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Abstract 
For the first time, the bending analysis of a double curved sand-
wich panel was presented which was subjected to point load, uni-
form distributed load on a patch, and harmonic distributed loads 
and was based on a new improved higher order sandwich panel 
theory. Since the cross-sectional warping was accurately 
modeled by this theory, it did not require any shear 
correction factor. Also, the present analysis incorporated 
trapezoidal shape factor (the 1+z/R terms) of a curved 
panel element. Geometry was used for the consideration of dif-
ferent radii curvatures of the face sheets, while the core was 
unique. Unlike most of other reference works, the core can have 
non-uniform thickness. The governing equations were derived by 
the principle of minimum potential energy. The effects of types of 
boundary conditions, types of applied loads, core to panel, and 
radii curvatures ratios on the bending response were also studied. 
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1 INTRODUCTION 

Sandwich plates are widely used in many engineering applications such as aerospace, automobile, 
and ship building because of their high strength and stiffness, low weight and durability. These 
plates are generally consisting of two stiff face sheets and a soft core, which are bonded together. 
In most cases, the core is consisting of a thick foam polymer or honeycomb material, while thin 
composite laminates are commonly used as the face sheets. In these structures, the core keeps the 
face sheets at sufficient distance and transmits the transverse normal and shear loads. Advanta-
ges of this construction method are used to obtain the plates with high bending stiffness charac-
teristics and an extremely low weight. To use these structures efficiently, an excellent understan-
ding of their mechanical behavior is needed (Kheirikhah et al. 2011). 
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NOTATIONS 

dVt,dVc,dVb  
Volume element of the top face sheet, the core and the bottom face 
sheet, respectively 

Mz
c
 Normal bending moments per unit length of the edge of the core 

, , ,i i i i
xy yx xx yyM M M M  Bending and shear moments per unit length of the edge (i=t,b) 

* *

, , ,

, , ,

c c c c
nxx nxy nyy nyx
c c c c
nxz nyz nxz nyz

M M M M

M M M M  
Shear and bending moments per unit length of the edge of the core, 
(n=1,2,3) 

qj(xi,yi ) Applied static forces on the top and/or bottom face sheet 

ijQ  Laminate stiffness referred to the principal material coordinates 

ijQ  Transformed stiffness 
, ,k k ku v w  Unknowns of the in-plane displacements of the core (k=0,1,2,3) 
, ,c c cu v w  Displacement components of the core 
u0
i ,v0
i ,w0

i  Displacement components of the face-sheets, (i = t, b) 

†,  ,t b cz z z  
Normal coordinates in the mid-plane of the top and bottom face-
sheets and the core 

Greek letters 
σii
j  Normal stress in the face sheets, (i=x,y), j=(t,b) 

σii
c  Normal stress in the core, (i=x,y,z) 

τxy
j ,τxz

j ,τyz
j  Shear stresses in the face sheets, j=(t,b) 

τxy
c ,τxz

c ,τyz
c  Shear stresses in the core 

ε0xx
i ,ε0xy

i ,ε0yy
i ,ε0xz

i ,ε0xz
i  The mid-plane strain components, (i=t,b) 

εzz
c ,εxx

c ,εyy
c

 Normal strain components of the core 

γxz
c ,γyz

c ,γxy
c

 Shear strain components of the core 
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In order to investigate free vibration and bending analyses of sandwich structures, the higher 
order sandwich panel theory was developed by Frostig et al. (1995, 1996, 2004) who considered 
two types of computational models for expressing the governing equations of the core. The second 
model assumed a polynomial description of the displacement fields in the core that was based on 
the displacement fields of the first model. Their theory does not impose any restriction on the 
deformation distribution through the thickness of the core. Bozhevolnaya and Frostig (1997) stu-
died the static analysis of open single curved sandwich panels and uses high order theory to de-
monstrate the influence of the geometrical nonlinearity on the overall and local behaviors of the 
sandwich panel. The postbuckling analysis of geometrically imperfect anisotropic sandwich dou-
bly-curved panels under compressive edge loads and a lateral pressure was done by Hause et al. 
(1998) who assumed the core and the face sheets to be incompressible in the transverse normal 
direction. Frostig (1999) using higher order sandwich panel theory studied the bending of an open 
single curved panel with arbitrary boundary conditions. He modeled effects of the flexibility of 
the core of the sandwich panel. Petras and Sutcliffe (1999) applied the higher order sandwich 
beam theory and studied the bending of sandwich beams. In their theory, the shear stress in 
thickness directions was assumed to be uniformly distributed; but, a second order function was 
considered for the vertical displacement of the core. The improved higher order sandwich plate 
theory, applying the first order shear deformation theory for the face sheets, was introduced by 
Malekzadeh et al. (2005a). Zenkour (2005a, b) presented the comprehensive analysis of FG 
sandwich plates. The face sheets were assumed to be isotropic and two-constituentional material 
distribution through the thickness was assumed to vary according to the power law distribution. 
Bending, buckling, and free vibration of simply supported FG ceramic–metal sandwich plates 
were also investigated. The dynamic buckling and postbuckling analyses of doubly curved 
sandwich panels were investigated by Hohe et al. (2006) in which the standard Kirchhoff–Love 
hypothesis for the face sheets and a first/second order power series expansion for the core was 
used. They ignored the transverse shear strains of the core layer. Garg et al.. (2006) investigated 
the free vibration analysis of simply supported doubly curved sandwich shells and their 
formulation included the Sander's theory and they assumed the parabolic distribution of 
transverse shear strains through the shell thickness. Experimental and analytical investigations of 
the bending and free vibration analyses of layered FG beams were carried out by Kapuria et al. 
(2008) who demonstrated the capability of the zigzag theory in modeling such beams. Rahmani et 
al. (2009) applied a higher order sandwich panel theory to study the free vibration analysis of an 
open single curved composite sandwich panel with a flexible core. They used the classical shell 
theory and an elasticity theory for the face sheets and the core, respectively. Carrera and 
Brischetto (2009) used classical plate, zig-zag, and high order theories and studied the bending of 
open single curved composite sandwich panels. Using these theories, they studied the effects of 
geometrical parameters (length to thickness ratio) and mechanical parameters (face sheets to core 
stiffness ratio) on the bending response and concluded that the higher order theories could 
increase the accuracy of the obtained results. Cetkovic and Vuksanovic (2009) investigated the 
global and local responses of sandwich structures based on Reddy's layerwise theory. Also, they 
used finite element method and investigated the free vibration, bending, and buckling analyses of 
sandwich structures. Deformation and failure modes of open single curved sandwich panels with 
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two aluminium face sheets and an aluminium foam core subjected to the air blast loadings were 
experimentally investigated by Shen et al. (2010). All the four edges of the panels were fully 
clamped. Biglari and Jafari (2010) presented a complex three layer theory for the free vibration 
and bending analysis of open single curved sandwich structures. In their model, Donell's theory 
was used for the face sheets. Zhen and Wanji (2010) applied a C0type higher order equivalent 
single layer theory to study the bending analysis of laminated composite and sandwich plates 
subjected to the thermal and mechanical loads. The continuity conditions of transverse shear 
stresses at interfaces and the conditions of zero transverse shear stresses on the upper and lower 
surfaces were also considered. The bending analysis of laminated composite plates under bi-
sinusoidal loading was done by Stürzenbecher and Hofstetter (2011). In their theory, by using an 
equivalent single layer plate theory, the transverse shear strains jumped at the layer interfaces, 
but transverse shear stresses were continuous and the normal stress was ignored. Kheirikhah et 
al. (2011) investigated the bending analysis of sandwich panels with flexible cores. He et al. 
(2012) performed the bending analysis of sandwich panels with different core geometries including 
corrugated, honeycomb, and X cores while neglecting transverse shear strains of the face sheets. 
Classical and first order shear deformation theories were employed for the face sheets and the 
core, respectively. Stacking sequence for composite panels under slamming impact loads was 
optimized by Khedmati et al. (2013). who wrote a special code in MATLAB based on a genetic 
algorithm method and coupled it with ANSYS in order to calculate the central deflection of the 
composite panel. Neto et al. (2014) presented a new metamodel for the reinforced panels made of 
aluminum alloy under compressive loads based on the synthesis of four stability criteria: section 
crippling, web buckling, flange buckling, and column collapse.  

