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Abstract

In this study, vibration behavior of orthotropic cylindrical shells
with variable thickness is investigated. Based on linear shell
theory and applying energy method and using spline functions,
free vibration relations are derived for shell with variable thickness
and curvature. Frequency parameter and mode shapes are found
after solving the frequency Eigenvalue equation. Effects of variable
thickness along axial and circumferential directions of the shell on
its frequency parameter are studied and compared against each
other. Shell thickness is assumed to be varied in a parabolic profile
along both directions. Also, frequency parameters for both circular
and parabolic curvatures along circumferential direction are inves-
tigated and results are compared together. In addition, effect of
variable thickness on the mode shapes is studied.
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Cylindrical (open) shells with either circular or noncircular profiles have been widely used in recent

years, as structural elements within marine, civil, aerospace, and petrochemical industries. In addi-

tion, because of inherent difficulties in assembly of shells with circular profile, noncircular profile is

preferred in constructing cylindrical shells. Vibration behavior of cylindrical shells with circular

profile is different than that of cylindrical shells with noncircular profile.

Variation of the thickness in a cylindrical shell leads to decrease of its structural weight besides

reducing cost of needed materials. Moreover, natural frequency of the shell changes as a result of its

variable thickness. Therefore, vibration analysis of the shells with variable thickness has attracted

the attention of many researchers in recent years.
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Zhang et al. (2001) and Pellicano (2007) studied vibration behavior of the shells incorporating
circular profile and uniform thickness. A few other researchers have also studied vibration response
of noncircular shells, among them are Srinivasan and Bobby (1976), Cheung and Cheung (1972)
and Yamada et al. (1999).

Vibration response of flat plates with variable thickness has also been addressed by Huang et al.
(2005, 2007), Ashour (2001), Sakiyama and Huang (1998), Grigorenko et al. (2008). On the other
hand, Sivadas and Ganesan (1991), Zhang and Xiang (2006), Duan and Koh (2008) investigated
vibration response of the closed shells having circular profiles and variable thickness. Their investi-
gations were limited to the effects of variable thickness in one direction (either axial or circumferen-
tial) on vibration behavior of the shells. Later, Grigorenko and Parkhomenko (2011) studied free
vibration of shallow shells having parabolically-variable thickness with the aid of spline-collocation
approach. The effects of variable thickness on the vibration behavior of closed elliptical cylindrical
shells and closed oval cylindrical shells have been studied by Suzuki and Leissa (1985) and Khalifa
(2011), respectively.

Open parabolic cylindrical shell with variable thickness is considered as the main geometry in
the present study. As it was shown, very few research works have been performed on such struc-
tures. In addition, vibration response of parabolic cylindrical shells and circular cylindrical shells are
compared against each other’s. As it was mentioned earlier, most of the previous works studied the
effects of thickness variation in one direction on the vibration response of the shells. Therefore, a
thorough study on the effects of direction of thickness variation on the vibration response of a shell
is lacked herein. Present work is aimed at study of vibration response for both parabolic shells
and circular shells having variable thickness in either axial direction or circumferential direction.
On the other hand, analytical solutions cannot be simply reached for assessment of vibration re-
sponse of the shells when both radius and thickness are subjected to variation. Thus, numerical
approaches as well as approximate methods may be used to investigate the vibration response of
these types of the shells. Techniques based on spline functions are among numerical methods that
are useful in solving structural problems. In the present work, a relatively simple discrete method
incorporating spline functions introduced already by Cheng and Chuang (1990) and Cheng et al.
(1987) for shell and plate with uniform thickness and uniform curvature; is further extended to be
able to analyze free vibrations of circular/noncircular cylindrical shells with variable thickness.

The aims of present work are: (1) to extend discrete method based on the concept of spline func-
tions for studying vibration behavior of parabolic and circular cylindrical shells with non-uniform
distribution of thickness and to prove its efficiency and accuracy, (2) to evaluate the effects of
thickness variation along the axis of the shell on its natural frequency in comparison with those of
thickness variation along the circumference of the shell on its natural frequency, (3) to compare
natural frequency of cylindrical shells having circular profile with that of cylindrical shells having
parabolic profile; and finally, (4) to investigate the effects of thickness variation on the mode shapes
of the shells.
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2 THEORY AND FORMULATIONS

Since thickness of the shell is small compared to its other dimensions, the shell is regarded to be
thin. Consequently, classical shell theory based on Kirchhoff-Love assumptions is used to extract
governing equations.

2.1 Geometric formulation

The main geometry under consideration in this work is a cylindrical shell with an either circular or
parabolic profile. Both circular and parabolic profiles can be defined by two parameters including
camber (C) and span (b), Figure 1. Geometrical relations for circular and parabolic profiles are
given in Table 1.

(a) (b)
Figure 1: (a) circular profile and (b) parabolic profile.

Figure 2 shows a shell with a parabolic profile in the curvilinear coordinate system (xsz). z-axis is
perpendicular to the middle surface of shell defined by x-s plane. x-axis is along axis of the cylinder,
while the s-axis is along circumference of the cylinder. Displacement functions along x-axis, s-axis
and z-axis are respectively represented by U(x,s), V(x,s) and W(x,s). Lame’s parameters for this
type of shell in the curvilinear coordinate system are equal to one according to Soedel (1993).

Figure 2: Parabolic cylindrical shell, curvilinear coordinate system (xsz)
and displacement functions (Soedel (1993)).
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2.2. Displacement functions

Displacement functions for the middle surface of the shell are introduced by cubic and fifth-order B-

spline functions as below.

) = [o(x)| 2 [0(s)|{ 4} sin[ot + )
o) = olx)] o [o(s) B} sin ot +¢) )
() = lo(x)| = [o(s)|{C}sin{ot + o)

Row matricesW(a:) Jand{go(a:)Jare cubic B-spline and fifth-order B-spline matrices, respectively.

