑀𝑃𝑎, density 𝜌! = 1.1𝐾𝑔/𝑚!, relativity permeabili-
ty 𝜒! = 0.88  and viscosity 𝜇! = 1.8  ×10!!𝑃𝑎. 𝑠   mixed in water of bulk modulus 𝐾!! = 2.25𝐺𝑃𝑎, 
𝜌! = 997𝐾𝑔/𝑚!,  relativity permeability 𝜒! = 0.001  and viscosity 𝜇! = 10!!𝑃𝑎. 𝑠. The secondary 
pore space (i.e., fractured part) is filled with the water having same density and viscosity as wa-
ter in primary pore. The bulk modulus 𝐾!" = 1.44𝐺𝑃𝑎  and 𝐾!"! = 3.00𝐺𝑃𝑎  of fractured and non-
fractured medium, respectively. Intrinsic permeability 𝐾! = 10!!!𝑚!  and 𝐾! = 10!!"𝑚! of fractu-
red and non-fractured medium, respectively. A dimensionless material parameter F = 0.8. The 
value of  𝑃!"#! = 0.1𝑀𝑃𝑎  is used to represent capillary pressure. The secondary pore space (i.e., 
fractured part) is filled with the water having same density and viscosity as water in primary 
pore. For computation purposes, Low-frequency propagation is ensured with 𝜔 ≤ 2𝜋×5𝑘𝐻𝑧. 
 
5.2 Velocity and attenuation 

The numerical values of various parameters given above are used to calculate the complex veloci-
ties of the five attenuated (i.e. 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves in the fractured porous medium. Phase velo-
cities (𝑐! , 𝑗 = 1,2,3,4,5) and attenuation coefficients (𝜁! , 𝑗 = 1,2,3,4,5)  are computed for inhomoge-
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neous propagation of these waves. Effect of various parameters on 𝑐! and 𝜁! are exhibited in Fig. 
1-Fig. 4 
 
Effect of frequency 

The variations of phase velocities and attenuation coefficients of the 𝑃!,𝑃!,𝑃!,𝑃! and S waves 
with 𝛿 ∈ 0,1  are exhibited in Fig. 1 for three different frequencies, 𝜔/2𝜋 = 0.1, 1, 5kHz.  Values 
chosen for other parameters are 𝛼! = 0.01,𝜎 = 0.5. It is quite evident that with the increase of 
inhomogeneity of an attenuated wave of given frequency, its phase velocity decreases but attenua-
tion increases. The velocity of three (𝑃!,𝑃!, 𝑆) waves may reduce up to one-half with the change 
in propagation from homogeneous to evanescent. The increase of frequency may not have much 
effect on the velocity of (𝑃!, 𝑆 ) waves. However, the three slower longitudinal (i.e. 𝑃!,𝑃!,𝑃!) wa-
ves propagate faster at higher frequency. At low-frequency, the velocity of (𝑃!,𝑃!) waves may not 
decrease much with the increase of inhomogeneity strength. For each of the five waves in porous 
medium, an increase of frequency (and/or inhomogeneity) increases its attenuation. However, the 
effect of inhomogeneity on attenuation may be mild at low frequencies. The general observations 
are that slower the propagation higher is the attenuation and homogeneous waves may travel 
faster but cannot represent the wave motion with larger attenuation. 
 
Effect of gas share in pores 

The variations of phase velocities and attenuation coefficients of the five (i.e. 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) wa-
ves with 𝛿 ∈ 0,1  are presented in Fig. 2, for three different values 𝜎 = 0.01, 0.5, 0.99  of gas satu-
ration. Values chosen for other parameters are 𝛼! = 0.02,𝜔/2𝜋 = 1kHz.  A smaller gas share in 
pores means more liquid in pores and vice-verse. The limiting values of 𝜎 (i.e., 0, 1) are avoided 
for representing the non-realistic situations of no gas/all liquid and all gas/no liquid. The increase 
of gas share increases the velocity of S wave whereas three longitudinal waves (i.e. 𝑃!,𝑃!,𝑃!) tra-
vel faster when the pore space is filled only with liquid. However, the slowest travel of longitudi-
nal waves may be expected when pore space is equally shared by the two fluids. It is quite evi-
dent that the variations of the velocity of a wave with gas share in the pores appear nearly oppo-
site to the variations in its attenuation coefficient.  
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Figure 1   Phase velocities 𝑐! , 𝑗 = 1, 2, 3, 4  and attenuation coefficients 𝜁! , 𝑗 = 1, 2, 3, 4  of 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆 waves respectively; varia-