The literature survey demonstrated that most of the studies have been performed on the 
bending analysis of flat composite sandwich panels and the free vibration and buckling analyses 
of double curved sandwich panels under simple loadings and no research is available on the 
bending analysis of double curved sandwich panels. In this paper, sandwich structures were 
subjected to multiple loading conditions including point load, uniform distributed load on a 
patch, harmonic, and uniform distributed loads which were imposed on the top and/or bottom 
face sheets of the sandwich structure. Geometries were used in the present work for the 
consideration of different radii curvatures of the face sheets and the core was unique. In this 
paper, unlike most of other works, in which the core is assumed to be uniform throughout the 
entire panel, the core was supposed to have nonuniform thickness. As a result, this study was 
able to analyse a wide range of sandwich panels. 

In this paper, by using an improved higher order sandwich panel theory (Malekzadeh et al. 
2005a, b) and the second computational Frostig’s model (2004), the static bending analysis of 
double curved composite sandwich panels was investigated. Also, the in-plane hoop stresses of the 
core were considered. In this study, the analytical solution of the displacement field of the core in 
terms of the polynomials with unknown coefficients was presented according to the second 
computational Frostig’s model (2004). Moreover, the formulation included accurate stress-
resultant equations for the composite sandwich structures, where (1+ zc / Rxc) and 
(1+ zc / Ryc) terms were imported in the stress-resultant equations and exactly integrated. These 

coefficients could be very important in the bending analysis of double curved composite sandwich 
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structures. Simply supported and full clamped boundary conditions were considered in this paper. 
In order to assure the accuracy of the present formulations, the convergence of the results was 
examined in detail. The numerical results of the analysis were compared with the available 
experimental and theoretical results in the literature or those presented in FE model by 
ABAQUS code. Finally, the effects of various parameters including radii curvatures, core to panel 
thickness ratio, composite layup sequence, types of applied loads, and types of boundary 
conditions on the bending analysis were studied. 

 
2 THEORETICAL FORMULATION 

2.1 Basic Assumptions  

Consider a doubly curved composite sandwich panel which is composed of two composite laminated 
face sheets. The thickness of the top face sheet, bottom face sheet and the core is ht, hb and hc, 
respectively. According to Figure 1, the length, width and total thickness of the panel are a, b and 
h, respectively. The orthogonal curvilinear coordinates (xi, yi, zi, i=t, b, c) are also shown in  
Figure 1 in which indices t and b refer to the top and bottom face sheets of the panel, respectively. 
The curvature radii of the top face sheet, bottom face sheet and the core in x-z and y-z planes are 
Rtx, Rbx, Rcx, and Rty, Rby, Rcy, respectively. The assumption used in the present analysis was the 
small deformation of linearly elastic materials. 
 

 
 

Figure 1   A double curved sandwich panel with laminated face sheets and the orthogonal curvilinear coordinates. 

 
2.2 Kinematic relations 

Based on the first shear deformation theory, the displacements u, v and w of the face sheets in the 
x, y (longitudinal), and z (thickness) directions with small linear displacements are expressed by 
following relations (Reddy, 2003): 
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ui(x,z,y,t) = u0
i (x,y,t)+ ziψxi (x,y,t)

vi(x,z,y,t) = v0i (x,y,t)+ ziψyi (x,y,t)     ;    (i=t,b)

wi(x,z,y,t) = w0
i (x,y,t)  

 (1)  

 
where zi  is the vertical coordinate of each face-sheet (i = t, b) and is measured upward from the 
mid-plane of each face-sheet. The kinematic equations for the strains of the face sheets are as fol-
lows: 
 

εxx
i = ε0xx

i + ziκxx
i , εyy

i = ε0yy
i + ziκyy

i εzz
i = 0 ; (i = t,b)

γxy
i = 2εxy

i = ε0xy
i + ziκxy

i , γxz
i = 2εxz

i = ε0xz
i , γyz

i = 2εyz
i = ε0yz

i ,

  

 (2)  

 
where 
 

ε0xx
i =

∂u0
i

∂x
+
w0
i

Rxi
, ε0yy

i =
∂v0
i

∂y
+
w0
i

Ryi
,

ε0xy
i =

∂v0
i

∂x
+
∂u0
i

∂y
, ε0xz
i =

∂w0
i

∂x
+ ψx

i −
u0
i

Rxi
, ε0yz

i =
∂w0
i

∂y
+ ψy

i −
v0
i

Ryi

κxx
i =

∂ψx
i

∂x
, κyy

i =
∂ψy
i

∂y
, κxy

i =
∂ψy
i

∂x
+
∂ψx
i

∂y
  

 (3)  

 
The displacement fields are based on the second Frostig’s model (2004) for the thick core and a 

cubic pattern for in-plane displacements and a quadratic one for vertical ones are taken as follows: 
 

uc x,y,z,t( ) = (1+ z
Rxc
)u0
c x,y,t( )+ zcu1c x,y,t( )+ zc2u2c x,y,t( )+ zc3u3c x,y,t( )

vc x,y,z,t( ) = (1+ z
Ryc
)v0
c x,y,t( )+ zcv1c x,y,t( )+ zc2v2c x,y,t( )+ zc3 v3c x,y,t( )

wc x,y,z,t( ) = w0c x,y,t( )+ zcw1c x,y,t( )+ zc2w2c x,y,t( )

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (4)  

 
The kinematic relations of the core for doubly curved sandwich panels based on small defor-

mations are: 



K. Malekzadeh Fard et al./ Improved high-order bending analysis of double curved sandwich panels subjected to multiple loading conditions     1597 