Column matrices {A} , {B} and{(]} are unknown coefficients of the displacement functions in Equa-

tion 1. Also, N is the number of divisions along x or s axes. The operator ® is the ‘Kronecker prod-

uct’ of the matrices. Formulations of row matrices and also column matrices are given below

[6(a)] = [8(x), 6(x), 0(x), - 0(x)y, 6(x) D (¥

{(p(x)J = [W(X)—2W(X>—1W(X>O """ W(X>N\|’(X>N+1W(X N+2 ]N+5
{aY ={a} oo} o fan) {ana} |

[(N+3)] 2)
{ai }T = [aﬂ Ay Ajgeeeee aiN],i =-101,..N+1 ,{B} s sameas{A}
{C}T = {C—2}T{C—1}T """ {CN+1}T{CN+2}T
[(N+5)]

{ci }T = [cil Cio Ci3......ciN],i =-2-10,..N+2

Standard cubic spline is expressed as

(Ps(X):%

According to Cheng et al. (1987), cubic B-spline functions (B3) for N equal divisions (N>4) are

b = o, %—i],i: 3,45...N—3
¢]—¢3[%+1] ¢N2_¢3[E—N+2]
¢0_(P3[§]4(P3[%+1 %f%[%N+1]%¢3[%N]+¢3[%N1] (4)
soff o el ool o)l
¢’2:‘P3[§_2] ¢N+1:(P3[E—N—1
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Expression for the standard fifth-order spline is

(3+X)5 X € [—3,—2}
(3+x) —6(2+x) x €[-2,-1]
) (3+x) —6(2+x) +15(1+x) x €[~1,0]
% =101(3-x) —6(2—x)" +15(1-x) x € [0,1] (5)
(3—x)‘:’ —6(2-x) x € [1,2]
(3—x) x €[2,3]
0 x| >3

Again, according to Cheng et al. (1987), fifth-order B-spline functions (Bs) for N equal divisions
(N>6) are

v, = @5[E1],1 =456..N—4
h
X

X X
v, = (P5[E+1}—26(p5[£+2}

= Zi2)+ e
Vo = 01195 I 0y0P5 I @5 I
Vi = 09,95 41 + 0y P; = + @5 z-1
h h h
X X X
WYy = 05,05 E+2 03,05 h + @5 E*Q
X
v, = %[3_3] (6)

YN-3 :(P5[%_N+3]

VN2 = 531(95[%_1\1‘*‘2}"' 332%[%_1\1}‘*‘%[%—1\1—2]
YNt = 321@5[%_N_1]+ BQQ‘P{,[E_N]"‘%[%_N"‘l]
Un = B11(P5[%N2]+ 312‘P5[%N1]+(P5[§NJ
Yt @5[%N1}+26¢5[%N2

X
A [E. S
\VN+2 (\Do[h ]

where, for cc boundary condition (clamped edges at x=0, x=L)
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@y/,g/
O O B B 4 8
Oy Oy | =[Py Poo|=] 1 —26 33

O3y Oy By By 1 - 133

And for ss boundary condition (simply supported edges at x=0, x=L)

Oy O By B 12 =3
Oy O |=|By Byp|=|-1 0

Osp O By Bs -10
2.3 Mass and stiffness matrices
Extracted relations in this section are valid only for a shell with a general geometry.

2.3.1 Mass matrix

Kinetic energy of a shell with variable thickness can be expressed in the following form

1 1
Topen = 5ffpshezztsheﬂ (UQ +V W )dmds = 5{5}T[M]{6} (7)

where, p,, ,is density, tgpeyis thickness function of shell, U, V .and W are displacement functions of

the middle surface of shell. Also,{é} = [{A} {B} {C’}]T, where{A}7 {B} and {C} are unknown

coefficients of displacement functions. [M } is also mass matrix.

After substituting the displacement functions (Equation 1) into the Equation 7 and taking nu-
merical integration, the mass matrix is obtained by equation 8. This mass matrix is for a shell with
variable thickness in x-direction. Through replacing x by s, the mass matrix for a shell with variable
thickness in s-direction can be easily obtained.

(th ® F%) 0 0
[M} = pshell 0 (th & Fs) 0 (8)
0 0 (H, ® H,)

2.3.2 Stiffness matrix

Strain energy for a shell with a general geometry can be written as follows

Usa = 5 [f e} [D)fe}dods = Z{s}" [K]{) 0
where, the strain vector is

{8}:[81 & M2 X X X12]
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The components of strain vector are

LE 1 8A1V+E
R

“T A ox  AA, 35 R,
A
g = iy 1 04y U w
A, 0s A, Ox R

B 16[2U 1awj 16A1[V 1 OW
SR N R W) R W R WY
o Jra(v 1w 1 0A,(U 1 0W
" A_Q%[R_fAT%] AIAga_x[RT*ATX]
1

L [_10A0W 10A0W OW| LAOIU| 140V
Xio = —|AAl A Os Ox A, Ox Os  Ox0s| R, A,0s , Oz | A,

W, U,V are displacement functions
R,is radius of curvature along X — axis

R,is radius of curvature along S — axis

1
A,, A are Lame parameters

Flexural rigidity of the shell is given as

By (xs) By(xs) 0 0 0 0
By, (x5) By, (xs) 0 0 0 0
D] - 0 0 Bgl(xs) 0 0 0
0 0 0 Dy(xs) Dy(xs) 0
0 0 0 D, (x,5) Dy, (x,s) 0
0 0 0 0 0 D5 (x,8)
B (x,s): Eﬁ(w,s) 7 D.<x,s):19.D..<x,s> E,,;if’elasticmodulus
" 1—9,9; v 7o G,; is shear modulus
BZ.]. (x,s) = 19].B”. (:c,s) , By = Gl.jt(Ls) t(Ls)z’sthickness function
Dﬂ(m,s) _ BiitQ(&s) Dy - B66t2(a:,s) 79]. is poisson'sratio
12 6
Stiffness matrix [K] is
ki kyy kg
[K] =|ky kg Koyl ky = k1T27k31 = klf3’k32 = k2T3
kg kg kg