tions with inhomogeneity parameter (𝛿) and frequency (𝜔); 𝛼! = 0.01, 𝜎 = 0.5. 

 
Effect of volume fract ion of fractures 

For three different values of volume fraction of fractures 𝛼! = 0.01, 0.02, 0.03, the variations of 
phase velocities and attenuation coefficients of the 𝑃!,𝑃!,𝑃!,𝑃! and S waves with 𝛿 ∈ 0,1  are as 
shown in Fig. 3. Except 𝜔/2𝜋 = 0.1kHz and 𝜎 = 0.2, the values of other parameters are unchan-
ged. Clearly, the velocity of the three longitudinal waves (i.e. 𝑃!,𝑃!,𝑃!) increases with the increase 
of volume fraction of fractures whereas velocity of fast longitudinal wave (i.e. 𝑃!) decreases with 
the increase of volume  
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Figure 2   Phase velocities 𝑐! , 𝑗 = 1, 2, 3, 4  and attenuation coefficients 𝜁! , 𝑗 = 1, 2, 3, 4  of 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆 waves respectively; varia-

tions with inhomogeneity parameter (𝛿) and gas saturation (𝜎); 𝛼! = 0.02,𝜔/2𝜋 = 1𝑘𝐻𝑧. 
 
fraction of fractures. However, the volume fraction of fractures shows no effect on the velocity 
and attenuation of faster shear wave (i.e. S). It is quite evident that the variations of the attenua-
tion coefficient of a longitudinal wave with volume fraction of fractures appear nearly opposite to 
the variations in its velocity. 
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Figure 3   Phase velocities 𝑐! , 𝑗 = 1, 2, 3, 4  and attenuation coefficients 𝜁! , 𝑗 = 1, 2, 3, 4  of 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆 waves respectively; varia-

tions with inhomogeneity parameter (𝛿) and volume fraction of fractures (𝛼!);  𝜔/2𝜋 = 0.1 kHz,  𝜎 = 0.2. 
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other parameters are unchanged except 𝜔/2𝜋 = 0.1kHz  and 𝛼! = 0.02. Increase of gas share 
seems to have a quiet significant effect of the velocities and attenuation coefficients of all the lon-
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gitudinal waves (i.e., 𝑃!,𝑃!,𝑃!,𝑃!). However, effect of gas share is observed very little on the velo-
city and attenuation coefficient of lone shear wave. 

 
Figure 4   Phase velocities 𝑐! , 𝑗 = 1, 2, 3, 4  and attenuation coefficients 𝜁! , 𝑗 = 1, 2, 3, 4  of 𝑃!,𝑃!,𝑃!,𝑃!, 𝑆 waves respectively; varia-

tions with gas saturation (𝜎) and inhomogeneity parameter (𝛿); 𝜔/2𝜋 = 0.1 kHz, 𝛼! = 0.2. 
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i.e. 𝑃! and S. The low-frequency propagation is considered with circular frequency of 5kHz. The 
energy shares 𝐸!!,𝐸!!,𝐸!!,𝐸!!,𝐸!!,𝐸!" and 𝐸!! are computed and conservation of incident energy 
is ensured for  
 

 
Figure 5   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and inhomogeneity parameter (𝛿);  𝜔/2𝜋   = 1kHz,𝜎 = 0.02,𝛼! = 0.01.;  incident 
𝑃! wave. 

 
each incidence. The 𝐸!!,𝐸!!,𝐸!!,𝐸!! and 𝐸!! denote the reflection coefficients for the reflected  
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𝑃!,𝑃!,𝑃!,𝑃! and S waves, respectively. The variations of energy shares of reflected waves and  
interaction energies (𝐸!", 𝐸!!) with incident angle are shown in figures 5 to 8 (for incident 𝑃! 
wave) and in figures 9 to 12 (for incident S wave). The detailed discussion on figures is as follows. 

