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1 INTRODUCTION

The superior mechanical, chemical and electronic properties of nanostructures make them favorable
for nanoengineering applications. Recently, nanostructural elements such as nanotubes, nanorods
and nanoplates are commonly used as components in the micro electro-mechanical systems (MEMS)
and nano electro-mechanical systems (NEMS). In addition, nanostructures such as armchair carbon
nanotubes and nanoplates have shown significant potential applications in the field of environmen-
tal technologies (Saremi et al., 2008; Ai et al., 2008).

Continuum based analyses of nanostructures have been widely used for the analysis of various dy-
namic and stability problems at small scales. The main reasons for this are that controlled experi-
ments on nanoscale are difficult to perform and molecular dynamic (MD) simulations are highly
computationally expensive for nanostructures with large numbers of atoms or molecules inside


mailto:sr.asemi@gmail.com

S.R. Asemi et al. / Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics 705

them. Over the past decade, some researchers have applied classical continuum mechanics such as
Euler-Bernoulli theory, Timoshenko beam theory and Kirchhoff’s plate theory to predict the behav-
ior of nanostructures (Behfar and Naghdabadi, 2005; Liew et al., 2006). It has been reported that
nanosized structural elements possess size-dependent elastic properties (Miller and Shenoy, 2000).
Since the classical continuum elasticity is a scale-free theory, the use of classical continuum models
may be uncertain in the analysis of structural elements in nanoscale such as carbon nanotubes and
graphene sheets. There are various modified classical continuum theories which capture size effects
such as couple stress theory (Zhou and Li, 2001), strain gradient elasticity theory (Fleck and
Hutchinson, 1997; Akgoz and Civalek, 2011), modified couple stress theory (Yang et al., 2002;
Akgoz and Civalek, 2012) and nonlocal elasticity theory (Eringen and Edelen, 1972; Eringen, 1983).
Among all size-dependent theories, the nonlocal elasticity theory has been commonly applied in the
theoretical investigations of structures at small scale (Sudak, 2003; Reddy, 2007; Reddy and Pang,
2008; Heireche et al., 2008; Aydogdu, 2009; Farajpour et al., 2011a; Moosavi et al., 2011; Danesh et
al., 2012; Farajpour et al., 2012). To overcome the shortcomings of classical elasticity theory, Er-
ingen introduced the nonlocal elasticity theory in 1972. He modified the classical continuum me-
chanics for taking into account the small scale effects (Eringen and Edelen, 1972; Eringen, 1983).
Nonlocal theory of Eringen is based on this assumption that the stress tensor at an arbitrary point
in the domain of nanomaterial depends not only on the strain tensor at that point but also on strain
tensor at all other points in the domain. Both atomistic simulation results and experimental obser-
vations on phonon dispersion have shown the accuracy of this observation (Eringen and Edelen,
1972; Chen et al., 2004).

Nonlocal continuum modeling of CNTs has received the great deal of attention of scientific commu-
nity. Sudak (2003) applied the nonlocal elasticity concept to analyze the column buckling of multi-
walled carbon nanotubes (MWCNTSs). Reddy (2007) studied bending, vibration and buckling of
single-walled carbon nanotubes (SWCNTSs) using nonlocal beam model. The investigation associated
with the estimation of material properties of carbon nanotubes via nonlocal elasticity theory has
been carried out by Wang et al. (2008). Murmu and Pradhan (2010) used differential quadrature
method (DQM) to study the thermal effects on the elastic buckling of carbon nanotubes embedded
in an elastic medium. Further, dynamical behaviors of double-walled carbon nanotubes conveying
fluid was studied using the theory of nonlocal elasticity (Wang, 2009). The free vibration analysis of
carbon nanotubes is also investigated using the Timoshenko beam theory and discrete singular con-
volution method (Demir et al., 2010). Inspired by the development of non-classical beam models for
carbon nanotubes, the non-classical elasticity theories such as nonlocal elasticity theory have been
used for the determination of mechanical behavior of protein microtubules. Civalek et al., (2010)
used a nonlocal continuum model to study the free vibration and bending behaviors of cantilever
protein microtubules (MTs). Their numerical results which obtained by differential quadrature
method were presented to show the influence of small length scale on the bending and vibration of
MTs. Moreover, it was found that, like CNTs, nonlocal parameter has an important role in the me-
chanical properties of microtubules. In another work, Civalek and Demir (2011) investigated the

bending of microtubules using nonlocal Euler-Bernoulli beam theory and DQM. Their results can be

used as a benchmark in the study of bending of MTs.