After substituting displacement functions from the Equation 1 into the Equation 9 and taking an
integration of it, components of stiffness matrix are obtained as follows
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knz[ EM}]D ® F, + G, (F,, ®D)]

E,
ku:q%l_ﬁﬁ]Eg®E,+qAEm®Eﬂ
2

1
E
kg = (192+1)[ ; ]LTR,X®G3
1-99,) "
E
K,y = [1_2 F, @D, + G, (D, ®F)]
0,9,
(10)
Koy = <191 1 ] ®ng
L 9 )H, ®H [ (149, Hp, @H
1 X RRs Rx s
[1 191 ] ‘ 191192 '
koo = |+0 J Ey K. ®H
33 T 112 171919 tttx s 12 171919) tttx S
E
®J, + QL +|—2——|H, ®K
12 1_1919 ]tttx L s [12(1_291192)J thtx s

Some matrices are available in the list of the elements in the formulations of mass and stiffness
matrices, which are called as spline matrices. Some of these spline matrices have been already de-
rived by Cheng et al. (1987), while other spline matrices representing the effect of variable radius
and thickness are extracted herein. Formulations of all spline matrices are presented in Table 2 and
Table 3.

P, = ‘:waxﬂdx L - ZMXMW (e 1= Zwmfwndx
G, - Z‘wx)wmdx b, - jta(x)JTww)JdX j - Z‘wx)JTld(dex
K, - f G| m - ﬂp(x)ﬁwxndx b - qus(x)ﬁwndx

Note: Through replacing x by s in these relations, spline matrices in s direction can be obtained.

Table 2: Spline matrices used in this study and also the study of Cheng et al. (1987).

2.4 Frequency equation
Total potential energy for free vibration of a shell is expressed as follows

21

— 2\ (6} (K] - o)) {3} (1)
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Substituting mass and stiffness matrices into the above equation and using the Hamilton’s principle,
following form of the frequency equation is obtained.

([K] = o?[M]){8} =0 (12)

Equation 12 is of eigenvalue type in which the eigenvalues represent the natural frequencies.
Unknown coefficients of displacement functions create the eigenvectors. Solving the Equation 12 will
result in the frequencies and corresponding mode shapes.

T = ZtS(I)WX)JT[@'(X)}dX G = J [‘P(S)JRS[‘ﬁ(S)JdS G, = th(x){qx)f[qs(xndx
D, — th(f)wy(X)JTMV(X)JdX Jo = ‘Z‘{(p@”RE(P“(S)jdb T = LZ‘t?)(I){(P(X)JT{(P“(X)JdX
g = Lo LI, fio) ot (s

Note: Through replacing x by s in matrices, spline matrices in s direction can be obtained.

Table 3: Spline matrices extracted in this study.

3 NUMERICAL EXAMPLES AND DISCUSSIONS

Based on derived formulations in the previous section, a code was written in the MATLAB envi-
ronment in order to calculate the natural frequencies and also corresponding mode shapes.

3.1 Verification of present method

Accuracy of presented formulations is investigated in this section in order to demonstrate its ability
to analyze free vibration of both parabolic and circular cylindrical shells with either uniform or var-
iable thickness. A comparison between natural frequencies for a circular cylindrical shell having a
uniform thickness as obtained by the present method and also by Srinivasan and Bobby (1976) is
given in Table 4. It should be mentioned that Srinivasan and Bobby (1976) used Rayleigh-Ritz and
matrix methods in their work. On the other hand, natural frequencies as obtained by the present
method and the method developed by Cheung and Cheung (1972) are provided in Table 5 for a
parabolic cylindrical shell with a constant thickness. Cheung and Cheung (1972) used strip method
to extract relations for vibration analysis of a cylindrical shell with parabolic profile. In Table 6
results of the present method have been compared with those of Huang et al. (2005) who used dis-

Latin American Journal of Solids and Structures 11 (2014) 2099-2121



2108 P. Bahrami Ataabadi et al. / Free Vibration Analysis of Orthtropic Thin Cylindrical Shells with Variable Thickness by Using Spline Functions

crete method in combination with Green’s function to obtain natural frequency solution for flat
plates with variable thickness in one direction. Table 7 shows frequency parameters for a shallow
shell with rectangular platform that its thickness varies parabolically in one direction (Grigorenko
and Parkhomenko (2011)). Grigorenko and Parkhomenko (2011) obtained their solution method by
using spline-collocation method.

Petyt as reported in Srinivasan
Present work

and BObby (1976) Difference (%)
Mesh Divisions Analysis Method
Mode
a6 — yRef.[3]
. le 16 w
number 12 x12 14 x 14 16 x 16 Exte.nded .Ray Finite element 10| ————
leigh-Ritz oRe/[3]
1™ 882 879 876 870 870 -0.68
ond 959 957 955 958 958 0.31
31 1297 1284 1282 1288 1288 0.46
4 1369 1367 1366 1364 1363 -0.14
5t 1446 1444 1443 1440 1440 -0.20

E =1.0e7Ib/in? ,R, =30in,4 = 0.33,a = 3in, b = 4in, thickness = 0.013,p = 0.00024841bs?/in?,B.c = CCCC

Table 4: Natural frequencies (Hz) for a circular cylindrical shell model (Srinivasan and Bobby (1976)).