The Fig. 5 exhibits the energy variations for three values (i.e. 0, 0.3, 0.5) of inhomogeneity pa-
rameter 𝛿. Values chosen for other parameters are 𝜔/2𝜋 = 1kHz, 𝜎 = 0.02,𝛼! = 0.01. It is noted 
that homogeneous propagation means almost no interaction of waves. In general, the presence of 
wave inhomogeneity strengthens the reflected waves with extra energy coming from the interacti-
on (interference) of inhomogeneous waves present in the medium. It is quite evident that the 
energy shares of two slower longitudinal 𝑃!,𝑃!  waves are negligible. Further, the reflected 𝑃!, 𝑆  
waves get more stronger with the increase of inhomogeneity strength of incident wave. Near the 
normal incidence, for any 𝛿, reflected 𝑃! waves have larger energy shares. On the other hand, at 
grazing incidence, for any 𝛿, only reflected S wave has a significant energy share. Negative sign of 
interaction energy implies the travel of energy towards the interface. 

The Fig. 6 exhibits the energy variations for three values (i.e., 0.01, 0.02, 0.03) of volume frac-
tion of fractures (i.e. 𝛼!). Values chosen for other parameters are 𝜔/2𝜋 = 1kHz, 𝜎 = 0.5, 𝛿 = 0.2. 
It is quite evident that the reflected 𝑃!,𝑃!, 𝑆  waves get more stronger with the increase of volu-
me fraction of fractures. Near the normal incidence, for any 𝛼!, reflected 𝑃! waves have larger 
energy shares. On the other hand, at grazing incidence, for any 𝛼!, only reflected S wave has a 
significant energy share. From the energy shares of reflected waves, it is crystal clear that exis-
tence of the two slower longitudinal (i.e. 𝑃! and 𝑃!) waves is namesake. A significant effect of 
volume fraction change is noticed on the interaction energies (𝐸!" ,𝐸!!). 

The Fig. 7 exhibits the energy variations for three different values (i.e., 0.01, 0.5, 0.99) of gas 
saturation (i.e., 𝜎). Values chosen for other parameters are 𝜔/2𝜋 = 1kHz, 𝛼! = 0.01, 𝛿 = 0.2. 
From the plots, it  is quite evident that the significant energy shares of 𝑃! wave, particularly for 
𝜎 = 0.01. It was also noticed that 𝑃!,𝑃! and 𝑃! waves are weakest when pore space is shared 
equally by two fluids. This implies that little gas share of gas in pores is more important for the 
existence of slower P waves then all gas or all liquid in pores. For the incidence below 17!, the 
reflected 𝑃! wave strengthens with the increase of gas share in pores and beyond 17!, the reflec-
ted 𝑃!  wave weaken with the increase of gas share in pores, up to the incidence 43!. Further, it is 
noticed that for the incidence below 43!, the reflected S wave strengthens with the increase of gas 
share in pores and beyond 64!, the reflected S wave weaken a lot with the increase of gas share in 
pores. A significant effect of saturating pore-fluid is noticed on the variations of interaction ener-
gies (i.e., 𝐸!" ,𝐸!!). 

The variations of the energy shares with the incident direction are shown in Fig. 8, for three 
different frequencies i.e., 𝜔/2𝜋 = 0.1, 1, 5kHz.   Values chosen for other parameters are 𝜎 =
0.5,𝛼! = 0.02, 𝛿 = 0.2. From the plots, it is noticed that a little effect of frequency change is ob-
served on the energy shares of reflected 𝑃!,𝑃! and S waves. The effect of frequency is observed 
mainly for reflected 𝑃!,𝑃! waves and interaction energy (𝐸!!). 