Recently, some research works have been reported on the nonlocal based analysis of other
nanostructures such as nanorods (Danesh et al., 2012), nanorings (Moosavi et al. 2011) and nano-
plates (Farajpour, 2011b). Most of the studies on mechanical properties of nanoplates have been
carried out on graphene sheets. A process for the obtaining single-layered graphene sheets (SLGSs)
from graphite has been developed by Stankovich et al. (2006). The graphene sheets are widely used
in the micro electro-mechanical systems and nano electro-mechanical systems (Li et al., 2007). The
applications of graphene sheets in electro-mechanical resonators (Bunch et al., 2007), mass sensors
and atomistic dust detectors (Sakhaee-Pour et al., 2008) are also reported. Furthermore, it has been
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shown that MnO, nanoplates are very promising for wastewater treatment (Ai et al., 2008). Because
of these applications, the increasing level of knowledge of mechanical behavior of nanoplates is im-
portant. Duan and Wang (2007) presented an exact closed-form solution for the axisymmetric bend-
ing of circular graphene sheets via nonlocal plate model. Pradhan and Murmu (2010) used the non-
local elasticity theory and differential quadrature method for the buckling analysis of rectangular
single-layered graphene sheets under biaxial compression with the surrounding elastic medium. Non-
local third-order shear deformation plate theory has been developed for the vibration, bending
(Aghababaei and Reddy, 2009) and buckling (Pradhan, 2009) of the SLGSs. Furthermore, Malekza-
deh et al. (2011a; 2011b) investigated the small scale effect on the vibration and thermal buckling of
orthotropic arbitrary straight-sided quadrilateral nanoplates. Based on the nonlocal continuum
model, the thermal effects on the vibration properties of the double-layered nanoplates were studied
by Wang et al. (2011). Thermal vibration analysis of rectangular monolayer graphene embedded in
polymer elastic medium was also studied using nonlocal elasticity theory (Prassana Kumar et al.,
2013). They modeled graphene as a nonlocal continuum-based plate model. In addition, axial stress
caused by the thermal effects was also considered in their theoretical formulation. Wang et al.
(2013) reported thermal buckling properties of rectangular nanoplates with small-scale effects. They
derived the critical temperatures for the mnonlocal Kirchhoff and Mindlin plate theories
by nonlocal continuum mechanics. From their work, it can be concluded that the small-scale effects
are significant for the thermal buckling properties of nanoplates. In their paper, it is also stated that
the nonlocal Kirchhoff theory of plate is reasonable for thin nanoscale plates, while for the stability
analysis of thick nanoplates, the nonlocal Mindlin plate theory is more appropriate.

However, compared to the rectangular nanoplates, research works for the circular nanoplates are
very limited, especially for the mechanical characteristics considering thermal effects. Although, the
buckling and vibration of single-layered graphene sheets with rectangular and circular shapes were
studied using the nonlocal continuum models (Aghababaei and Reddy, 2009; Pradhan and Murmu,
2010; Farajpour et al., 2011a; Mohammadi et al., 2013), to the best of the author knowledge, the
thermal buckling of circular SLGS has not been investigated in the previous studies. As mentioned
above, the stability analysis of nanoplates is important for nano-engineering applications such as
electro-mechanical resonators, mass sensors and atomistic dust detectors. So, the main objective of
this study is to fill this gap in the literature.

