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Abstract 
Recently, graphene sheets have shown significant potential for 
environmental engineering applications such as wastewater treat-
ment. In the present work, the posbuckling response of orthotropic 
single-layered graphene sheet (SLGS) is investigated in a closed-
form analytical manner using the nonlocal theory of Eringen. Two 
opposite edges of the plate are subjected to normal stresses. The 
nonlocality and geometric nonlinearity are taken into considera-
tion, which arises from the nanosized effects and mid-plane 
stretching, respectively. Nonlinear governing differential equations 
(nonlocal compatibility and equilibrium equations) are derived and 
presented for the aforementioned study. Galerkin method is used 
to solve the governing equations for simply supported boundary 
conditions. It is shown that the nonlocal effect plays a significant 
role in the nonlinear stability behavior of orthotropic nanoplates. 
Unlike first and second postbuckling modes, nonlocal effects de-
crease with the increase of lateral deflection at higher postbuckling 
modes. It is also observed that the nonlocality and nonlinearity is 
more pronounced for higher postbuckling modes. 
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1 INTRODUCTION 

Since the discovery of carbon nanotubes (CNTs) by Iijima (1991), many scientific researches have 
been carried out in the field of mechanical, electrical, physical and chemical properties of nanostruc-
tures. In-depth studies on the nanomaterials have shown that their mechanical characteristics are 
different from other well-known materials (Miller and Shenoy 2000). The desirable properties of 
nanostructures make them favorable for nanoengineering applications in many fields such as 
nanodevices, nanosensors, nanooscillators, nanoactuators, nanobearings, hydrogen storage, atomic-
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force microscope, electrical batteries and nanocomposites (Craighead 2000; Li et al. 2007; Murmu 
and Adhikari 2010). In addition, nanostructures such as armchair carbon nanotubes and nanoplates 
have shown significant potential applications in the field of environmental technologies (Saremi et 
al. 2008). 

Continuum based analyses of nanostructures have been widely used for the formulation of vari-
ous dynamic and stability problems at small scales. The two main reasons for this are that experi-
mental investigations in nanoscale are difficult and molecular dynamic (MD) simulations are highly 
computationally expensive for nanostructures with large numbers of atoms or molecules inside 
them. Over the past decade, some researchers have applied classical continuum mechanics such as 
Euler-Bernoulli theory, Timoshenko beam theory and Kirchhoff’s plate theory to predict the behav-
ior of nanostructures (Behfar and Naghdabadi 2005; Liew et al. 2006). Since the classical continuum 
elasticity is a scale-free theory, the use of classical continuum models may be uncertain in the anal-
ysis of structural elements in nanoscale such as carbon nanotubes and graphene sheets. There are 
various modified classical continuum theories which capture size effects such as couple stress theory 
(Zhou and Li 2001), strain gradient elasticity theory (Fleck and Hutchinson 1997; Akgöz and Ci-
valek 2011), modified couple stress theory (Yang et al. 2002; Akgöz and Civalek 2012) and nonlocal 
elasticity theory (Eringen and Edelen 1972; Eringen 1983). Among all size-dependent theories, the 
nonlocal elasticity theory has been commonly applied in the theoretical investigations of structures 
at small scale (Sudak 2003; Reddy 2007; Reddy and Pang 2008; Heireche et al. 2008; Aydogdu 2009; 
Farajpour et al. 2011a; Moosavi et al. 2011; Danesh et al. 2012; Mohammadi et al. 2013). To over-
come the drawbacks of local elasticity theory, Eringen introduced the nonlocal continuum mechan-
ics in 1972. He modified the classical continuum mechanics for taking into account the nonlocal 
effects. In this theory, the stress state at a given point depends on the strain states at all points in 
the domain, while in the local theory, the stress state at any given point depends only on the strain 
state at that point. Both atomistic simulation results and experimental observations on phonon 
dispersion have shown the accuracy of this observation (Eringen 1983; Chen et al. 2004). 