For the incidence of the S wave, energy partition at the surface is presented in Fig. 9 for three 
values (i.e., 0, 0.1, 0.2) of inhomogeneity parameter 𝛿. Values chosen for other parameters are 
𝜔/2𝜋 = 1kHz, 𝜎 = 0.5,𝛼! = 0.01. The zero value of 𝛿 denotes the incidence of homogenous wave  
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Figure 6   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and volume fraction of fractures (𝛼!); 𝜔/2𝜋 = 1kHz, 𝜎 = 0.5, 𝛿 = 0.2.; incident 
𝑃! wave. 

 
and a critical angle for reflected 𝑃! wave is around 40!. Except near this critical incidence, more 
inhomogeneity of incident wave results in stronger reflected waves as well as excessive interaction. 
The energy shares are much larger near the grazing incidence. The reflection coefficients of 𝑃!  and 
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Figure 7   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and gas saturation (𝜎); 𝜔/2𝜋 = 1kHz, 𝛼! = 0.01, 𝛿 = 0.2.; incident 𝑃! wave. 

 
𝑃!  waves are negligible. Further, it is quite evident that beyond critical incidence inhomogeneous 
propagation of waves is occurred for 𝛿 = 0.  

Fig. 10 exhibits the variations of the energy shares with the incident direction for three diffe-
rent values (i.e., 0.01, 0.02, 0.03) of volume fraction of fractures (i.e., 𝛼!). Values chosen for other 
parameters are 𝜔/2𝜋 = 1kHz, 𝜎 = 0.5, 𝛿 = 0.2. From the plots, it is noticed that the energy shares 
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Figure 8   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and frequency (𝜔);𝜎 = 0.5,𝛼! = 0.02, 𝛿 = 0.2.; incident 𝑃! wave. 

 
the reflected waves, except 𝑃! wave are decreases with the increase of volume fraction of fractu-
res, near the grazing incidence. It is quite evident that beyond 40!, for any 𝛼!, the reflected 𝑃! 
wave have significant energy shares. Therefore, out of slower P waves, only 𝑃! wave is significant. 
For the incidence below 37!, the energy shares of reflected 𝑃! wave decreases with the increase of 
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𝛼!  and after that it start increasing with the increase of 𝛼!. Then, beyond 67!, it again decreases 
with the 

 
Figure 9   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and inhomogeneity parameter (𝛿); 𝜔/2𝜋 = 1kHz, 𝜎 = 0.02,𝛼! = 0.01.; incident 
𝑆 wave. 

 
increase of 𝛼!. A noticeable effect of volume fraction of fractures is observed on the energy shares 
of all the reflected waves and interaction energies.  
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Figure 10   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and volume fraction of fractures (𝛼!); 𝜔/2𝜋 = 1kHz, 𝜎 = 0.5, 𝛿 = 0.2.; incident 
𝑆 wave. 

 
Fig. 11 exhibits the variations of the energy shares with the incident direction for three diffe-

rent values (i.e., 0.01, 0.5, 0.99) of gas saturation (i.e., 𝜎). Values chosen for other parameters are 
𝜔/2𝜋 = 1kHz, 𝛼! = 0.01, 𝛿 = 0.2. It is quite evident that near grazing incidence, for any value of 
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𝜎, the energy shares of reflected S wave dominates over other reflected waves. A significant 
energy  

 
Figure 11   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 
reflected waves; variations with incident direction (𝜃) and gas saturation (𝜎); 𝜔/2𝜋 = 1kHz, 𝛼! = 0.01, 𝛿 = 0.2.; incident 𝑆 wave. 

 
shares of reflected 𝑃! wave is observed, particularly for 𝜎 = 0.01. A noticeable effect of gas shares 
is observed on the energy shares of all the reflected waves and interaction energies. 
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Figure 12   Energy shares of reflected (𝑃!,𝑃!,𝑃!,𝑃!, 𝑆) waves, incident wave and reflected waves interaction and interaction among 

reflected waves; variations with incident direction (𝜃) and frequency (𝜔); 𝜎 = 0.5,𝛼! = 0.02, 𝛿 = 0.2.; incident 𝑆 wave. 