Latin American Journal of Solids and Structures 11 (2014) 1591-1614 
 

εxx

c

=
1

(1+ z Rxc)
∂uc
∂x
+
wc
Rxc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

εyy

c

=
1

(1+ z Ryc)
∂vc
∂y
+
wc
Ryc

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

γxy

c

= 2 εxy

c

=
1

(1+ z Rxc)
∂vc
∂x
+

1
(1+ z Ryc)

∂uc
∂y

γxz

c

= 2εxz

c

=
1

(1+ z Rxc)
∂wc
∂x
−
uc
Rxc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+
∂uc
∂z

γyz

c

= 2εyz

c

=
1

(1+ z Ryc)
∂wc
∂y
−
vc
Ryc

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
+
∂vc
∂z

 (5)  

 
2.3 Compatibil ity conditions 

The compatibility conditions are presented by assuming perfect bonding between the core and the 
face-sheets (Kheirikhah et al. 2011): 
 

uc z = zci( ) =u0i +
1
2
−1( )k hiψxi

vc z = zci( ) =v0i +
1
2
−1( )k hiψyi

wc z = zci( ) =w0i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

For i = t → k = 1 ; zct =
hc
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

For i = b → k = 0 ; zcb = −
hc
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

 (6) 

 
By using the displacement fields of the core (Equation (4) and Equation (6)) and also by simpli-

fying, the compatibility conditions can be written as follow: 
 

u2
c =
2(u0
t + u0

b)− htψx
t + hbψx

b − 4u0
c

hc
2

u3
c =
4(u0
t − u0

b)− 2(htψx
t + hbψx

b)− 4hcu1
c − 4hcu0

c / Rxc
hc
3

v2
c =
2(v0
t + v0

b)− htψy
t + hbψy

b − 4v0
c

hc
2

v3
c =
4(v0
t − v0

b)− 2(htψy
t + hbψy

b)− 4hcv1
c − 4hcv0

c / Ryc
hc
3

w1
c =
(w0
t −w0

b)
hc

w2
c =
2(w0

t +w0
b)− 4w0

c

hc
2

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

u0
c,u1
c,v0
c,v1
c and w0

c  (7) 
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It can be seen from Equation (7) that the number of unknowns in the core is reduced to five. These 
unknowns are u0

c,u1
c,v0
c,v1
c and w0

c . Therefore in a general form, the number of unknowns for a dou-
bly curved composite sandwich panel is fifteen as shown below: 
 

u0
t ,v0
t ,w0

t ,ψx
t ,ψy

t ,u0
b,v0
b,w0

b,ψx
b,ψy

b,u0
c,u1
c,v0
c,v1
c,w0

c{ }  

 
2.4 Governing equations 

The equilibrium equation for the face sheets and the core are derived by the principle of the mini-
mum potential energy: 
 

δΠ = δU + δWext = 0  (8) 

 
where δU and δWext denote the variation of strain energy and that of potential energy due to the 
applied loads, respectively. Also δ denotes the variation operator. 

The first variation of the internal potential energy for a doubly curved sandwich panel that in-
cludes the face sheets and the core is: 

 

δU = σxx
i δεxx

i + σyy
i δεyy

i + τxy
i δγxy

i + τxz
t δγxz

i + τyz
i δγyz

i( )
Vi

∫ dVi

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟i=t,b
∑
+ σxx

c δεxx
c + σyy

c δεyy
c + σzz

c δεzz
c + τxy

c δγxy
c + τxz

c δγxz
c + τyz

c δγyz
c( )

Vc

∫ dVc

dVc = dAcdzc = (1+
zc
Rxc
)(1+

zc
Ryc
)dxcdycdzc,dVi = dAidzi = dxidyidzi,(i = t,b).

 (9) 

 
The variation of the external work is the summation of the applied loads on the top and bottom 

face sheets and on edges: 
 

δWext = −(1+
ht
2Rxt
)(1+

ht
2Ryt
)qtδw0

t + (1−
hb
2Rxb
)(1−

hb
2Ryb
)qbδw0

b
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
dx dy

A
∫  (10) 

 
By using the principle of minimum potential energy (Equations (8)-(10)) and kinematic relations 

(Equations (1)-(7), the governing in the system of orthogonal curvilinear coordinates (x,y,z) can be 
obtained as: 
 

δu0
t : Nxx,x

t +Nxy,y
t +C0Mxy,y

t +
Qxz
t

Rtx
+
2

hc
2
M2xx,x
c +

4

hc
3
M3xx,x
c +

2

hc
2
M2yx,y
c +

4

hc
3
M3yx,y
c +

2

Rtxhc
2
M2xz
c +

4

Rtxhc
3
M3xz
c −

4

hc
2
M1xz
*c −

12

hc
3
M2xz
*c = 0

 (11) 
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δu0
b : Nxx,x

b +Nxy,y
b +C0Mxy,y

b +
Qxz
b

Rbx
+
2

hc
2
M2xx,x
c −

4

hc
3
M3xx,x
c +

2

hc
2
M2yx,y
c −

4

hc
3
M3yx,y
c +

2

Rbxhc
2
M2xz
c −

4

Rbxhc
3
M3xz
c −

4

hc
2
M1xz
*c +

12

hc
3
M2xz
*c = 0

 
 

(12) 
 

δv0
t : Nxy,x

t +Nyy,y
t +

Qyz
t

Rty
+
2

hc
2
M2yy,y
c +

4

hc
3
M3yy,y
c +

2

hc
2
M2xy,x
c +

4

hc
3
M3xy,x
c +

2

Rcyhc
2
M2yz
c +

4

Rcyhc
3
M3yz
c −

4

hc
2
M1yz
*c −

12

hc
3
M2yz
*c = 0

 
 

(13) 
 

δv0
b : Nxy,x

b +Nyy,y
b +

Qyz
b

Rby
+
2

hc
2
M2yy,y
c −

4

hc
3
M3yy,y
c +

2

hc
2
M2xy,x
c −

4

hc
3
M3xy,x
c +

2

Rcyhc
2
M2yz
c −

4

Rcyhc
3
M3yz
c −

4

hc
2
M1yz
*c +

12

hc
3
M2yz
*c = 0

 
 

(14) 
 

δw0
t : Qxz,x

t +Qyz,y
t − (

Nxx
t

Rtx
+
Nyy
t

Rty
)−
Rz
c

hc
−
1
Rcxhc

M1xx
c −

4

hc
2
Mz
c −

2

Rcxhc
2
M2xx
c −

1
Rcyhc

M1yy
c

−
2

Rcyhc
2
M2yy
c +

1
hc
M1xz,x
c +

2

hc
2
M2xz,x
c +

1
hc
M1yz,y
c +

2

hc
2
M2yz,y
c − (1+

ht
2Rtx
)(1+

ht
2Rty
)qt = 0

 
 

(15) 
 