The applications of graphene sheets in electro-mechanical resonators (Bunch et al. 2007), mass 
sensors and atomistic dust detectors (Sakhaee-Pour et al. 2008) are recently reported. Furthermore, 
it has been shown that MnO2 nanoplates are very promising for wastewater treatment (Ai et al. 
2008). Because of these applications, the increasing level of knowledge of vibration and buckling 
behaviors of nanoplates becomes important for nanoengineering design and manufacture. Duan and 
Wang (2007) presented an exact closed-form solution for the axisymmetric bending of circular gra-
phene sheets via the nonlocal continuum mechanics and the classical plate theory. Aghababaei and 
Reddy (2009) developed a nonlocal third-order shear deformation plate theory for the vibration and 
bending of nanoplates. They presented the results for simply supported boundary conditions. Fur-
thermore, Pradhan and Murmu (2010) employed the nonlocal elasticity theory and differential 
quadrature method for the buckling analysis of rectangular single-layered graphene sheets under 
biaxial compression. In addition, they investigated the stability of biaxially compressed orthotropic 
plates at small scales (Murmu and Pradhan 2009) because it has been reported that the graphene 
sheets have orthotropic properties (Reddy et al. 2006). They showed that the difference in the buck-
ling load between the isotropic and orthotropic single-layered graphene sheets is relatively larger at 
lower scale coefficient values. Malekzadeh et al. (2011) investigated the small scale effect on the 
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thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an 
elastic medium. They found that increasing the elastic medium parameters, the effect of nonlocal 
parameter on the thermal load ratio decreases. Farajpour et al. (2012) studied the buckling of mi-
cro/nanoscale plates under non-uniform compression with the nonlocal elasticity theory. From their 
results, it can be concluded that in the case of pure in-plane bending, the nonlocal effects are rela-
tively more than other cases (other load factors) and the difference in the effect of small scale be-
tween this case and other cases is significant even for larger lengths. In another work, Mohammadi 
et al. (2013) employed the nonlocal plate theory to analyze the vibration response of circular and 
annular graphene sheets. They reported that scale effect is less prominent in lower vibration modes 
and is highly prominent in higher mode numbers. More recently, Asemi et al. (2014) and Asemi and 
Farajpour (2014) studied the effect of small scale on the thermal buckling and vibration of circular 
graphene sheets by decoupling the nonlocal elasticity equations in polar coordinates. Mohammadi et 
al. (2014) presented an exact solution for thermo-mechanical vibration of orthotropic mono-layer 
graphene sheet embedded in an elastic medium. Moreover, analytical solutions for the nonlocal scal-
ing parameter of zigzag and armchair graphene sheets were obtained and verified using MD simula-
tions by Liang and Han (2014). 

All these research works are limited to the linear behavior of graphene sheets. A review of the 
literature shows that compared to the carbon nanotubes, few research works have been reported on 
the nonlinear analysis of SLGSs. Recently, Shen et al. (2010) investigated the nonlinear vibration of 
SLGSs based on the nonlocal plate theory with von Karman geometric nonlinearity. They used MD 
simulation to determine the nonlocal scaling parameter and anisotropic size-dependent material 
properties. In their work, numerical results were obtained for six types of armchair and zigzag 
SLGSs with three different values of aspect ratio. Furthermore, a nonlinear elastic plate model 
without considering the effect of small scale has been developed for the vibration of multi-layered 
graphene sheets (Wang et al. 2011). Jomehzadeh et al. (2012) investigated the large amplitude vi-
bration of double-layered graphene sheets embedded in a nonlinear polymer matrix.  

In the current work attempt is made to examine the postbuckling response of orthotropic gra-
phene sheets under axial compression. Based on the nonlocal elasticity theory, the small scale effects 
are taken into account. The geometric nonlinearity is considered with the use of von Karman’s 
strain-displacement relationships. Galerkin method is used to solve the governing equations of sin-
gle-layered graphene sheet (SLGS) with all edges simply supported. The closed-form solution can be 
conveniently employed to explore the small scale effects on the postbucking of nanoplates through 
considering various parameters such as the length of nanoplate, lateral deflection, nonlocal parame-
ter, mode number and aspect ratio. The results show that the nonlocal parameter has prominent 
effect on the postbuckling behavior of graphene sheets. It is anticipated that the results of the pre-
sent work would be helpful for designing micro electro-mechanical systems (MEMS) and nano elec-
tro-mechanical systems using single-layered graphene sheets. 

 
2 FORMULATION 

A rectangular single-layered graphene sheet (SLGS) is shown in Figure 1. SLGS can be modeled as 
an orthotropic rectangular nonlocal plate. As mentioned in the previous section, recently, many 
researchers employed the nonlocal plate model for the vibration and buckling analyses of SLGSs. 
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The graphene sheet’s geometric properties are denoted by length, a , width, b  and thickness, h . In 
the present work, the postbuckling of orthotropic rectangular nanoplates under axial compression is 
investigated (Figure 2). The principal directions of the orthotropic plate are parallel to the sides of 
the plate. Cartesian coordinate frame with axes x, y and z used for the single layered graphene sheet 
(SLGS) are shown in Figure 2. The origin of the coordinate system is placed at the lower left corner 
of the mid-plane of the plate. The x and y axes are also chosen along the length and width of the 
nanoplate, respectively.  

	
  

 
 

Figure 1   Rectangular single-layered graphene sheet (SLGS). 
 

 
 

Figure 2   Rectangular nanoplate with all edges simply supported subjected to axial compression. 
 