 
The variations of the energy shares with the incident direction are shown in Fig. 12, for three 

different frequencies i.e., 𝜔/2𝜋 = 0.1, 1, 5kHz.   Values chosen for other parameters are 𝜎 =
0.5,𝛼! = 0.02, 𝛿 = 0.2.  Similar to the case on incident 𝑃!  wave in Fig. 8, a little effect of frequen-
cy change is observed on the energy shares of reflected 𝑃!,𝑃! and S waves. The effect of frequency 
is observed mainly for reflected 𝑃!,𝑃! waves and interaction energy (𝐸!!). 
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6 CONCLUDING REMARKS 

The work presented studies the inhomogeneous propagation of five attenuated (four dilatational 
and one shear) waves in a fractured porous solid. The fractured porous medium is dissipative due 
to the presence of viscous fluids in primary pores as well as secondary pores. The five attenuated 
waves in this dissipative medium are identified with complex velocities, which are resolved to 
calculate their phase velocities and attenuation coefficients for the general inhomogeneous propa-
gation defined through a finite non-dimensional parameter. The variable gas share in pores ena-
bles to represent the pore saturation from almost all liquid to all gas. Reflection phenomenon is 
studied for incidence of only two main waves, that is 𝑃! and S. The changes in reflection energy 
coefficients are analyzed for a particular numerical model with variations in gas share in pores, 
frequency, volume fraction of fractures and inhomogeneity of incident wave. Some interesting 
observations from the numerical example may be important and hence are explained as follows.  
 

• The phase velocities of all the waves may reduces to half with the change in propaga-
tion from homogeneous to evanescent. Attenuation increases with frequency as well as     
inhomogeneity. That means, the homogeneous waves may travel faster but cannot rep-
resent the wave motion with a larger attenuation. Moreover, a slower wave attenuates 
more in     dissipative medium. 

• Any change in frequency may not affect the phase velocity of two faster (𝑃!, S) waves. 
• The increase of gas share increases the phase velocity of S wave whereas longitudinal 

waves except one 𝑃!   travel faster when the pore space is filled only with liquid. 
• The increase of volume fraction of fractures (i.e. 𝛼!) decreases the phase velocity of 

faster 𝑃!  wave whereas phase velocity of other slower longitudinal waves increases with 
the increase of 𝛼! .  However, the effect of 𝛼! is not observed on the phase velocity and 
attenuation of S wave. 

• The variations of the phase velocity of a longitudinal wave with, frequency as well as 
volume fraction of fractures appear nearly opposite to the variations in its attenuation 
coefficient. 

• The variations of the phase velocity of a wave with inhomogeneity appear nearly oppo-
site to the variations in its attenuation coefficient. Moreover, the attenuation of two 
main waves is attributed more to the inhomogeneous propagation than the presence or 
increase of gas share in pores. 

• For the considered numerical model, critical angle is observed only for reflected 𝑃!  wave 
resulting from the incidence of the S wave, particularly for 𝛿 = 0. 

• For the incidence of 𝑃!(𝑆) waves, out of slower P waves, only 𝑃! wave is significant. 
However, slower 𝑃!  and 𝑃! waves are just negligible. 

• An increase of volume fraction of fractures may strengthen the reflected 𝑃! wave from 
the near-normal incidence of 𝑃! wave. However, for incidence near-grazing, an increase 
of volume fraction of fractures may strengthen the reflected 𝑃! and 𝑃!  waves whereas 
reflected 𝑃!,𝑃!  and S waves may weaken. 
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• At the normal incidence of S wave, the change of volume fraction of fractures may have 
negligible effect on the energy shares of all reflected waves except 𝑃!  wave. While at the 
grazing incidence of S wave, an increase of volume fraction of fractures may weaken the 
reflected 𝑃!,𝑃!,𝑃!,𝑃! and S waves whereas reflected 𝑃!  wave may strengthen. 