δw0
b : Qxz,x

b +Qyz,y
b − (

Nxx
b

Rbx
+
Nyy
b

Rby
)+
Rz
c

hc
+
1
Rcxhc

M1xx
c −

4

hc
2
Mz
c −

2

Rcxhc
2
M2xx
c +

1
Rcyhc

M1yy
c

−
2

Rcyhc
2
M2yy
c −

1
hc
M1xz,x
c +

2

hc
2
M2xz,x
c −

1
hc
M1yz,y
c +

2

hc
2
M2yz,y
c + (1−

hb
2Rbx
)(1−

hb
2Rby
)qb = 0

 
 

(16) 
 

δψx
t : Mxx,x

t +Mxy,y
t −Qxz

t −
ht
hc
2
M2xx,x
c −

2ht
hc
3
M3xx,x
c −

ht
hc
2
M2yx,y
c −

2ht
hc
3
M3yx,y
c −

ht
Rcxhc

2
M2xz
c

−
2ht
Rcxhc

2
M3xz
c +

2ht
hc
2
M1xz
*c +

6ht
hc
3
M2xz
*c = 0

 
 

(17) 
 

δψx
b : Mxx,x

b +Mxy,y
b −Qxz

b +
hb
hc
2
M2xx,x
c −

2hb
hc
3
M3xx,x
c +

hb
hc
2
M2yx,y
c −

2hb
hc
3
M3yx,y
c +

hb
Rcxhc

2
M2xz
c

−
2hb
Rcxhc

2
M3xz
c −

2hb
hc
2
M1xz
*c +

6hb
hc
3
M2xz
*c = 0

 (18) 
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δψy
t : Mxy,x

t +Myy,y
t −Qyz

t −
ht
hc
2
M2yy,y
c −

2ht
hc
3
M3yy,y
c −

ht
hc
2
M2xy,x
c −

2ht
hc
3
M3xy,x
c −

ht
Rcxhc

2
M2yz
c −

2ht
Rcxhc

2
M3yz
c +

2ht
hc
2
M1yz
*c +

6ht
hc
3
M2yz
*c = 0

 
 

(19) 
 

δψy
b : Mxy,x

b +Myy,y
b −Qyz

b +
hb
hc
2
M2yy,y
c −

2hb
hc
3
M3yy,y
c +

hb
hc
2
M2xy,x
c −

2hb
hc
3
M3xy,x
c +

hb
Rcyhc

2
M2yz
c −

2hb
Rcyhc

2
M3yz
c −

2hb
hc
2
M1yz
*c +

6hb
hc
3
M2yz
*c = 0

 
 

(20) 
 

δu0
c : Nxx,x

c +Nyx,y
c −

4

hc
2
M2xx,x
c −

4

Rcxhc
2
M3xx,x
c +

1
Rcx
M1yx,y
c −

4

hc
2
M2yx,y
c −

4

Rcxhc
2
M3yx,y
c +

1
Rcx
Nxz
c −

4

Rcxhc
2
M2xz
c −

4

Rcx
2 hc
2
M3xz
c +

8

hc
2
M1xz
*c +

12

Rcxhc
2
M2xz
*c −

1
Rcx
Nxz
*c = 0

 
 

(21) 
 

δu1
c :M1xx,x

c −Nxz
*c −

4

hc
2
M3xx,x
c +M1yx,y

c −
4

hc
2
M3yx,y
c +

1
Rcx
M1xz
c −

4

Rcxhc
2
M3xz
c +

12

hc
2
M2xz
*c = 0

 
 

(22) 
 

δv0
c : Nyy,y

c +Nxy,x
c −

4

hc
2
M2yy,y
c −

4

Rcyhc
2
M3yy,y
c +

1
Rcy
M1xy,x
c −

4

hc
2
M2xy,x
c −

4

Rcyhc
2
M3xy,x
c +

1
Rcy
Nyz
c −

4

Rcyhc
2
M2yz
c −

4

Rcy
2 hc
2
M3yz
c +

8

hc
2
M1yz
*c +

12

Rcyhc
2
M2yz
*c −

1
Rcy
Nyz
*c = 0

 
 

(23) 
 

δv1
c :M1yy,y

c −Nyz
*c −

4

hc
2
M3yy,y
c +M1xy,x

c −
4

hc
2
M3xy,x
c +

1
Rcy
M1yz
c −

4

Rcyhc
2
M3yz
c +

12

hc
2
M2yz
*c = 0

 
 

(24) 
 

δwo
c : Nxz,x

c +Nyz,y
c +

8

hc
2
Mz
c −

1
Rxc
Nxx
c +

4

Rxchc
2
M2xx
c −

1
Ryc
Nyy
c +

4

Rychc
2
M2yy
c −

4

hc
2
M2xz,x
c

−
4

hc
2
M2yz,y
c = 0

 
 

(25) 
 

where the stress resultants per unit length for the core can be defined as follow: 
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Nxx
c

Nyy
c

Nxy
c

Nyx
c

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

=

σxx
c (1+

zc
Ryc
)

σyy
c (1+

zc
Rxc
)

σxy
c (1+

zc
Ryc
)

σxy
c (1+

zc
Rxc
)

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

−hc/2

hc/2

∫ dzc,

Mnxx
c

Mnyy
c

Mnxy
c

Mnyx
c

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

= zc
n

σxx
c (1+

zc
Ryc
)

σyy
c (1+

zc
Rxc
)

σxy
c (1+

zc
Ryc
)

σxy
c (1+

zc
Rxc
)

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

−hc/2

hc/2

∫ dzc,

Nxz
c

Nyz
c

Mnxz
c

Mnyz
c

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

=

σxz
c (1+

zc
Ryc
)

σyz
c (1+

zc
Rxc
)

zc
nσxz
c (1+

zc
Ryc
)

zc
nσyz
c (1+

zc
Rxc
)

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

−hc/2

hc/2

∫ dzc,

Nxz
*c

Nyz
*c

Mnxz
*c

Mnyz
*c

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

=

σxz
c

σyz
c

zc
nσxz
c

zc
nσyz
c

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

−hc/2

hc/2

∫ (1+
zc
Rxc
)(1+

zc
Ryc
)dzc,

{Rz
c,Mz

c} = (1,zc)
−hc/2

hc/2

∫ σzz
c (1+

zc
Rxc
)(1+

zc
Ryc
)dzc,

Nxx
i

Nyy
i

Nxy
i

Nyx
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

=

σxx
i

σyy
i

σxy
i

σxy
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

−hi /2

hi /2

∫ dzi,

Mxx
i

Myy
i

Mxy
i

Myx
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

= zi

σxx
i

σyy
i

σxy
i

σxy
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

−hi /2

hi /2

∫ dzi,
Qxz
i

Qyz
i

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
= ks

σxz
i

σyz
i

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪−hi /2

hi /2

∫ dzi ; i = t,b and n = 1,2,3.