The following stress resultants and stress couples are used in the present formulation 
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where nl
xσ , nl

yσ  and nl
xyτ  are the nonlocal normal and shear stresses, respectively. The changes in 

the mechanical behavior of a nanostructure that are caused by the decrease or increase in its dimen-
sions are called small scale effects or nonlocal effects. Both experimental studies and molecular dy-



     M. Mohammadi et al. / A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory      1545 

Latin American Journal of Solids and Structures 11 (2014) 1541-1564 
 

namics (MD) simulations have shown that the nonlocal effect (size effect) plays an important role 
in the mechanical properties of a body at small scale. The traditional local elasticity theory is a 
scale free theory and thus cannot predict the mechanical characteristics of nanomaterials properly. 
To overcome the shortcomings of the classical elasticity theory, Eringen modified and extended the 
local elasticity theory to the nonlocal elasticity problems. He captured the small scale effects by 
assuming the stress at a point as a function not only of the strain at that point but also a function 
of the strains at all other points in the domain. Nonlocal theory considers long-range inter-atomic 
interaction and yields results dependent on the size of a body. The classical elasticity theory is a 
special case of the nonlocal theory in which stress state at an arbitrary point depends only on the 
strain state at that point. According to the nonlocal elasticity theory (Eringen, 1983), the basic 
stress-strain equation for a Hookean solid neglecting the body force is expressed by the following 
partial-integral constitutive relationship: 
 

'( , )nl cl
ij ij

V

H x x dVσ λ σ= −∫∫∫  (2) 

 
The parameters nl

ijσ  and ( )l
ij ijkl klCσ ε=  are the nonlocal stress and local (macroscopic) stress ten-

sors, respectively. ijklC  and klε  represent the fourth-order elasticity and strain tensors, respectively. 

The integration extends over the whole volume of the nanostructure (V ). The term '( , )H x x λ−  

is the nonlocal modulus or attenuation function, which depends on the two variables 'x x−  and λ . 

The attenuation function incorporates the small scale effects into constitutive equations and has the 
dimension of 3( )length − . 'x x−  represents the distance between x  and 'x  in the Euclidean form. 

( )0 i ee l lλ =  is a material constant that depends on the characteristic length ratio i el l , where il  is 

an internal characteristic length (e.g., lattice parameter, granular distance, distance between C-C 
bonds) and el  is an external characteristic length (e.g., crack length, wave length). Choice of the 

value of parameter 0e  is crucial to calibrate the nonlocal model with experimental results or mo-
lecular dynamics (MD) simulation results. Eringen (1983) obtained a value of 0.39 for this parame-
ter by matching the dispersion curves based on atomic models. Wang and Hu (2005) proposed an 
estimate of the value ( 0e ) around 0.288 using strain gradient method. Using molecular dynamics 
and nonlocal Timoshenko beam theory, Duan et al. (2007) reported that the nonlocal scaling effect 
parameter ( 0e ) is limited to the range 0 to 19 for the vibration of carbon nanotubes. It is difficult 
to apply Equation (2) for solving nonlocal elasticity problems. Therefore, the following differential 
form of Equation (2) is often used (Eringen, 1983): 
 

( )2 2 21 nl cl
el λ σ σ− ∇ =  (3) 

 
where 2∇  is the Laplacian operator and is given by 2 2 2 2 2( ) ( ) ( )x y∇ ∗ = ∂ ∗ ∂ +∂ ∗ ∂ for a two-
dimensional (2D) space. The above stress-strain equation (Equation (3)) is widely used as a basis of 
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all nonlocal constitutive formulation in the analysis of nanostructures. In particular, the basic 
stress-strain relationship of orthotropic nanoplates in Cartesian coordinates can be expressed in the 
following form: 
 

( )
1 12

2
0 21 2

66

0
0

0 0

nl nl
x x x
nl nl
y i y y
nl nl
xy xy xy

E E
e l E E

E

σ σ ε
σ σ ε
τ τ γ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎩ ⎭

 (4) 

 
where 
 

1 2 12 2
1 2 12 21 66 12

12 21 12 21 12 21

,   ,   ,     
1 1 1
E E EE E E E E Gυ
υ υ υ υ υ υ

= = = = =
− − −

 (5) 

 
where 1E  and 2E  are Young’s modulus, 12G   is shear modulus, and 12 21, υ υ are Poisson’s ratios, 
respectively. It should be noted that the shear modulus, Young’s modulus and Poisson’s ratio are 
not independent and are related to one another by the following relationships (Behfar and Naghda-
badi 2005):  
 

1
12 2 21 1 12

12

,   
2(1 )
EE E Gυ υ
υ

= =
+

 (6) 

 
The postbuckling problem is treated as a geometrically nonlinear problem in the context of Von 

Karman’s assumptions. In this way, the strain-displacement relations at an arbitrary point in the 
plate can be written as: 

 
0 ,x x xzε ε κ= +  
0 ,y y yzε ε κ= +  
0

xy xy xyzγ γ κ= +  
(7) 

 
The strain components in the plate middle surface are expressed as follows: 

 
22

0 0 01 1,   ,  
2 2x y xy

u w v w u v w w
x x y y y x x y

ε ε γ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + = + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (8) 

 
According to the classical plate theory (CPLT), the bending curvatures xκ , xκ and twisting 

curvature xyκ  can be written as: 