Present Study

Difference (%)
Mesh Divisions

Mode Cheung and Cheung (1972) R/ [4]
leXlG —w .
number  12x 12 14x14  16x 16 10| ——F—7—
chf.[4]

1™ 0.30914  0.307773  0.30552 0.303 0.831683
2 0.30722  0.307101  0.30668 0.306 0.222222
3 0.56179  0.558907  0.55264 0.537 2.912477
4™ 0.54222  0.539315  0.53974 0.538 0.32342
5t 0.56934  0.568532  0.56844 0.571 -0.44834

E =1,9=0.3,a =1in,b = lin, thickness = 0.191in,p =1,B.c = SSSS
Table 5: Natural frequencies (Rad/sec) for a parabolic cylindrical shell model (Cheung and Cheung (1972)).
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b/a=1.0 b/a=0.5
Frequency a a
parameter 0.00 0.40 0.80 0.00 0.40 0.80
T 6.765 7.386 7.897 10.256 11.147 11.954
i PEmE I G 6.780 7.402 7.945 10.194 11.113 11.894
Difference (%) -0.22 -0.21 -0.60 0.60 0.30 0.50
T 8.944 9.708 10.468 12.171 13.286 14.386
R 8.953 9.770 10.475 12.289 13.422 14.419
Difference (%) -0.10 -0.63 -0.06 -0.96 -1.01 -0.22
PR 10.305 11.217 12.050 15.270 16.587 17.862
JaiErEEe (R 10.293 11.232 12.046 15.301 16.695 17.908
Difference (%) 0.11 -0.13 0.03 -0.20 -0.64 -0.25
RO 11511 12.532 13.475 16.246 17.563 18.434
S (R 11.615 12.679 13.610 16.131 17.476 18.511
Difference (%) -0.89 -1.15 -0.99 0.71 0.49 -0.41

E, = 60.7¢9pa, E, = 24.8¢9pa,R, = 0,8, =0.23,h, = 0.01a,B.C = CCCC
flat plate thickness = h,, (1 + ozx/a), A= pho(ofa‘l/[ D, (1 — Uy 0 )]
D, = EQhS/[H(l — Uy 0, )] , Difference = 100()\pmemmm — A\Ref ) / AR/

Table 6: Dimensionless frequency parameter for a flat plate with variable thickness in one direction
(Huang et al. (2005)).

Frequency a = —0.4,BC1 a = 0.4,BC2
parameter
A 12x12  14x14 16X 16 18x18 20X20 12x12 14x14 16Xx16 18X 18 20x20
[ resent work 15.58 1557 1557 1556 1556 2958  20.55 2053 2953 29.52
)\Jrigorenko (2011) 16.65 16.12 15.75 15.73 15.71 30.55 30.26 30.12 29.85 29.78
Difference (%) -6.42 341 -114  -1.08 095 317 234  -1.95  -1.07  -0.87
A\ resent work 37.95 3781 3774 3770 3768 4832 4805  47.92 4785 4781
)Srigorenko (2011) 38.36 37.99 3744 3734 3733 4932 4864 4843 4809 4791
Difference (%) -1.06 -0.47 0.80 0.96 0.93 202  -121  -1.05  -049  -0.20
Ay resent work 38.90 3890 3880 3889 3889 5613 5612 5612 5611  56.11
)\ igorenko (2011) 40.06 39.58 3925 3913 3897 5866 5752  57.36 5702 56.96
Difference -2.89 -L71 -091 061  -0.20 431 243 216 -1.59 149
\Present work 54.18 5409 5404 5401 5400 7075 7059  70.52 7048 7046
pJrigorenko (2011) 54.40 5435 5428 5423 5419 7176 7144 7116 70.87 7081
Difference -0.40 047 044 040  -0.35 -1.4 -1.1 0.89  -0.55  -0.49

B, = 3.68¢10pa, E, = 2.68¢10pa,G,, = 0.5¢10pa, R, = 12.5,R, = 12.5,9,, = 0.077,h, = 0.04
,BC1L : CCOC,BC2 : SSSS,h(z) = h (a(6z2 — 6z + 1) + 1)

A = wa’ /P% X D, = Eh} /[12(1 — U0y, )], Difference = 100

Table 7: Dimensionless frequency parameter for a shallow shell with variable thickness in one direction (Grigo-
renko and Parkhomenko (2011)).

/\prescnt work . )\Ref ]//\Ref
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It is observed that present solution method is in sufficient agreement with the studies performed by

above-mentioned researchers. Comparison results have shown the accuracy of present solution

method for analyzing vibration of shells. In parallel, a convergence study was performed during the

comparison analyses, based on which the number of divisions in both directions was defined to be

equal to 16 for all examples.

Model Geometrical properties of Mechanical properties
D Profile prob prop B.c Thickness function
model of material
E_ = 3.68el0Pa
Milx camber(c) = 0.05m E: P B.cl Thickness function 1
Circular span of shell(b) = 1lm G A B.c2
. = 0.50e10Pa
Mls lenght of Shell(a) = lm ﬂXb — 0.077 B.c3 Thickness function 2
E_ = 3.68el0Pa
M2x Camber(c) = 0.1lm E: e B.cl Thickness function 1
Circular span of shell(b) = 1lm a - B.c2
. = 0.50e10Pa
M2s lenght of Shell(a) = lm ﬂXb — 0.077 B.c3 Thickness function 2
E_ = 3.68¢10Pa
M3x Camber(c) = 0.15m E:( ol B.cl Thickness function 1
Circular span of shell(b) = 1lm G TP B.c2
= 0.50el0Pa
M3s lenght of Shell(a) = lm ﬂXb — 0.077 B.c3 Thickness function 2
E_ = 3.68¢10Pa
Mi4x . Cambm;(;) H:(k()).)%m1 E:( Sl B.cl Thickness function 1
parabolic span ot she = lm . B.c2
lenght of shell(a) = 1lm S5 = atatiza B.c3 : o :
M4s 9. = 0.077 Thickness function 2
E_ = 3.68¢10Pa
Mbx . cambc;((}:}) ll:(k()).)lm 1 E:( P — B.cl Thickness function 1
parabolic span ot she = lm . B.c2
lenght of shell(a) = 1lm S5 = atatiza B.c3 : o :
Mbs 9 — 0077 Thickness function 2
E_ = 3.68e10Pa
Mo6x . cambm;(;) H:(k()).)15m1 Ez‘ — 9.68¢10Pa Bl Thickness function 1
parabolic Span of she =1im GA B.c2
w = 0.50e10Pa
M6s lenght of shell(a) =1m ” B.c3 Thickness function 2

9., = 0.077

MNx: model with variable thickness in x direction.
MNs: model with variable thickness in s direction.