 (26) 

 

Because the face sheets are thin ( zi
Rxi
,
zi
Ryi
<< 1,i = t,b ), zi

Rxi  
and zi

Ryi  
can be neglected, there-

fore the stress resultants per unit length for the face sheets can be defined as follow: 
 
Nxx
i

Nyy
i

Nxy
i

Nyx
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

=

σxx
i

σyy
i

σxy
i

σxy
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

−hi /2

hi /2

∫ dzi,

Mxx
i

Myy
i

Mxy
i

Myx
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

= zi

σxx
i

σyy
i

σxy
i

σxy
i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪

−hi /2

hi /2

∫ dzi,
Qxz
i

Qyz
i

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
= ks

σxz
i

σyz
i

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪−hi /2

hi /2

∫ dzi ; i = t,b  (27) 

 
The constitutive equations for in-plane stress resultants based on the first order shear defor-

mation laminate theory are defined as (Reddy 2003): 
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Nxx
i = A11

i u,x
i +A12

i v,y
i +A16

i (u,y
i + v,x

i )+ B11
i ϕx,x
i + B12

i ϕy,y
i + B16

i (ϕx,y
i + ϕy,x

i )

Nyy
i = A12

i u,x
i +A22

i v,y
i +A26

i (u,y
i + v,x

i )+ B12
i ϕx,x
i + B22

i ϕy,y
i + B26

i (ϕx,y
i + ϕy,x

i )

Nxy
i = A16

i u,x
i +A26

i v,y
i +A66

i (u,y
i + v,x

i )+ B16
i ϕx,x
i + B26

i ϕy,y
i + B66

i (ϕx,y
i + ϕy,x

i )

Mxx
i = B11

i u,x
i + B12

i v,y
i + B16

i (u,y
i + v,x

i )+D11
i ϕx,x
i +D12

i ϕy,y
i +D16

i (ϕx,y
i + ϕy,x

i )

Myy
i = B12

i u,x
i + B22

i v,y
i + B26

i (u,y
i + v,x

i )+D12
i ϕx,x
i +D22

i ϕy,y
i +D26

i (ϕx,y
i + ϕy,x

i )

Mxy
i = B16

i u,x
i + B26

i v,y
i + B66

i (u,y
i + v,x

i )+D16
i ϕx,x
i +D26

i ϕy,y
i + B66

i (ϕx,y
i + ϕy,x

i )

Qyz
i = k A44

i (ϕy
i +w,y

i )+A45
i (ϕx

i +w,x
i )⎡

⎣⎢
⎤
⎦⎥

Qxz
i = k A45

i (ϕy
i +w,y

i )+A55
i (ϕx

i +w,x
i )⎡

⎣⎢
⎤
⎦⎥ ; (i = t,b)

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (28) 

 
where the laminate stiffness coefficients for the face sheets are defined by: 
 

(Aij ,Bij ,Dij )
m = Qij(1,z,z

2)dzm
−hm /2

hm /2

∫ = ( Qij
(k)

k=1

N

∑ (1,z,z2)dz
z(k )

z(k+1)

∫ )m,

Aij
m = ( Qij

(k)(z(k+1) − z(k))
k=1

N

∑ )m, Bij
m = (

1
2
Qij
(k)(z(k+1)

2 − z(k)
2 )

k=1

N

∑ )m,

Dij
m = (

1
3
Qij
(k)(z(k+1)

3 − z(k)
3 )

k=1

N

∑ )m ; i, j = 1,2,6 ; m = t,b,

Aij
m = ( Qij

(k)(z(k+1) − z(k))
k=1

N

∑ )m ; i, j = 4,5 ; m = t,b.

 (29) 

 
where ijA , ijB  and ijD are called the extensional stiffness, the bending-extensional coupling stiffness 

and the bending stiffness, respectively. 
 
3 ANALYTICAL  SOLUTION 

The displacement fields at the top and bottom face-sheets based on double Fourier series for a 
doubly curved composite sandwich panel with simply supported boundary conditions are assumed 
to be in the following form: 
 

u0
j(x,y)

v0
j(x,y)

w0
j(x,y)

ψx
j(x,y)

ψy
j(x,y)

uk
c(x,y)

vk
c(x,y)

wl
c(x,y)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

U0mn
j cos(αmx)sin(βny)

V0mn
j sin(αmx)cos(βny)

W0mn
j sin(αmx)sin(βny)

Ψxmn
j cos(αmx)sin(βny)

Ψymn
j sin(αmx)cos(βny)

Ukmn
c cos(αmx)sin(βny)

Vkmn
c sin(αmx)cos(βny)

Wlmn
c sin(αmx)sin(βny)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

m=1

∞

∑  
n=1

∞

∑ ,  (k=0,1,2,3), (l=0,1,2)  (30) 
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In Equation (30),U0mn
j ,V0mn

j ,W0mn
j ,Ψxmn

j ,Ψymn
j ,Ukmn

c ,Vkmn
c

 
and Wlmn

c
 are Fourier coefficients and m 

and n are the half wave numbers along x and y directions, respectively. The above double Fourier 
series functions can satisfy some boundary conditions for a doubly curved sandwich panel i.e., simp-
ly supported on all edges. However, when all edges are clamped, the functions cos(αmx)  and 
cos(βny)  in the above series expansions must be replaced with cos(αmx)  and sin(βny) , respectively. 

In Equations (11)-(25), the static loads (qj (j = t,b))  
normal to the top and/or bottom face 

sheets are assumed to be represented by the following series expansions: 
 

qj(x,y) = qmn
j sin(αmx)sin(βny)

n=1

∞

∑
m=1

∞

∑ ; j = t,b  (31) 

 
where qmn  is Fourier coefficient that dependes on the types of the loads. Fourier coefficient for the 
uniformly distributed load on the top and/or bottom face sheets of the double curved composite 
sandwich panel can be obtained as follows: 
 

qmn
j =

4
ab

qj x,y( ) sinαmx( )
0

b

∫
0

a

∫ sinβny( )dxdy,qj x,y( ) = P0 ; j = t,b ⇒

qmn
j =

16P0
mnπ2

for m,n = 1,3,5,.....( )

qmn
j = 0 for m,n = 2,4,6,.....( )

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 (32) 

 
and for the point load acting on an arbitrary point( , )i ix y can be determined as follow: 
 

qmn
j =

4
ab

qj x,y( ) sinαmx( )
0

b

∫
0

a

∫ sinβny( )dxdy,qj x,y( ) = P0δ(x − xi )δ(y − yi ) ; j = t,b ⇒

qmn
j =

4P0
ab
sin
mπxi
a

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
sin
nπyi
b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 (33) 

 
Fourier coefficient for the area load on the certain rectangular area (2u×2v) of the top and/or bot-
tom face sheets of the double curved composite sandwich panels can be written as follow: 
 

qmn
j =

4
abuv

qj x,y( ) sinαmx( )
yi−v

yi+v

∫
xi−u

xi+u

∫ sinβny( )dxdy,qj x,y( ) = q0δ(x − xi )δ(y − yi ); j = t,b ⇒

qmn
j =

16q0
mnuvπ2

sin
mπxi
a

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
sin
nπyi
b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
sin
mπu
2a