 
2 2 2

2 2,   ,   2x y xy
w w w
x y x y

κ κ κ∂ ∂ ∂= − = − = −
∂ ∂ ∂ ∂

 (9) 
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Eliminating the in-plane components of deformation u  and v  from Eqation (8), one can obtain 
the following equation of the compatibility of deformations in the middle surface of the plate: 
 

22 0 2 02 0 2 2 2

2 2 2 2
y xyx w w w

y x x y x y x y
ε γε ∂ ∂ ⎛ ⎞∂ ∂ ∂ ∂+ − = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (10) 

 
The strain-displacement relationships are kinematic equations; therefore, these equations are in-

dependent of constitutive equations and can be used to derive the governing equations of nano-
plates. Using Equations (1), (4), (5) and (7), the stress resultants can be written in terms of mid-
plane strains and curvatures as follows:  
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(11b) 

 
where    
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(12b) 

 
where ( ) , 1,2ijB i j =  and ( ) , 1,2ijD i j =  are called the extensional and bending stiffnesses of the 

single-layered graphene sheet (SLGS), respectively. 66B  and 66D  are also called the shear and tor-
sional rigidities of graphene sheet, respectively. It should be noted that when the nonlocal parame-
ter is set to zero, 0( ) 0ie l = , the Equation (11) reduces to that of the classical equation. Using 
Equations (6), (11a) and (12a), the following matrix relation for the mid-plane strains in terms of 
the stress resultants can be obtained: 
 

0
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 (13) 
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where nlL  denotes the nonlocal operator and is given by ( ) ( ) ( )2 2
0( )nl
iL e l∗ = ∗ − ∇ ∗ . Substituting 

Equation (13) into Equation (10) yields: 
 

( )
2 2 22 2

2 2 12 12
0 2 2 2 2

1 2 1 1 12

22 2 2

2 2

1 1 1 11 ( ) y y xyx x
i

N N NN Ne l
h E y E x E x E y G x y

w w w
x y x y

υ υ⎛ ⎞∂ ∂ ∂∂ ∂− ∇ + − − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (14) 

 
Using the equilibrium equations of a differential element of a rectangular plate, the following gov-
erning equations can be obtained: 
 

0,xyx NN
x y

∂∂ + =
∂ ∂  

 

(15a) 
 

0,xy yN N
x y

∂ ∂
+ =

∂ ∂  
 

(15b) 
 

2 22

2 22 0xy yx
x xy y xy

M MM w w w wq N N N N
x x y y x x y y y x

∂ ∂ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠  
(15c) 

 
Here q  is the transverse force per unit area. In the present study, it is assumed that the nano-

plate is free from any transverse loadings ( 0)q = . Substituting Equations (15a) and (15b) into 
Equation (15c) and then using Equation (11b), one can obtain the following nonlocal governing 
differential equation for the stability of graphene sheets under general in-plane loading: 
 

( )
4 4 4 2 2 2

2 2
11 12 66 22 04 2 2 4 2 22( 2 ) 1 ( ) 2 0i x xy y

w w w w w wD D D D e l N N N
x x y y x x y y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + + − − ∇ + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (16) 

 
It should be noted that in the large deflection analysis of thin plates, unlike the small defor-

mation, the in-plane loads xN , yN  and xyN  depend not only on external loads applied at the mid-

plane but also on the stretching of the mid-plane caused by its bending. For convenience and gener-
ality, the Airy’s stress function Ψ related to in-plane forces can be introduced in the following 
form: 

 
2 2 2

2 2,   ,     x y xyN N N
y x x y

∂ Ψ ∂ Ψ ∂ Ψ= = = −
∂ ∂ ∂ ∂

 (17) 
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In which hψΨ = . It can be easily verified that the above expressions for the in-plane forces satis-
fy Equations (15a) and (15b). Substituting Equation (17) into Equations (14) and (16), one can 
obtain the following governing equations: 
 

( )
24 4 4 2 2 2

2 2 12
0 4 2 2 4 2 2

2 12 1 1
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2i
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x x y y

∂ ∂ ∂+ + +
∂ ∂ ∂ ∂  

( )
2 2 2 2 2 2

2 2
0 2 2 2 21 ( ) 2 0i

w w wh e l
y x x y x y x y
ψ ψ ψ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− − ∇ − + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

(19) 

 
The Equations (18) and (19) govern the postbuckling of single-layered graphene sheets (SLGSs) 

under in-plane loading. These fourth-order partial differential equations in terms of the transverse 
displacement and stress function are coupled and nonlinear. Equations (18) and (19) can be inter-
preted as the nonlocal compatibility and equilibrium equations, respectively. It should be noted that 
the traditional local governing differential equations for large deflection of classical plate can be 
obtained by setting the nonlocal parameter equal to zero ( e0li = 0 ) in the above equations.  