B.c1=CCCC, B.c2=SSSS and B.c3=CSCS (x=0, a are clamped, s=0,b are simply supported).
a, in thickness function, is called thickness parameter that varies between -0.4 and 0.4

Thickness function 1 is h(x) =h,

1+a(1+6X7276%)
a a

Thickness function 2 is h(s) = h[)[l + a(l + 652/ - 6%)]
b? b

Table 8: General characteristics for the studied models.
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3.2 Vibration analysis

In this section, vibration of circular and parabolic cylindrical panels having variable thicknesses
along their circumferences or axes is studied. Three sets of the models with circular profile and also
three more sets of the models with parabolic profile are constructed. Besides, each set has two sub-
sets of the models with variable thicknesses. One subset is corresponding to the models having vari-
able thicknesses along their circumferences (represented by MNs), while the other subset is includ-
ing the models with variable thicknesses along their axes (represented by MNx). For each of the
subsets, three cases for the boundary conditions are considered. General characteristics for all inves-
tigated models are introduced in Table 8. Variation of frequency parameter against thickness pa-
rameter (a) is presented in Tables 9-11 for the case of circular models. Frequency parameter for the
models having a variable thickness along their axis varies in a manner completely reverse to that of
the models having variable thickness along their circumference for the BC1 boundary conditions.

Model ID: M1 @
Boundary conditions A -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

)\11\/115 12.200 12.448 12.671 12.871 13.104 13.203 13.337 13.448 13.538
xi“" 13.953 13.754 13.546 13.334 13.120 12.907 12.698 12.493 12.296
)\lzms 13.610 13.880 14.233 14.472 14.650 14.722 14.935 15.031 15.123
xﬁ“" 14.763 14.741 14.717 14.689 14.655 14.616 14.568 14.511 14.440
)\13\415 18.039 18.138 18.196 18.202 18.064 17.917 17.775 17.634 17.496
xg“" 17.330 17.500 17.653 17.790 17.992 18.019 18.111 18.188 18.213
)\2415 18.598 18.474 18.341 18.233 18.244 18.231 18.193 18.132 18.046
)\P{“X 17.774 17923 18.040 18.128 18.209 18.229 18.244 18.239 18.250

BC1

)\11\/115 5.797 5895 5990 6.084 6.177 6.273  6.371 6473  6.581
xi“" 5.743 5856 5969 6.075 6.177  6.278  6.380 6.483  6.588
)\lzms 8.224 8293 8324 8324 8309 8244 8171 8.079  7.969
BC2 xﬁ“" 8.929 8783 8.635 8490 8318 8212 8.084 7.964  7.856
)\'3\415 12.169 12.214 12.256 12.297 12311 12.391 12.446 12.428 12.365
xg“" 11.984 12,117 12.211 12.261 12308 12.318 12.307 12.276 12.227
)\2415 12.431 12,499 12.537 12.550 12.543 12.518 12479 12.510 12.583
)\P{[lx 12.431 12,496 12.533 12.550 12.550 12.537 12.512 12.478 12.436

)\11/115 7304 7339 7375 7415 7461  7.513 7574  7.644 < 7.725
XII\“X 6.504  6.731 6941 7.179 7461 7.624 7.850 8.079  8.308
)\2415 9.158  9.220 9.245  9.242  9.232  9.161  9.089  9.003  8.896
BC3 XIZ\“X 9.554 9476 9398  9.322  9.250 9.182  9.120 9.065  9.017
)\2415 14.939 14.989 15.007 14.979 14.844 14.810 14.731 14.657 14.592
xg“" 13.569 13.864 14.136 14.385 14.794 14.826 15.020 15.199 15.322
)\2415 15.193 15.134 15.060 14.999 14.970 14.922 14.860 14.782 14.694
Xrlx 14.208 14.432 14.626 14.795 14.971 15.065 15.170 15.255 15.361

A= w/i,aQ(pho/Du)O.s’Du = Elhg/[l2(1 = Uy U, )]

Table 9: Variation of natural frequency parameter for M1x and M1s models.
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In addition, it is observed that variation of first frequency parameter against the thickness parame-
ter is linear upwards or downwards for both of the models having variable thickness along their axis
or circumference for the BC1 boundary conditions.

Model ID: M2 @
Boundary
o A -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
conditions

)\1M25 14.379 14478 1456  14.619 14.643 14.776 14.822 14.854 14.872
)\gleX 14.766  14.723 14.692 14.661 14.644 14.583 14.571 14.569 14.528