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ sin

nπv
2b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 (34) 

 
and for the harmonic load on the top and/or bottom sheets, it can be determined as follows: 
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qmn
j =

4
ab

qj x,y( ) sinαmx( )
0

b

∫
0

a

∫ sinβny( )dxdy,qj x,y( ) = q0 sin
πx
a

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ sinβ

πy
b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ; j = t,b ⇒

qmn
j = q0 only (m = n = 1)

 (35) 

 
Therefore, the governing equation of motion to the bending analysis can be written as follows: 
 

[K ]{c} = {Q}

{c} = {U0mn
t ,U0mn

b ,V0mn
t ,V0mn

b ,W0mn
t ,W0mn

b ,ψxmn
t ,ψxmn

b ,ψymn
t ,ψymn

b ,U0mn
c ,V0mn

c ,U1mn
c ,V1mn

c ,W0mn
c }T

{Q} = {0,0,0,0,−qmn
t ,qmn

b ,0,0,0,0,0,0,0,0,0}T
 (36) 

 
where [K] is the (15mn)×(15mn) stiffness matrix and, for SSSS and CCCC B.Cs., some of matrix 
elements are given in Appendix A and [Q] is the (15mn)×(1) vector of the arbitrary static force(s). 

 
4. RESULTS AND DISCUSSION  

In this section, some examples are considered and the obtained results are validated and discussed. 
To validate the present results and demonstrate their capability in predicting the static bending 
analysis of a doubly curved composite sandwich panel, some examples are presented and the results 
obtained from the present theory are compared with the recent theoretical and numerical results 
found in the literature. Since, there is no research about the bending analysis of a doubly curved 
sandwich structure to validate the obtained results, sandwich structures were modeled in ABAQUS 
FE code and the results from the analytical formulations were compared with FE code. The 
agreement between the results was quite good. 

 
4.1 Static bending analysis of f lat composite sandwich panel with SSSS B.C. 

In this example, the bending analysis of a flat composite sandwich panel with SSSS B.C. was 
investigated. Mechanical properties of the core and the face sheets are given in Table 1. The face 
sheet to panel thickness ratio was 0.1 and the core to panel thickness ratio was 0.8 (Pandit et al., 
2008). The top face sheet of the sandwich panel was subjected to the harmonic load

0( ( , ) (sin / )(sin / ))tq x y q x a y bp p= . Results of the dimensionless deflection of central mid-plane of 

the core
 

3 4( 100 / , 0)cw wEh qa z= =  for different panel thickness to length ratios (h/a) were 

compared with those of the presented formulations (IHSAPT) and the results obtained from 3D 
elasticity solution (Pandit et al., 2008) in Table 2. As can be seen in Table 2,  there was quite good 
agreement between the results and there was a little difference between them. Note that, the 3D 
elasticity solution was an exact solution. 
 

Table 1   Material properties of a flat composite sandwich panel (Pandit et al., 2008) 
 

Face sheets E1 = 25E, E2 = E, G12 = G13 = 0.5E,G23 = 0.2E, ν12 = 0.25.  
core E1 = E2 = 0.04E, E3 = 0.5E,G12 = 0.016E, G13 = G23 = 0.06E,ν12 = 0.25.  
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Table 2   Comparison of the dimensionless central deflection of a sandwich panel for different h/a ratios. 

 
 Dimensionless central deflection of a sandwich panel 

h/a Present model  3D elasticity (Pandit et al. 2008) Error difference (%) 
0.01 0.8932 0.8923 -0.1 
0.02 0.9357 0.9348 -0.096 
0.05 1.2278 1.2264 -0.11 

 
4.2 Bending analysis of open single curved sandwich panel with SSSS B.C. 

In this example, the static bending of an open single curved sandwich panel subjected to harmonic 
load on the top face sheet with SSSS B.C. was studied. The face sheet to panel thickness ratio and 
the core to panel thickness ratio were 0.1 and 0.8, respectively, and the properties of the composite 
face sheets and the foam core are given in Table 3.  
 

Table 3   Material properties of a flat composite sandwich panel (Khare et al., 2005) 
 

Face sheets 
E1 = 172.368 GPa, E2 = E3 = 6.895 GPa, G12 = G13 = 3.447 GPa, G23 = 1.379 GPa,

ν12 = ν13 = ν23 = 0.25.
 

Core 
E1 = E2 = 0.276 GPa, E3 = 3.447GPa, G12 = 0.110 GPa, G13 = G23 = 0.414GPa,

ν12 = ν13 = 0.25, ν23 = 0.02.
 

 
In Table 4, the dimensionless central deflection of an open single curved sandwich panel for 

different Rc/h and h/a ratios is presented and the results of the presented formulations (IHSPT) 
are compared with those of higher order equivalent single layer theory (HSDT-ESL) (Khare et al. 
2005). Table 4 showed that, for a thin single curved sandwich panel, there was good agreement 
between the results of IHSPT and HSDT-ESL; but, they were a little different for the panels with 
more thickness (h/a=0.25). Also, it can be seen in this table that the dimensionless deflection 
obtained from IHSPT was more than the one from HSDT-ESL and the error difference between the 
results for h/a=0.25 was larger than those for h/a=0.1. The reason for this difference can be that 
the current method can rather accurately model the flexibility of the core; in addition, Khare et al. 
(2005) used equivalent single layer theory, in which by increasing h/a ratio, the error of this 
method increased. 
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Table 4   Comparison of the dimensionless central deflection of a sandwich panel for different Rc/h and h/a ratios. 
 

  w = 100wE2h
3 / qa4  

h/a Rc/h Present model HSDT-ESL(Khare et al., 2005) Error difference (%) 

0.1 
100 2.19925 2.14545 -2.5 
50 2.18730 2.10714 -3.8 
20 2.10855 2.09559 -0.61 

0.25 
100 7.62635 7.34982 -3.76 
50 7.62569 7.22810 -5.5 
20 7.62486 7.19029 -6.04 

 
4.3 The bending of a flat composite sandwich panel with CCCC B.C. 

In this example, the static bending of a flat sandwich panel with CCCC B.C. was studied. The top 
face sheet of the sandwich panel was subjected to the uniformly distributed load (UDL) 
(qt(x,y) = q0 = 1000pa ) and the harmonic distributed load (SSL)(qt(x,y) = q0(sinπx / a)(sinπy / b) ). 
Also, the static load (q0) can be uniformly applied over an area (ULA) 
(A = 2U ×2V ,U =V = a / 3,a = b ). The lay-up sequences of the top and bottom face sheets were 
[0/90/0] and the sandwich panel was symmetric about the mid-plane. Mechanical properties of the 
composite face sheets and the PVC foam core are given in Table 5. 