In the present study, the postbuckling analysis of SLGSs is studied. Therefore, the van der 
Waals (vdW) interactions between any two adjacent graphene layers are neglected. However, these 
interactions must be incorporated into the constitutive equations when the present study extended 
to the analysis of multi-walled graphene sheets. It is reported in the paper of Reddy et al. (2006) 
that the graphene sheets possess orthotropic properties. Thus, in the present work we emphasize on 
orthotropicity of nanoplates.   

It can be easily observed that the nonlocal effects enter into the problem through the stress-
strain relationship (see Equation (3)). Based on lattice dynamics and molecular dynamics (MD) 
simulations, Chen et al. (2004) provides an atomic viewpoint to study micro-continuum field theo-
ries, including micro-morphic theory, micro-structure theory, micro-polar theory, Cosserat theory, 
nonlocal theory and couple stress theory, and reported that the nonlocal continuum models are 
reasonable from a physical point of view. 
 
3 SOLUTION PROCEDURE 

3.1 General analytical solution 

Consider a rectangular nanoplate with all edges simply supported, as shown in Figure 2. The plate 
is subjected to the uniformly distributed compressive forces in x direction ( xN ). An approximate 
expression for the transverse deflection of the middle surface of the nanoplate can be written in the 
following form: 
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( ) ( )sin sinw W x yα β=  (20) 
 
In the above expression, n aα π=  and m bβ π= . In previous section, in order to investigate the 

postbuckling behavior of single-layered graphene sheet with constant thickness, two governing dif-
ferential equations are derived based on von Karman’s assumptions and nonlocal continuum me-
chanics. Substituting Equation (20) into the compatibility equation (18) leads to 
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2
W 2α 2β 2 cos 2α x( ) + cos 2β y( )( )  (21) 

 
A particular solution of the above nonhomogeneous differential equation can be taken as follows: 
 

( ) ( )1 2cos 2 cos 2p A x A yψ α β= +  (22) 
 
where 1A  and 2A  are two unknown coefficients which can be obtained by substituting Equation 
(22) into Equation (21) and then comparing the left- and right-hand sides of Equation (21). There-
fore, one can obtain the following expressions: 
 

( )
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1 ,
32 1 4 i
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ma m e l bπ
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(23) 

 
From these relationships, it can be easily seen that the nonlocal parameter ( 0 ie l ) appears in the 

coefficients of particular solution of Airy’s stress function. It is assumed that the edge supports do 
not prevent the in-plane movements of the SLGS in the y direction. The homogeneous solution of 
the Equation (21) is taken in the form 

 
2

2
x

h
P y
h

ψ = −  (24) 

 
According to the theory of differential equations, the general solution of nonlocal compatibility 

Equation (21) is the sum of the homogeneous solution and the particular solution. Consequently, 
the general solution is as follows: 

 

ψ = −
Px y

2

2h
+

E2 maW( )2
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cos 2β y( )  (25) 
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In-plane force resultants in the middle surface of the nanoplate are 
 

( )
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1
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8 1 4

x x
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8 1 4

y xy

i

E h m W
N x N

b n e l a

π
α

π
= − =
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(26) 

 
Note that the in-plane shear force is zero. In addition, prior to buckling of the nanoplate, the 

uniformly distributed compressive force xN acts on the two opposite edges 0x =  and x a= ; howev-
er, subsequent to buckling the distribution of normal in-plane force along the loaded edges becomes 
progressively nonlinear. Compressive force increases more intensively in the neighborhood of the 
plate edges ( 0y =  and y b= ).  

 
3.2 Solutions by Galerkin method 

In this section, Galerkin method is employed for the solution of the governing equations. The Ga-
lerkin method is a powerful and efficient numerical technique to solve the differential equations. 
Since this numerical method provides simple formulation and low computational cost, it has been 
widely used for the analysis of mechanical behavior of the structural elements at large scale, such as 
static, dynamic and stability problems. The Galerkin method was used by Romeo and Frulla (1997) 
to study the postbuckling behavior of stiffened composite panels under biaxial compressive load. 
Saadatpour and Azhari (1998) used Galerkin technique for static analysis of simply supported 
plates of arbitrary quadrilateral shape. Furthermore, the small-deflection stability analysis of vari-
ous quadrilateral nanoplates, such as skew, rhombic, and trapezoidal nanoplates, was carried out on 
the basis of the Galerkin method (Babaei and Shahidi 2010). Using the general procedure of the 
method yields the following:  
 

( ) ( ) ( )
0 0

, sin sin 0
b a

J x y x y dxdyα β =∫ ∫  (27) 

 
where  
 

( )
4 4 4

11 12 66 224 2 2 4, 2( 2 )w w wJ x y D D D D
x x y y

∂ ∂ ∂≡ + + +
∂ ∂ ∂ ∂

 

( )
2 2 2 2 2 2

2 2
0 2 2 2 21 ( ) 2i

w w wh e l
y x x y x y x y
ψ ψ ψ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− − ∇ − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

(28) 