• The effect of inhomogeneity, volume fraction of fractures, frequency and gas shares in 
pores on energy partition is observed for all the reflected waves. 

• Conservation of the incident energy is obtained for the presence of interaction energies 
due to the interference of incident wave and reflected waves. This certifies the correct-
ness of all the analytic derivations which form the complete procedure. 
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Appendix 
 

𝑎!!∗ = 𝑎!! −
2
3𝐺!" ,                  𝑎!!

∗∗ = 𝑎!! +
1
3𝐺!" , 

 
𝑎!! = 𝛼!𝛼! 𝛼! + 𝐸!𝐾!" − 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" − 𝐸!𝐸!𝐾!"𝐾!! 1− 𝛼! 𝛼!𝐷!𝐾!"𝐾!

−    𝛼!𝛼!𝛼!
+ 𝐷!𝛼!𝐸! − 1− 𝛼! 𝐾!!"𝜎 − 𝑃!"#! 𝜎 1− 𝜎 𝐾!! 1− 𝜎𝛼! + 𝜎𝛼!𝐾!!

− 𝐾!!𝐾!! 1− 𝜎 1− 𝛼! 𝐾!"𝐾! /𝐷!, 
 
𝑎!" = 𝛼!𝛼! 𝛼! + 𝐸!𝐾!" − 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" − 𝐸!𝐸!𝐾!"𝐾!! 1− 𝛼! (𝐾!!

+ 𝑃!"#! 𝜎 1− 𝜎 )𝛼!𝐾!𝐾!! /𝐷!, 
𝑎!" = 𝛼!𝛼! 𝛼! + 𝐸!𝐾!" − 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" − 𝐸!𝐸!𝐾!"𝐾!! 1− 𝛼! (𝐾!!

+ 𝑃!"#! 𝜎 1− 𝜎 )𝛼!𝐾!𝐾!! /𝐷!, 
𝑎!" = − −𝛼!𝛼! 𝛼! + 𝐸!𝐾!" 𝐷! + 𝐷!(𝛼! + 𝐾!"(𝐸! 1− 𝛼! + 𝛼!𝐸!)) 𝛼!𝐾!𝐾!! /𝐷!, 
𝑎!" = −𝛼!𝛼! + 𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 𝛼!𝛼!𝐾!𝐾!!

+ 𝛼!𝛼! − 𝛼!𝐸!𝐾! − 𝐸!𝐾!! + 𝛼!𝐸!𝐾!! (𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 )𝛼!𝐾!"𝐾!!) /𝐷!, 

𝑎!! = −𝜎𝐾! 𝛼!𝛼!𝛼! − 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝐾!! + 𝑃!"#! 1− 𝜎
− 𝐾!!𝑃!"#! 𝜎 1− 𝜎 !(−𝛼!𝛼! 𝛼! + 𝐸!𝐾!" + 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!"
+ 𝐸!𝐸!𝐾!"(𝐾!! 1− 𝛼! + 𝛼!𝐾!)) 𝛼!𝐾!! /𝐷!, 

𝑎!" = (𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" − 𝛼!𝛼! 𝛼! + 𝐸!𝐾!" + 𝐸!𝐸!𝐾!"(𝐾!! 1− 𝛼!
+ 𝛼!𝐾!))𝑃!"#! 𝜎 1− 𝜎 + 𝐾! −𝛼!𝛼!𝛼! + 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝜎 1

− 𝜎 𝛼!𝐾!!𝐾!! /𝐷!, 
𝑎!" = −𝛼!𝛼! − 𝛼!𝐸!𝐾!" + 𝐸!𝐾! + 𝐸!𝐸!𝐾!𝐾!" (𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 ) 𝛼!𝛼!𝐾!!𝐾!! /𝐷!, 
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𝑎!" = −𝛼!𝛼! + 𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 𝛼!𝛼!𝐾!𝐾!!