The convergence of the central deflection of the top face sheet in the composite sandwich panel 
is presented in Table 6. This table shows that the obtained results for sandwich panel with h/a=0.1 
and hc/h=0.88 converged after 361 expressions (m=n=19). 

In Table 7, the results of the presented formulations were validated with those of ABAQUS 
analysis and reasonably good agreement was found between them.  In Figure 2, the 3D view of 
deflection of the composite sandwich panel subjected to the uniform and harmonic distributed loads 
on the top face sheet obtained from ABAQUS is presented. 

 
Table 5   Material properties of a composite sandwich panel (Meunier and Shenoi, 1999) 

 
Face sheets E1 = E2 = E3 = 0.10363 GPa, G12 = G13 = G23 = 0.05 GPa,ν =  0.32.  

core 
E1 = 24.51 GPa, E2 = E3 = 7.77 GPa, G12 = G13 = 3.34 GPa, G23 = 1.34GPa,

ν12 = ν13 = 0.078, ν23 = 0.49.
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Table 6   The convergence of the dimensionless central deflection of the top face sheet of the composite sandwich panel subjected to the 
UDL and the SSL on the top face sheet 

 
w = 100wE2h

3 / qa4  

w (UDL) w (SSL) Convergence (m=n) 
11.5431 8.6156 5 
12.8354 9.3150 9 
13.2965 9.5189 11 
13.5085 9.6302 15 
13.5522 9.6627 17 
13.6446 9.6986 19 
13.6852 - 21 

 
Table 7   Dimensionless central deflection of the top face sheet of the composite sandwich panel subjected to the UDL and the SSL on the 

top face sheet 
 

 w = 100wE2h
3 / qa4  

Type of loads Present model ABAQUS Error difference (%) 
UDL 13.6852 13.9793 2.14 
SSL 9.6986 9.8506 1.1 
ULA 17.2609 17.7312 2.34 

    
 

  
b.   SSL on the top face sheet a. UDL on the top face sheet 

 
Figure 2   3D view of deflection of the composite sandwich panel subjected to the UDL and the SSL on the top face sheet with 

CCCC B.C. 
 
4.4 The bending analysis of a double curved composite sandwich panel  

In this example, the static bending analysis of a double curved composite sandwich panel with SSSS 
and CCCC B.Cs. was investigated. The properties of the sandwich structure are given in Table 8. 
The lay-up sequences of the top and bottom face sheets were [0/90/0] and the sandwich panel was 
symmetric about the mid-plane. The top face sheet of the sandwich panel was subjected to the 
uniform distributed load (UDL) and harmonic distributed load (SSL). Also, the static load (q0) was 
uniformly applied over an area (ULA) ( 2 2 , / 8A U V U V a= ¥ = = ).  
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In Table 9, the dimensionless deflections at the center of the face sheets and the core converging 
after 361 expressions (m=n=19) are presented for both boundary conditions. It is obvious from the 
table that the dimensionless deflections for SSSS B.C. were more than those for CCCC B.C., 
because the flexibility of the sandwich structure with SSSS B.C. was more than that with CCCC 
B.C. The dimensionless deflection at the center of the bottom face sheet was less than that at the 
center of top face sheet, because the flexibility of the core was modeled, which caused the 
deflections of the top and bottom face sheets to be different. In this analysis, the static load was

0 10q MPa= and thicknesses of the face sheets was h=3 mm. 
 

Table 8   Mechanical and geometrical properties of a double curved composite sandwich panel. 
 

Face sheets 1 2 3 12 13 23E E E 0.10363 GPa, G G G 0.05 GPa,  0.32.n= = = = = = =  

Core 1 2 3 12 13 23

12 13 23

E 24.51 GPa, E E 7.77 GPa, G G 3.34 GPa, G 1.34GPa,
0.078, 0.49.n n n

= = = = = =
= = =

 

Geometric 1 2/ 0.88, 10 , 3 , .c c ch h a h R R a a b= = = = =
  

Table 9   Dimensionless deflections at center of the face sheets and the core of a double curved composite sandwich panel subjected to 
the uniform distributed load (UDL), the harmonic distributed load (SSL) and the uniform static load applied over an area (ULA). 
 

w(a / 2,b / 2,0) =100wE2th
3 / qRt

4   
CCCC B.C. SSSS B.C. Load types 

bw  cw  tw  bw  cw  wt  
0.2146 0.9239 1.6068 0.2155 0.9241 1.6056 UDL 
2.1135 3.4404 4.7406 2.1820 3.5157 4.8231 SSL 
5.6192 6.9700 8.7950 6.2797 7.6133 9.4353 ULA 

 
4.5  Effect of some important parameters on the static response of a double curved sand-
wich panel 

In this example, the effects of types of boundary conditions, types of applied loads, core to panel 
and radii curvatures ratios on the bending response of a double curved composite sandwich panel 
were investigated. The properties of the sandwich structure are given in Table 8.  The lay-up 
sequences of the top and bottom face sheets were [0/90/0] and the sandwich panel was symmetric 
about the mid-plane. The top face sheet of the sandwich panel was subjected to the uniform 
distributed load (UDL), harmonic distributed load (SSL), and point load (PL). Also, the static load 
( 0 10q MPa= -­‐ )was uniformly applied over an area (ULA) (A = 2U ×2V ,U =V = a / 8 ). 
 Variations of deflections of the face sheets with the variation of the core to the panel thickness 
ratio for a double curved sandwich panel subjected to PL and UDL for SSSS and CCCC B.Cs. are 
presented in Figure 3. As demonstrated in Figure 3, with increasing the hc/h ratio, the 
dimensionless deflections of the top and bottom face sheets increased in all cases. For the low core 
to the panel thickness ratio (hc/h), the increasing rate of deflection was low, while by increasing the 
ratio, that rate increased. Also in all the cases, deflection of the top and bottom face sheets 
subjected to PL was higher than those subjected to UDL. The dimensionless deflection at the center 
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of the bottom face sheet was lower than that at the center of the top face sheet, for the same reason 
mentioned above. Variations in deflections of the face sheets with radii curvatures ratio (R2/R1) for 
a double curved sandwich panel subjected to SSL and UDL for SSSS and CCCC B.Cs. are 
presented in Figure 4. 
 

  
(a) Top face sheet deflection (b) Bottom face sheet deflection 

 
Figure 3   The variations of the face sheets deflections with core to panel thickness ratio for a double curved sandwich panel 

subjected to PL and UDL for SSSS and CCCC B.Cs. 
 

As can be seen in Figure 4, with increasing ratio of radii curvatures, deflections of the top and 
bottom face sheets increased in all the cases. For low radii curvatures ratio (R2/R1), increase in the 
rate of the deflection was high, while by increasing the R2/R1 ratio, the rate decreased. Also, this 
figure showed that, in each R2/R1 ratio, the top and bottom face sheet deflections for SSSS B.C. 
were higher than those for CCCC B.C. and maximum deflections occurred in the sandwich panel 
subjected to UDL with SSSS B.C. By increasing the R2/R1 ratio, the flexibility of the sandwich 
panel slightly increased, which caused the deflections of the top and bottom face sheets to increase. 
In Figure 5, variation in deflections of the top and bottom face sheets along the x-axis for a double 
curved composite sandwich panel subjected to SSL and UAL for SSSS and CCCC B.Cs. is 
presented.  