In the current work attempt is made to investigate the axisymmetric buckling of circular graphene
sheets subjected to uniform in-plane edge loads under a thermal environment. The small scale ef-
fects are introduced using nonlocal continuum mechanics. The governing equations are derived us-
ing equilibrium equations for the circular graphene sheets. Numerical solution for the critical buck-
ling load is obtained using Galerkin method. The size effects on the buckling loads of the circular
nanoplates are investigated through considering various parameters such as the radius of the plate,
nonlocal parameter, temperature changes and higher buckling modes. It is concluded that the small
scale effect plays a prominent role in the elastic bucking of circular graphene sheets. To suitably
design NEMS and MEMS devices using graphene sheets, the present results would be useful.

2 Thermal nonlocal plate model for circular SLGSs

The size dependence of mechanical behavior at small scale had been experimentally observed in
nanosized structural elements such as nanotubes, nanorings and nanoplates. The traditional local
elasticity theory is a scale-free theory and thus cannot be applied to predict the mechanical charac-
teristics of nanostructures appropriately. Eringen modified and extended the local elasticity theory
to cover the nonlocal elasticity problems. Based on lattice dynamics and molecular dynamics (MD)
simulations, Chen et al. (2004) provides an atomic viewpoint to study micro-continuum field theo-
ries, including micromorphic theory, microstructure theory, micropolar theory, Cosserat theory,
nonlocal theory and couple stress theory, and reported that the nonlocal continuum models are rea-
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sonable from a physical point of view. Further, Ansari et al. (2010) have shown that the nonlocal
plate model is physically reasonable for the free vibration analysis of single-layered graphene sheets
(SLGSs) with the use of molecular dynamics (MD) method. Nonlocal theory considers long-range
inter-atomic interaction and yields results dependent on the size of a body. The classical elasticity
theory is a special case of the nonlocal theory in which stress state at an arbitrary point depends
only on the strain state at that point. For a linear homogeneous nonlocal elastic body without the
body forces using nonlocal elasticity theory, we have (Eringen 1983)

ai’;'(x)=ji(|x—x'

& and Cy, are the stress, strain and fourth-order elasticity tensors, respectively. The

’7)Cijk|'9k| (X)dvV(x)  vxeV (1)

where Gi?l,
integration extends over the whole volume of the nanostructure (V ). The term ﬂ,(|x— X'| , ]/) is the
nonlocal modulus (attenuation function) incorporating into constitutive equations the nonlocal ef-
fects. |X—X'| represents the distance between the two points (X and X'). y is a material constant
(¥ =e,al/l) that depends on the internal (lattice parameter, granular size, distance between C —C

bonds), @ and external characteristics lengths (crack length, wave length), |. The internal charac-
teristic length is often assumed to be the length of the C-C bond (i.e., @ = 0.14 nm). Choice of the

value of parameter €, is vital for the validity of nonlocal models. This parameter was determined
by matching the dispersion curves based on the atomic models. It should be noted that o-i;" in the
Equation (1) is the nonlocal stress tensor and not the traditional classical stress tensor (Cy,&,). 1t

is difficult to apply Equation (1) for solving nonlocal elasticity problems. Therefore, the following
differential form is often used (Eringen 1983)

(l—nVZ)G”' =C:¢ (2)
where 1 = (eoa)2 is the nonlocal parameter or scale coefficient. The symbol *“” represents the double

dot product and V2 is the Laplace operator. For the axisymmetric problems the two-dimensional
Laplace operator is given by

2 2 2 (3)

V)= @@=
OX oy dr rdr
The nonlocal stress-strain relation (2) is widely used as a basis of all nonlocal constitutive formula-
tion in the analysis of micro- and nano-structural elements. Nano single-layered graphene sheets
(SLGS) with constant thickness is considered in the present study. The SLGS is assumed to be flat,
homogeneous and isotropic in all directions. In polar coordinates the stress—strain relations are writ-
ten as

2

R el )]

(4)

n n E
o) -nVic) = . (ue, +¢,)

Here E and g are the Young’s modulus and Poisson’s ratio, respectively. 0';" and 02' represent the
nonlocal stresses. Various nonlocal plate theories have been used to predict the vibration and buck-
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ling behaviors of graphene sheets (Aghababaei and Reddy, 2009; Pradhan, 2009; Wang et al., 2013).
Nonlocal Mindlin theory of plates is an extension of nonlocal Kirchhoff plate theory that takes into
account the influence of transverse shear deformations as well as small scale effects. Mindlin theory
is applied for thick plates in which the normal to the middle plane of the plate remains straight but
not necessarily perpendicular to the neutral plane. However, the classical plate theory provides sim-
ple formulation, low computational cost and high accuracy when employs for very thin and moder-
ately thin plates.