)\ZMZS 18.007 18.402 18.752 19.062 19.112 19.570 19.772 19.942  20.077

Bt A 19882 19.662 19.548 19.481 19.113  18.68  18.245 17.878 17.543
AM2S 92478 22421 22341  22.243  21.917 21.990 21.837 21.666 21.475
A2 919223 21407  21.553  21.697 21.909 21.976 22.040 22.082 22.144
A5 24017 24114 24180 24.220 24.235 24.227  24.197 24.146  24.072
AIZ 93937 24.070 24.163  24.216 24.234 24220 24.168 24.098  23.9
AM2S 8971 9.046  9.087  9.098  9.0759 9.0512 8.998 8927  8.842
AM2X 9395 9308 9.223  9.147  9.062 8992 8947 8891  8.862
AM2S 10121 10357 10.585  10.807 11.027 11.248 11469 11.693 11.922
BC2 A 10024 10.292 10547 10.794  11.025 11.254 11.470 11.693 11.915
AM2S 15229 15347 15431 15486 15497 15529 15522 15501 15.465
AM2X 15133 15263 1535 15428 15493 15521 15530 15.382 15.031
A2 15989 16.127 16.200 16.221  16.195 16.130 16.027 15.891 15.724
AMZX 17618 17.294 16.943 16573 16.189 15795 15399 15.112  15.087
AM25 10275 10355 10400 10.416 10.388 10.379 10.331 10.266  10.186
AM2X 10272 10286 10.305 10339 10.392 10427 10.487 10553  10.645
AM2S 11485  11.682 11.880 12.081 12.247 12499 12719 12.951 13.193
BC3 A 10835 11.195  11.552  11.899 12.242 12581 12937 13.272  13.626

)\3M25 16.656 16.794 16.869 16.892 16.869 16.806 16.707 16.574 16.410
xg“x 16.705 16.959 17.183 17.397 16.872 16.734 16.375 16.011 15.658
MMZS 17.548 17.650 17.714 17.748 17.757 17.745 17.712 17.663 17.598

M2x
Ay 18.719 18.386  18.029 17.653 17.748 17.947 18.126 18.293 18.443

Ehg
)\i:wiaQ p% Dy, S
1 12(1 = 9y, 9,, )

Table 10: Variation of natural frequency parameter for M2x and M2s models
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Tables 9 to 11 show the variation of frequency parameter against thickness parameter for circular
cylindrical shells, when their boundary conditions are of BC2 or BC3 types. In comparison with the
results explained for the case of the BC1 boundary condition, the frequency parameter varies at the
same manner against thickness parameter for the models having variable thickness along their axis
and the models having variable thickness along their circumference, when the boundary conditions

are of either BC2 or BC3 types.

From the results summarized in Tables 9 to 11, it is observed that with increase in the value of

C/Db for the models, frequency parameter is also increased.

Model ID: M3

Boundary
Conditions

-0.4

-0.3

-0.2

-0.1

(67

0

0.1

0.2

0.3

0.4

pMa3s
pM3x
pM3s
BC1 ) M3x
pM3s
pM3x

)\2/135

)\243)(

16.878
16.195
18.305
21.196
25.817
25.337
26.981
25.506

16.840
16.324
18.658
20.890
25.876
25.608
26.855
25.683

16.799
16.448
18.972
20.583
25.909
25.816
26.694
25.843

16.752
16.572
19.246
20.219
25.916
25.909
26.506
26.044

16.701
16.696
19.543
19.565
25.908
25.939
26.242
26.248

16.644
16.823
19.684
19.507
25.855
25.998
26.056
26.364

16.578
16.952
19.850
19.146
25.787
25.999
25.799
26.483

16.504
17.084
19.981
18.789
25.520
25.976
25.692
26.577

16.421
17.217
20.077
18.440
25.219
25.930

25.57
26.644

)\11\/135
}\2/[3)(
)\2/135
BC2 A3x
)\2/135
}\g/ISX
)\2/[35

M3x
Ay

10.042
10.283
13.985
13.883
15.761
17.555
18.787
18.696

10.120
10.258
14.277
14.271
15.927
17.248
18.952
18.893

10.167
10.233
14.547
14.619
16.042
16.942
19.076
19.043

10.188
10.210
14.790
14.917
16.124
16.663
19.166
19.154

10.187
10.190
14.996
15.129
16.195
16.182
19.230
19.233

10.166
10.177
15.145
15.181
16.282
16.391
19.265
19.283

10.129
10.173
15.217
15.047
16.411
16.512
19.280
19.308

10.078
10.177
15.204
14.806
16.593
16.741
19.276
19.311

10.013
10.193
15.118
14.525
16.822
17.017
19.251
19.292

)\2/[35
)\243)(
)\2/[35
BC3 A%
)\3/[35
)\343)(
)\2435

M3x
Ay

11.767
11.471
15.450
14.762
16.603
18.291
20.960
20.012

11.862
11.535
15.679
15.266
16.810
18.030
21.111
20.383

11.923
11.674
15.882
15.727
16.982
17.777
21.216
20.721

11.956
11.818
16.047
16.121
17.143
17.569
21.285
21.034

11.966
11.970
16.162
16.260
17.475
17.503
21.321
21.324

11.954
12.132
16.217
16.343
17.515
17.688
21.331
21.595

11.924
12.304
16.211
16.154
17.749
18.047
21.315
21.849

11.877
12.490
16.152
15.905
18.015
18.475
21.276
22.089

11.815
12.690
16.047
15.578
18.308
18.934
21.214
22.316

Table 11:

i = W@

phy, D -
Au’ BERETH

Bl

— Uy 0y )

Variation of natural frequency parameter for M3x and M3s models.
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In Tables 12 to 14, variation of frequency parameter against thickness parameter (a), for parabolic
models is presented. Similar to the results for circular models, it is observed herein also that with
any increase in the value of C/b for the models with parabolic profile, frequency parameter increas-
es. The tendencies of the variation of frequency parameter for the models having parabolic profile
are the same as those for the models having circular profile. Nevertheless, frequency parameter for
the parabolic models is greater than that for the circular models, as confirmed also in Cheung and
Cheung (1972).