 
Note that a set of functions 1, ( )sin xπ , ( )sin 2 xπ , …, ( )sin k xπ , … is mutually orthogonal in the 

interval 0 2x π≤ ≤ . Substituting for deflection and stress function (w and ψ ) from Equations (20) 
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and (25) into (28) and then performing the corresponding operations of differentiations, the function 
( ),J x y  can be expressed as: 

 

J x, y( ) = η1 +η2 1+ (e0li )
2 α 2 + β2⎡⎣ ⎤⎦( )⎡

⎣
⎤
⎦sin α x( )sin β y( ) −η3 1+ (e0li )2 α 2 + 9β2⎡⎣ ⎤⎦( )sin α x( )sin 3β y( )  

−η4 1+ (e0li )
2 9α 2 + β2⎡⎣ ⎤⎦( )sin 3α x( )sin β y( )  

(29) 

 
where  
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(30) 

 
Using Equations (29), (30) and (27) and assuming that 0W ≠ , yields the following equation for 

the postbuckling of orthotropic nanoplats: 
 

( )
2 2
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(31) 

 
In the above equation, the non-dimensional parameters are defined as follows: 

 
2

0 12 6622
22 12

11 11 11

2,  ,  ,  ,  ,  x i
x
P a e l D DDa WP Q Q
D a b h D D

λ χ µ += = = = = =  (32) 

 
Inserting 11 22 66,  ,  D D D  and 12D  from Equation (12b) into the above expressions for 22Q  and 

12Q  and using Equation (6), leads to the following expressions:    
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It should be noted that the first term on the right-hand side of Equation (31) indicates the criti-
cal force for the linear stability analysis of SLGSs. Consequently, it is obvious that the nonlinear 
buckling load of the nanoplate is greater than the linear buckling load. Furthermore, the classical 
closed-form solution for the postbuckling of local plate under axial compression can be obtained by 
setting the nonlocal parameter equal to zero ( 0λ = ) in the Equation (31). In other words, the scale 
coefficient (nonlocal parameter) transforms the traditional equations of classical continuum mechan-
ics into the corresponding governing equations of nonlocal continuum mechanics. This parameter 
( 0 ie l ) is taken into the constitutive equations simply as a material constant. 
 
4 RESULTS AND DISCUSSION 

4.1 Validation of present results 

To validate the computed results, the linear nonlocal buckling loads of a square SLGS under biaxial 
compression are compared with those of molecular dynamic (MD) simulations obtained by Ansari 
and Rouhi (2012). The material properties of nanoplate are taken as 1 2 1 E E TPa= =  and 

21 12 0.16υ υ= = (Ansari and Rouhi 2012). A value of 0.34h = nm is assumed for the thickness of 
SLGS. Figure 3 shows the critical buckling loads of SLGS versus the variation of nanoplate’s length 
for different values of nonlocal parameter 2

0( )ie l . It is found that the present results are in good 

agreement with those of MD simulations for 2 2
0( ) 1.85 nmie l = . As another example, the present 

results are compared with the nonlocal results of a square SLGS with simply supported boundary 
conditions as reported by Pradhan and Murmu (2010). The comparison is shown in Figure 4. The 
nanoplate is subjected to uniaxial loading. The length of the plate varies from 5 to 45 nm. It is as-
sumed that the material of the SLGS is homogeneous and isotropic. From this figure, it is clearly 
seen that the present results exactly match with those obtained by Pradhan and Murmu (2010).  

 
Figure 3   Comparison of present results with those of MD simulation (Ansari and Rouhi 2012) for isotropic SLGS 
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Figure 4   Comparison of present results with those obtained by Pradhan and Murmu (2010). 
 

4.2 Nonlocal effects on the postbuckling of SLGS 

In order to illustrate the small scale effects on the postbuckling response of single-layered graphene 
sheets, the nonlocal load ratio is defined as follows: 
 

0

0

   ( 0)   
   ( 0)

i

i

Nonlocal postbuckling load e lNonlocal load ratio
Local postbuckling load e l

≠=
=

 (34) 

 
Figure 5 shows the variation of nonlocal load ratio with the non-dimensional lateral deflection 