According to the nonlocal Kirchhoff plate theory, for axisymmetric buckling of circular plates, the
strain components are related to displacements as follows:

du , d*w u zdw
g =—-1—F, §=———— 5
“dr dr?" 7 r ordr (5)
where U is the radial displacement component of an arbitrary material point on the mid-surface of
the nanoplate and W is the transverse displacement component of the point (r,&). The following

stress resultants are used for the development of nonlocal plate model

h/2 h/2
(N, Ng)zhjlz(af',ag')dz, (Mr,Mg)zr!./z(O'rr",og')zdz (6)

Here h denotes the thickness of the plate. Using Equations (4)-(6), one can express the stress re-
sultants in terms of displacements as follows

du u du u

N, -nV’N, =S| —+u—|, N,—pV’N, =S| u—+—

SO (df ﬂfj 0T (ﬂdr rj
M —pviM =D SV AW ooy~ pf 4w, LW "

SR ar? rdr ) e P Y dr
where
Eh Eh®

> (®)

T D=12(1—,u2)

where Sand D are called the extensional and flexural rigidities of the single-layered graphene
sheet, respectively. It should be noted that when the nonlocal parameter is set to zero, 77 =0, the
stress resultant relations given in Equation (7) reduce to those of the classical plate theory one.
Using the equilibrium equations of a differential element of a circular axisymmetric plate, the fol-
lowing governing equations can be obtained

li(rQ,)jL%i(rN d—szo,

d d
- Lim)y-m,, &
rQr dr(r r) 4 dr

A circular single-layered graphene sheet (SLGS) is shown in Figure 1. The SLGSs of circular shape
can be modeled as the circular nonlocal plates (Duan and Wang, 2007). As mentioned in the previ-
ous section, recently, many researchers employed the nonlocal plate model for the vibration and

9)
(rN,)-N, =0

buckling analyses of SLGSs. The graphene sheet’s geometric properties are denoted by radius (R)

and thickness (h). In the present work, the axisymmetric buckling of circular nanoplates under
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uniform radial compression coupling with temperature change is studied (Figure 1). Thus, the in-
plane radial force can be written as

N, =N, =N, +N, (10)
where N, and N, are the in-plane compressive radial forces due to the mechanical loading previous

to buckling and the influence of temperature change, respectively. Thermal effect can induce a radi-
al load within SLGSs and this may cause bending and buckling. According to the theory of thermal
elasticity mechanics, the thermal radial force (N, ) can be expressed as

Eah
(1)

where o and AT represent the thermal expansion coefficient and the temperature change, respec-

N, = - AT (11)

tively.

Figure 1: (a) Discrete model for the circular graphene sheet (b) Continuum plate model for the circular graphene
sheet under uniform radial compression.

Equations (7)-(10) may be decoupled to obtain the governing differential equation for the buckling
of small size plate of circular shape, as shown below (Duan and Wang, 2007)

d6w+1d5w+id4w
ar® rdr® r?dr’

(D+77(N0+Nth))V4w—(N0+Nth)Vzw—n{(D+n(No+Nm)){

6 d*w 3 d°w 3 dw d'w 6d°w 3 d*w 3 dw
- }—(N Nm){ = —H (12)