Model ID: M4 a
Boun.d.ary -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Conditions

A 12205 12545 12,771 12973 13.151 13.308 13.471 13.556 13.648
A 14111 13.908  13.696 13.480 13.181 13.044 12.649 12.620 12.416
A4S 13787 13.960 14.114 14.356 14.836 14.884 14.946 15.011 15.250
A 14,974 14.955 14.933 14.908 14.878 14.843 14.723 14.746 14.680
A4S 18108 18.206 18.274 18.315 18.227 18.089 17.923 17.816 17.683
A 17596 17.767  17.921 18.059  18.211 18.289 18.363 18.382 18.353
A4S 18744 18.626 18.498 18.364 18.339 18.318 18.256 18.224 18.141
A 17931 18.080 18.195 18.288 18.342 18.377 18.403 18.462 18.525
MM 5927 6.026 6120 6.215 6309 6.405 6.48 6.606 6.7155
AN 58735 5.990  6.099  6.205 6.308 6409 6.451  6.615  6.720
A4S 8336 8405 8437 8436 8418 8356 8245 8191  8.081
BC2 A 9043 8.896 8748  8.602 8441 8324 8142 8076  7.966
A 12297 12343 12.387 12432 12477 12.529 12526 12.511 12.459

BC1

A 12121 12255 12,349 12411 12445 12456 12420 12414 12.365
)\B}MS 12.523 12.592 12.630 12.643 12.636 12.611 12.646 12.653 12.729
)\244)( 12.526  12.590 12.627 12.644 12.644 12.630 12.591 12.570 12.528

)\2445 7432 7467 7504 7545 7592  7.645 7.685  7.777  7.859
XQMX 6.633  6.861 7.086 7309 7.592 7756  7.871 < 8.209  8.440
)\2445 9.266  9.328 9355 9.350 9.321  9.270  9.184  9.109  9.005
BC3 XEMX 9.666  9.587  9.508 9.432  9.359  9.290 9.229  9.170  9.122
)\2445 15.033 15.084 15.102 15.095 15.025 14.944 14.885 14.798 14.736
kg’“x 13.705 14.000 14.271 14.520 14.999 15.061 15.269 15.335 15.413
)\2445 15.310 15.254 15.183 15.105 15.065 15.021 14.913 14.879 14.790
)\EMX 14.305 14.528 14.722 14.890 15.036 15.160 15.312 15.347 15.498

/ E 3
)‘i — wiaQ p% 7[)11 —_ 1
n 12(1 = 9,0, )

Table 12: Variation of natural frequency parameter for M4x and M4s models.
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Model ID:M5

o]

ggﬁiﬁs 04 03 02  -01 0 0.1 0.2 0.3 0.4
WSS 14838 14.956  15.063 15.169 15.254 15.322 15414 15438 15.465
AX 15471 15413 15348 15286  15.234  15.187 15.153 15.123  15.115
APS 19295 19.795  19.966  20.042  20.066 20.641 21.047 21.272 21.463
Bt MY 90,839 21.014  20.798 20443  20.062 19.668 19.325 18.822 18.383
AMSS 92732 22,728 22,652 22586 22494 22389 22.311  22.17  21.939
ASX 20416 20123 20169  20.615 20.962 21.515 21.593 21.673 21.736
AP 25254 25.381 25477 25.535 25.571 25583 25.549 25.534  25.456
APX 25320 25451 25535 25.575 25.577 25541 25470 25.366 25.227
MBS 9595 9.6724 9714 9726 9.714  9.680 9575 9.556  9.4718
ASX 10071 9.985  9.882  9.794  9.7235  9.639  9.5134 9513 9.466
A 10,942 11.183  11.415  11.641 11.864 12.086 12.237 12.533 12.758
BC2 AMSX10.846 11118 11.362  11.617 11.841 12.073 12419 12527 12.745
A 15635 15756 15.842 15900 15934 15950 15.943 15.931 15.900
AYPX 15616 15.739  15.822  15.884 15920 15.948 15.945 15.937 15.772
AP 16.668  16.805 16.880 16.902 16.880 16.818 16.633 16.593 16.436
AMSX 18323 17.999  17.648 17.275 16.887 16.487 16.081 15.672 15.471
A5 10,864 10.944 10,992 11.007  10.999  10.970 10.902 10.858  10.778
AMSX 10,941 10.946 10954 10.965 10.991 11.022 11.075 11.123 11.197
AMPS 12297 12,502 12,706 12912 13.123  13.340 13.593 13.798  14.041
BC3 APX 11687 12.052 12406 12.761 13.119 13.450 13.831 14.155 14.574
AN 17336 17.471  17.543  17.565 17.543 17.481 17.397 17.255 17.339
AYPX O 17.288  17.523  17.754 17.971 17.543 17.269 17.059 16.754 16.376
A5 17.966  18.070 18.137 18.175 18.188 18.181 18.136 18.111 18.053
M 10205 18.992 18629 18.246 18197 18.280 18454 18.614 18.758
A = wa? /"’y D, = Bk
Lo D, 12(1 = 9,9, )

Table 13: Variation of natural frequency parameter for M5x and M5s models.

Latin American Journal of Solids and Structures 11 (2014) 2099-2121



2116 P. Bahrami Ataabadi et al. / Free Vibration Analysis of Orthtropic Thin Cylindrical Shells with Variable Thickness by Using Spline Functions