for various values of nonlocal parameter ( 0 ie l ). The results are computed using Equation (31). The 
side length of square SLGS is taken as 10 nm. The value of nonlocal parameter is chosen in the 
range of 0-2 nm. The reason for taking these values is that Wang and Wang (2007) reported that 
the scale factor ( 0 ie l ) of a single-wall carbon nanotube (SWCNT) must be smaller than 2.0 nm. 
They also presented the constitutive relations of nonlocal elasticity theory for the application in the 
analysis of carbon nanotubes (CNTs) when modeled as Euler–Bernoulli beams, Timoshenko beams 
or as cylindrical shells. Recently, many researchers used these values for the nonlocal parameter in 
the analysis of graphene sheets (Duan and Wang 2007; Pradhan and Murmu 2010; Farajpour 
2011b). For numerical results, the following Young’s modulus and Poisson’s ratios are used 
throughout the investigation (Behfar and Naghdabadi 2005): 
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From Figure 5, it is found that the critical postbuckling load calculated using nonlocal theory, 
are always smaller than the critical postbuckling load calculated using classical theory for all non-
local parameters (nonlocal load ratio 1≤ ). Furthermore, the amounts of nonlocal load ratios gradu-
ally decrease by increasing the lateral deflection from 0 to 5. This means that as the ratio of deflec-
tion to the plate thickness increases the influence of small length scale increases. This increase in 
the nonlocal effects is more intensive for large values of nonlocal parameter. In fact, the nonlocal 
load ratio remains unchanged for small nonlocal parameter and large deflection. The nonlocal load 
ratio decreases with increase in nonlocal factor from 0 to 2 nm at a constant lateral deflection. This 
implies that the stiffness of structure decreases with the increase in nonlocal parameter. 

 
 

	
  
Figure 5   Change of nonlocal load ratio with non-dimensional lateral deflection for different nonlocal parameters (side length = 10 nm). 

 
The variation of nonlocal load ratio with the side length is plotted in Figure 6 for a square na-

noplate. A value of 3 is taken for the non-dimensional lateral deflection. Various nonlocal factors are 
considered for the square SLGS in this figure. It is found that as the side length of the nanoplates 
increases the nonlocal load ratio increases and the curves become flat. An evident reason of this 
phenomenon is that the influence of small length scale reduces with the increase of nanoplate’s 
length. The size effects are lost after a certain length for each nonlocal parameter. Further, it is 
observed that the length, in which the nonlocal effects can be ignored, depends on the nonlocal pa-
rameter. The value of this length increases with increase of nonlocal parameter. For example, in the 
case of 0 1ie l =  nm, the plate is released from size effects when side length is greater than about 36 
nm, while the approximate value for the length is 44 nm for 0 1.5ie l =  nm. 
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Figure 6   Change of nonlocal load ratio with the length of square graphene sheet for various nonlocal parameters (W/h = 3). 

4.3 Effect of higher modes on the postbuckling of SLGS 

To show the effect of small scale on higher postbuckling modes, nonlocal load ratio versus the varia-
tion of non-dimensional lateral deflection are plotted for first five mode numbers (m=1, n=1-5) and 
three values of nonlocal factors, 0 0.7,  1.4ie l =  and 2 nm, in Figures 7, 8 and 9, respectively. The 
length and aspect ratio of the nanoplate are assumed as a =10 nm and 1a b = , respectively. It is 
evident from these figures that as the lateral deflection of nanoplate increases the nonlocal load 
ratio decreases for the first mode number (n 1= ). However, the load ratio approximately remains 
constant with increase in lateral deflection for the second mode number (n 2= ). In addition, lateral 
deflection has an increasing effect on the load ratio at higher modes (n 3≥ ). It is also found that all 
load ratio curves close to each other by increasing deflection to thickness ratio. The gap between 
each two curves (except for first mode) diminishes after a certain lateral deflection ( 3.5W h ≥ ). In 
other words, when graphene sheets with same nonlocal parameter are considered at higher modes (n
2≥ ) and large lateral deflection ( 3.5W h ≥ ), the nonlocal load ratio is independent of mode num-

ber. In addition, the effect of small length scale is higher for higher modes ( 3.5W h ≤ ). This phe-
nomenon is because of small wavelength effect for higher modes. At smaller wavelengths (higher 
mode numbers), the interaction between atoms increases and it causes an increase in the small scale 
effects. When Figure 7 is compared with Figures 8 and 9, one can easily observed that all curves 
shift down by increasing the nonlocal parameter. This is obvious because the nonlocal effect increas-
es with increase of nonlocal parameter. 
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Figure 7  Change of nonlocal load ratio with non-dimensional lateral deflection for different mode numbers (nonlocal parameter = 0.7 nm). 

	
  
Figure 8  Change of nonlocal load ratio with non-dimensional lateral deflection for different mode numbers (nonlocal parameter = 1.4 nm). 
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Figure 9  Change of nonlocal load ratio with non-dimensional lateral deflection for different mode numbers (nonlocal parameter = 2 nm). 