  
(a) Top face sheet deflection (b) Bottom face sheet deflection 

Figure 4   The variations of the face sheets deflections with radii curvatures ratio for a double curved sandwich panel subjected 
to SSL and UDL for SSSS and CCCC B.Cs. 
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(a) The top face sheet deflection (b) The bottom face sheet deflection 

 
Figure 5   The top and bottom face sheet deflections for a double curved composite sandwich panel subjected to SSL and UAL for 

SSSS and CCCC B.Cs. 
 

As is obvious from Figure 5, in all the cases, the top face sheet deflection was higher than the 
bottom face sheet deflection, which was due to the flexibility of the core. The maximum deflections 
of face sheets occurred in the sandwich panel subjected to UDL with SSSS B.C.. Also, Figure 5 
shows that, when the sandwich panel with both boundary conditions was subjected to UAL (i.e. the 
static load on a patch), only the area under the applied load was approximately deflected ,while for 
the sandwich panel subjected to SSL, deflection occurred on the entire panel. 
 

  
(a) SSSS B.C. (b) CCCC B.C. 

 
Figure 6   The variation of the shear stress along x-axis at the top face sheet–core interface of a double curved composite sandwich 

panel for SSSS and CCCC B.Cs. subjected to UDL, UAL and SSL 
 

In Figure 6, variation in the shear stress at the top face sheet–core interface of a double curved 
composite sandwich panel with both types of boundary conditions subjected to UDL, UAL, and 
SSL is presented.  

Figure 6(a)-(b) shows that maximum shear stress of a double curved composite sandwich panel 
with SSSS and CCCC B.Cs. subjected to UDL was higher than that subjected to other types of 
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applied loads. Also, Figure 6(a) shows that maximum shear stress for all types of applied loads 
occurred at the edges of the panel (x/a=0, 1 ; y=b/2). But, it can be seen in Figure 6(b) that 
maximum shear stress did not occur at the edges of the panel and occurred at x/a=0.1 or x/a=0.9 
when the sandwich panel was subjected to SSL and UDL. The maximum shear stress occurred at 
x/a=0.37 or x/a=0.63 in the case of the sandwich panel subjected to UAL. The shear stress at the 
edges and maximum shear stresses for all types of the applied loads and for both boundary 
conditions are given in Table 10. 

 
Table 10   The shear stress at the edges and the maximum shear stresses for all types of applied loads and for SSSS and CCCC B.Cs. 

 

Types of  
B.Cs. 

Types of  
applied loads 

The shear stress at the edges(Pa) The maximum 
 shear 

stress(Pa) 
x=0, y=b/2 x/a=1 , y=b/2 

SSSS 
UDL 2.65×109 -2.65×109 2.65×109 
SSL 1.8×109 -1.8×109 1.8×109 
UAL 0.5×109 -0.5×109 0.5×109 

CCCC 
UDL -0.49×107 0.49×107 -1.9×107 
SSL -0.25×107 0.25×107 -1.15×107 
UAL -0.05×107 0.05×107 -0.48×107 

 
Finally, the effects of various types of applied loads and boundary conditions on the normal stress 
were investigated. The variation of normal stress (σzz

c ) along the core thickness (z-axis) for various 
types of applied static loads and boundary conditions is shown in Figure 7. This figure 
demonstrates that the normal stress increased in all the cases along the core thickness from the top 
face sheet–core interface to the bottom face sheet–core interface ( / 0.5c cz h = ) . Also, it can be 
seen that maximum normal stress at the bottom face sheet–core interface occurred in the case of 
sandwich panel subjected to UDL with CCCC B.C. (-0.95 MPa) and at the top face sheet–core 
interface occurred in the case of sandwich panel subjected to UAL with CCCC B.C.. The minimum 
and maximum normal stresses across the core thickness occurred in the cases of sandwich panel 
subjected to UDL with SSSS B.C. and subjected to UAL with CCCC B.C., respectively.  
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Figure 7   The variation of normal stress along the core thickness for various types of applied static loads and boundary condi-
tions 

 
5 CONCLUSION 

For the first time in this study, the static bending analysis of a double curved composite sandwich 
panel subjected to various types of applied static loads with SSSS and CCCC B.Cs. was studied. 
Using the improved higher order sandwich plate theory, the governing equations on the doubly 
curved sandwich panel awee derived based on the principle of minimum potential energy. Since the 
cross-sectional warping was accurately modeled by this theory, it did not require any shear 
correction factor. Also, the present analysis incorporated trapezoidal shape factor (the 1+z/R 
terms) of a curved panel element that arose due to the fact that stresses over the panel thickness 
were to be integrated on cross-section of a curved panel element to obtain accurate stress-
resultants. The solutions were also applicable to flat panels by taking radius of curvature as 
infinity. The solution procedure was validated by comparing its results with those obtained either 
numerically or analytically by other researchers in the literature. Geometries were used in the 
present work for the consideration of different radii of curvatures of the face sheets and the core 
was unique. The general formulation which can be used for a wide range of geometries such as open 
single curved, flat composite, and cylindrical circular sandwich panels was presented. In conclusion, 
the effect of boundary conditions, core to panel thickness ratio, and radii curvature ratio on the 
bending analysis of the double curved composite sandwich panel was studied in detail. 
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Appendix A 

Some stiffness matrix coefficients for SSSS B.C. 
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hc
5
− 4
g6
cyx

hc
6
]

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

K(13,7) =
ab
4
αpβqht[

g2
cxz

hc
2
+ 2
g3
cxz

hc
3
− 4
g4
cxz

hc
4
− 8
g5
cxz

hc
5
+
g3
cxz

Rcyhc
2
+ 2

g4
cxz

Rcyhc
3
− 4

g5
cxz

Rcyhc
4
− 8

g6
cxz

Rcyhc
5
]

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

 

 
Some stiffness matrix coefficients for CCCC B.C. 
 

K(3,2) = −ImpInq αmβn[−4
g4
cyx

hc
4
− 8
g5
cyx

hc
5
− 16

g6
cyx

hc
6
]

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

K(8,10) = −ImpInq αmβnhb
2[−
g4
cyx

hc
4
+ 4
g5
cyx

hc
5
− 4
g6
cyx

hc
6
]

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

K(13,7) = −ImpInq αmβnht[
g2
cxz

hc
2
+ 2
g3
cxz

hc
3
− 4
g4
cxz

hc
4
− 8
g5
cxz

hc
5
+
g3
cxz

Rcyhc
2
+ 2

g4
cxz

Rcyhc
3
− 4

g5
cxz

Rcyhc
4
− 8

g6
cxz

Rcyhc
5
]

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

 