Model: M6 o
iﬁﬁiﬁs A 04 03 -02 01 0 0.1 0.2 0.3 0.4
AMes 17763 17.532 17.202 17.103 17.023 17.026 17.022 17.011 16.994
WM 16670 16761 16.850 16.941 17.037 17.140 17.251 17.321 17.501
WMes 90153 20.505 20.846 21.126 21.364 21.563 21.721 21.840 21.921
Bl MEX 93397 23046 22.666 22.265 21.350 21.126 20.998 20577 20.150
AMEs 96854  26.762 26.646 26.507 26.346 26.167 25.966 25.748 25.505
WMEX 95449 25715 25.956 26.170 26.360 26.528 26.675 26.806 26.914
AMes 97999 27.415 27502 27.555 27.575 27.562 27.511 27.440 27.328
WMEX 97499 27.588 27.606 27.750 27.783 27772 27.730 27.668 27.564
WMes 10611 10.694 10745 10768 10770 10.752 10.718 10.668 10.605
WMEX 10929  10.887 10.846 10.808 10.774 10.746 10727 10.717 10.717
WMes 15480  15.823 16.136  16.364 16.511 16.361 16.263 16.120 15.962
B.c2 MMEX 15995 15644 16.035 16.397 16553 16.479 16.145 15.803 15.464
AMes 16315  16.447 16536 16.652 16.960 17.203 17.521 17.845 18.177
WMEX 18969  17.945 17.608 17.274 17.019 17.195 17.519 17.852 18.185
WMes 18622 18799 18.937 10.041 19.119 19.174 10.208 19.223 19.221
WMEX 18644 18.822 18956 19.054 10.122 190.164 19.183 19.182 19.162
WMes 19999 12,325 12.380 12.424 12.435 12426 12.309 12355 12.296
WMex 11974 12084 12195 12313 12.430 12574 12721 12.879  13.052
AMes 16651  16.942 17157 17.270 17.394 17.256 17.172 17.052 16.899
B.c3 MMEX 16111 16.645 17.146 17.353 17.444 17.347 17.039 16.725 16.417
WMes 17419 17577 17749 17.977 18.283 18.567 18.897 19.246 19.611
WM 18991 18706 18.417 18.177 18.300 18.743 19.218 19.705 20.200
WMes 90807 20.975 21.099 21.189 21.248 21.281 21.202 21.281 21.250
M 90013 20364 20683 20977 21.248 21501 21736 21.957 22.163
A = wa? p}y ,D =7Elh§
N /DT T 12(1— 0,0,

Table 14: Variation of natural frequency parameter for M6x and M6s models.
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From the obtained numerical results, the following observations can be summarized:

e With increase in C/b (b is constant and C varies), frequency of all models (circular and parabolic
profiles) is increased. With increase in C/b, arc length of both profiles will increase, and then
weight of models increases. In addition, the increase of camber (C) will decrease radius of curva-
ture of shells. Increase in the weight of the models decreases the natural frequency and also de-
crease of the radius of curvature increases the natural frequency of models. Therefore, effect of the
change in the curvature on the natural frequency is greater than the effect of change in the weight
for studied models. The tendencies of variation of frequency parameter are the same for both cir-
cular and parabolic models. Nevertheless, for the models with the same values of C/b, the natural
frequency in case of parabolic curvature is greater than that in case of circular curvature. This
phenomenon may be due to the facts that; (1) local stiffness of parabolic models is greater than
local stiffness of circular models and (2) weight of circular models is greater than parabolic models
with the same C/b (because the arc length of circular profile is greater than the arc length of par-
abolic profile).

o Effect of thickness variation along both directions on the natural frequency is studied. It was
aimed to find out the difference between effect of thickness variation along direction with zero
curvature (x direction) and effect of thickness variation along direction with nonzero curvature (s
direction). It is observed that for the case of BC1 boundary condition, the frequency parameter
variation for the models with variable thickness along their axis is in opposite tendency compared
with the models having variable thickness along their circumference.

e Effect of boundary condition on natural frequency is studied for three cases. It can be seen that
the effect of boundary condition on natural frequency is greater than the effect of variable thick-
ness on natural frequency. Models with BC1 boundary condition have largest natural frequency
and models with BC2 boundary condition have lowest natural frequency. In addition, boundary
condition changes the manner of frequency parameter variation against the thickness parameter.
For example, for the BC1 type of boundary condition, frequency parameter varies linearly against
thickness parameter but for the BC2 and BC3 types of boundary condition, frequency parameter
varies nonlinearly against thickness parameter.

3.3 Effect of variable thickness on the mode shapes

Eigen vectors of the Equation 13 are unknown coefficients of the displacement functions. By finding
these unknown coefficients, the relevant mode shapes can be plotted. The effect of thickness param-
eter on the first four mode shapes is studied herein for the models M5s and M5x (both models have
parabolic profiles). Figure 3 shows the effect of thickness parameter on the first four mode shapes
for the model Mbx (the parabolic cylindrical shell with variable thickness along x axis). In general,
for the first and third modes, the mode shapes visually are similar to each others for different values
of the thickness parameter. For negative (-) and positive (+) values of the thickness parameter (a),
the second and fourth modes have equal numbers of half waves but the way the half waves are ap-
peared is opposite. Figure 4 shows the effect of thickness parameter on the mode shapes for the Mbs
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model (the parabolic cylindrical shell with variable thickness along s axis). As can be observed, the
thickness parameter does not have any significant effect on the mode shape for M5s model.

Mode number

1st 2nd 3rd 4th

Figure 3: Effect of thickness parameter (a) on the mode shapes for the parabolic model with
C/b = 0.15 (Model M6s).
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Mode number

-0.4

-0.2

0.2

0.4

Figure 4: Effect of thickness parameter (a) on the mode shapes for the parabolic model
with €/, = 0.15 (Model M6x).
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4 CONCLUSIONS

An approximate analysis method for investigating the free vibration behavior of circular and para-
bolic cylindrical shells having variable thickness along their axis or circumference is presented. A
finite element method based on B-spline functions is further extended to find out the natural fre-
quencies and corresponding mode shapes for the cylindrical shells with variable radii of curvature
and non-uniform thicknesses. Usefulness and accuracy of the present method is demonstrated
through comparison of the results for a variety of cases. It is observed that frequency parameter for
circular models vary in the same way against thickness parameter as that for parabolic models.
Moreover, natural frequency of cylindrical models with a parabolic profile is slightly greater than
that of cylindrical models with a circular profile.
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