4.4 Effect of aspect ratio on the postbuckling of SLGS   

To see the effect of aspect ratio on nonlinear buckling response of nanoplates, the change of non-
local load ratio with aspect ratio ( a bχ = ) is plotted for various non-dimensional lateral deflec-
tions ( W hµ =  = 0, 1, 2, 3, 4), as shown in Figure 10. The ratio of the length to the width (as-
pect ratio) is considered in the range of 0.1 to 1.5. Lower aspect ratio would represent a strip-type 
nanoplate (nanoribbon). The value of 10a = nm is taken for the length of nanoplate. 0 ie l  is cho-
sen as 0.7 nm. From Figure 10, it is clearly seen that the load ratio decreases with increase of aspect 
ratio from 0.1 to 1.5 and it leads the small scale effects increase. This is because of decreasing the 
width of SLGS with increase of aspect ratio at a certain side length which leads to an increase in 
the nonlocal effects. It is interesting to note that all curves pass through a point ( 0.52χ ≈ ). Before 
this point, namely, for the nanoribbon with the aspect ratio in the range of 0.1-0.52, the nonlocal 
effects are more pronounced for the small deflection compared with the large deflection of the nano-
plate. However, after the point ( 0.52χ ≥ ) nonlocal effects increase with increasing non-dimensional 
lateral deflection from 0 to 4. Similar results could be observed from Figures 11 and 12, in which 
the nonlocal parameter is taken as 0 1.4ie l =  and 2 nm, respectively. Similar to the results discussed 
in the foregoing subsection, all curves shift down by increasing the nonlocal parameter. 
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Figure 10   Change of nonlocal load ratio with the aspect ratio of graphene sheet for different lateral deflections (nonlocal parameter = 0.7 

nm). 

	
  
Figure 11   Change of nonlocal load ratio with the aspect ratio of graphene sheet for different lateral deflections (nonlocal parameter = 1.4 

nm). 

0.8 

0.85 

0.9 

0.95 

1 

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 

N
on

lo
ca

l L
oa

d 
R

at
io

 

Aspect Ratio (a/b)  

Linear Model 
W/h = 1 
W/h = 2 
W/h = 3 
W/h = 4 

eoli = 0.7 nm 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 

N
on

lo
ca

l L
oa

d 
R

at
io

 

Aspect Ratio (a/b)  

Linear Model W/h = 1 
W/h = 2 W/h = 3 
W/h = 4 

eoli =1.4 nm 



1560      M. Mohammadi et al. / A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory 

Latin American Journal of Solids and Structures 11 (2014) 1541-1564 
 

	
  
Figure 12   Change of nonlocal load ratio with the aspect ratio of graphene sheet for different lateral deflections (nonlocal parameter = 2 

nm). 

4.5 Comparison in crit ical loads obtained from linear and nonlinear theories 

Critical axial forces obtained from nonlinear theory ( 0W h ≠ ) are compared with those obtained 
from linear theory ( 0W h ≠ ). The percentage difference in critical force calculated using linear and 
nonlinear theories in single-layered graphene sheet has been defined as follows: 
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This percentage difference in critical loads versus non-dimensional lateral deflection for various 

nonlocal parameters and mode numbers are plotted in Figures 13 and 14, respectively. The side 
length of square SLGS is assumed to be 5 nm. The results in Figure 13 reveal that the percentage 
difference in critical loads between linear and nonlinear theories is significantly larger for larger 
values of W h ratios. So, when lateral deflection is comparable to the thickness of the graphene 
sheet, nonlinear plate theory yields more accurate results. It is interesting to note that the differ-
ence decreases with increasing the nonlocal parameter. Figure 14 depicts the percentage difference 
of square nanoplates for the first five mode numbers with the lateral deflection. The value of non-
local parameter is taken as 0 ie l =2 nm. It can be observed that the nonlinearity related to the mid-
plane extension is quite noticeable and profound for the higher postbuckling modes. 
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Figure 13   Percentage difference in critical load between linear and nonlinear nonlocal plate theories versus W/h ratio for different non-

local parameters (side length = 5 nm). 

	
  
Figure 14   Percentage difference in critical load between linear and nonlinear nonlocal plate theories versus W/h ratio for different mode 

numbers (side length = 5 nm, eoli = 2 nm). 
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5 CONCLUSIONS  

This manuscript presents closed-form solutions for the postbuckling behavior of single-layered gra-
phene sheet subjected to axial compression based on the nonlocal continuum mechanics. The geo-
metrical nonlinearity is modeled with the use of von Karman’s assumptions. Galerkin method is 
applied to solve the governing nonlocal equations for postbuckling response. Results for orthotropic 
rectangular nanoplates with all edges simply supported are presented. From the results following 
conclusions are noticeable: 

• The nonlocal effect reduces with the increase of nanoplate’s length and vanishes after a cer-
tain length for each nonlocal parameter. 

• Higher postbuckling mode is more significant at smaller lateral deflection. 
• Small scale effects increase by increasing the lateral deflection of nanoplate for the first 

mode number (n=1). 
• Nonlocal effects are approximately independent of the lateral deflection for the second mode 

number (n=2). 
• The lateral deflection has a decreasing effect on the size effects at higher modes (n>2).  
• The effect of small length scale is higher for higher modes. 
• Nonlocal effects are more prominent for the small deflection compared with the large deflec-

tion of nanoribbons with the aspect ratio in the range of 0.1-0.52. 
• The percentage difference in critical loads between linear and nonlinear theories decreases 

with increasing the nonlocal parameter. 
• The nonlinearity caused by the extension of middle surface is much more important at 

higher postbuckling modes. 
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