+ 𝛼!𝛼! − 𝛼!𝐸!𝐾! − 𝐸!𝐾!! + 𝛼!𝐸!𝐾!! (𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 )𝛼!𝐾!"𝐾!!) /𝐷!, 

𝑎!" = (𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" − 𝛼!𝛼! 𝛼! + 𝐸!𝐾!" + 𝐸!𝐸!𝐾!"(𝐾!! 1− 𝛼!
+ 𝛼!𝐾!))𝑃!"#! 𝜎 1− 𝜎 + 𝐾! −𝛼!𝛼!𝛼! + 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝜎 1

− 𝜎 𝛼!𝐾!!𝐾!! /𝐷!, 

𝑎!! = −𝐾! 1− 𝜎 𝛼!𝛼!𝛼! − 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝐾!! + 𝜎𝑃!"#! 𝛼!𝐾!!

− 𝐾!!𝑃!"#! 𝜎! 1− 𝜎 (−𝛼!𝛼! 𝛼! + 𝐸!𝐾!" + 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!!
+ 𝐸!𝐸!𝐾!"(𝐾!! 1− 𝛼! + 𝛼!𝐾!)))𝛼!𝐾!! /𝐷!, 

𝑎!" = −𝛼!𝛼! − 𝛼!𝐸!𝐾!" + 𝐸!𝐾! + 𝐸!𝐸!𝐾!𝐾!" (𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 ) 𝛼!𝛼!𝐾!!" /𝐷!, 
𝑎!" = − 𝛼!𝛼!𝐸!𝐸!𝐷!𝐾!"𝐾!𝐾!! + (𝐸!𝐾!𝐷! − 𝐸!𝐷!)𝛼!𝛼!𝐾!"𝐾!! /𝐷!, 
𝑎!" = −𝛼!𝛼!𝐸!𝐸!𝐾!"𝐾!𝐾!!𝐾!!(𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 ) /𝐷!, 
𝑎!" = −𝛼!𝛼!𝐸!𝐸!𝐾!"𝐾!𝐾!!"(𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 ) /𝐷!, 
𝑎!! = − (𝐸!𝐸!𝐾!"𝐾! − 𝛼!𝛼! − 𝛼!𝐸!𝐾!")𝛼!𝐷! + 𝛼!𝛼!𝛼!𝐾!𝐷! 𝛼!𝐾!! /𝐷!, 
 
where 
 
𝛼! = 1− 𝛼! − 𝛼! , 
𝐷! = 𝐾!!𝐾!! + 𝑃!"#! 𝜎 1− 𝜎 𝜎𝐾!! + 1− 𝜎 𝐾!! , 
 
𝐷! = 1− 𝜎 𝐾!! + 𝜎𝑃!"#! +   𝜎𝐾!! , 
𝐷! = 𝛼!𝛼! 𝛼! + 𝐸!𝐾!" − 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" − 𝐸!𝐸!𝐾!"(𝐾!! 1− 𝛼! + 𝛼!𝐾!) 𝐷!

+ −𝛼!𝛼!𝛼! + 𝛼!𝐸!𝐾!! 1+ 𝐸!𝐾!" 𝐾!𝐷! , 

𝐸! =
1
𝐾!
−
1− 𝛼!
𝐾!"!

,            𝐸! =
1− 𝛼!
𝐾!"!

−
1
𝐾!"

,          𝐸! = 𝐹
𝛼!
𝐾!
−
𝛼!!

𝐾!"
, 

 
where 𝐾!!,𝐾!! ,𝐾!,𝐾!" and 𝐾!"! denote the bulk modulus of non-wetting fluid phase, wetting fluid 
phase, solid grains, fractured porous medium and non-fractured porous medium, respectively. 𝛼! 
is the volume fraction of phase i. 𝜎 is the fraction of non-wetting fluid saturation in the composite 
medium. F is a material parameter associated with the change in volume fraction of fractures 𝑃!"#!  
is equivalent bulk modulus for macroscopic capillary pressure (Garg & Nayfeh 1986). 

 