- == +-= + -=
rddr® r*dr? r°dr ar* rdr® r>dr? r3dr

1d*w 2d°w 3d?w 3dw
12Dyl LW 28w, SO W © W
( ﬂ)n[rz dr*  r®dr® r*dr® r° dr}

As mentioned above, V?(e) =d?(e)/dr?+ (J/r) d(e)/dr is the Laplace operator in the polar coor-

dinates and for axisymmetric problems. After applying the Laplacian operator twice, V*(e) can be
written as follows
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1d° 13
V4(0) = V2 (V3(8)) = (0) 4+ S (0) — 5 () + = — (13)
(&) =V?( ()) () rdr() S () dr()
The nonlocal stress resultants are needed for the implementation of static boundary conditions. The
explicit expressions of the radial moment, the circumferential moment and the shear force are shown

below

Mr:—%nr(D+77(N0+Nth))TTW—3n(D+77(N +Nth))(;?\iv—%n[D(3+2y)

H(Ny 850 P )| e 200 e n D -2u)- (N[ en] 15 Y
_$[2,uDr2—77{D(1—2,u)+(N0+Nth)[rz—n]}]z—vrv,
Me:—%nrz(DH](NO+Nm))%—577r(D+n(No+Nth))%—% [ D(21+24)
_(NO+Nth)(r2—23n)]zi‘f’ 21 [D(7+2,u)—9(N0+Nth)(rz—n)]?;\;v (15)
—(Du-8n(N, +Nth))ziw—%(D—Zn(No+Nm))z—vrv,
Qr:77(D+77(N0+Nth))%Jr?n(Dﬂy(No Nm))% rlz[Dr —n{D(3+2u)
+(Ng+ N, ) (57 -2r%)} (:T?—%[Drz—n{D(l—zy)—(No+Nth)(6r2+n)}](:r‘£v (16)
+=[or —n{D(1—2ﬂ)+(NO+Nm)(zrz—n)}]z—‘:"

As seen from the above equations, in the case of a circular graphene sheet, there are a large number
of terms in the governing equation, Equation (12), and stress resultants-displacement relations,
Equations (14)-(16), compared with a rectangular graphene sheet (Pradhan and Murmu, 2010). It is
because of the existence of Laplacian operator in the stress-strain relations (see Equation (2)). In
the polar coordinates, the operator has variable coefficients, while it has constant coefficients in the
Cartesian coordinates as seen from Equation (3). Duan and Wang (2007) reported similar type of
expressions for the stress resultants of a circular nanoplates in bending based on the nonlocal elas-
ticity theory. Note that the governing equation and the stress resultants relations for traditional
local plate theory can be obtained by setting 7 =0 in Equation (12) and Equations (14)-(16), re-
spectively.

Note that in the present study we consider single-layered graphene sheets (SLGS). Therefore, the
van der Waals (vdW) forces will be ignored. However, when multi-layered graphene sheets (MLGS)
are considered vdW forces should be incorporated into the constitutive equations.

3 Solution by Galerkin method

For convenience and generality, Equation (12) can be written in the following non-dimensional form
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d'w 7dW 5 d*w
dp® pdp® p*dp*

[1+ 7*(N; +N; )]V“pw —(Ny +N;, ) V2W -2 {(u v (N; + N;)){

6 dw 3 dW 3 dw . AldW 6dW 3 dW 3 dw
T3 s T 7 2 5 _(N0+Nth) 4 T st 2 2 3 (17)
p dp” pidp” p dp dp” pdp® p°dp” p’dp
1dw 2dw 3dWwW 3 dw
+2(1—ﬂ)72{—2 rue B s teray sy }20
p-dp” pdp’ pidp” pdp
In the above equation, the non-dimensional parameters are defined as follows
w r 7 . NR> . N,R’
W=—s p=—, p=NT N0 N0l (18)
R R7TR D " D

Equation (17) is a sixth-order ordinary differential equation in p. In the present study, Galerkin

method is employed for the solution of the governing equation. The Galerkin method is a powerful
and efficient numerical technique to solve the differential equations. Since this numerical method
provides simple formulation and low computational cost, it has been widely used for the analysis of
mechanical behavior of the structural elements at large scale, such as static, dynamic and stability
problems. The free vibration and buckling of rectangular classical plates of variable thickness by
means of Galerkin’s variational method have been investigated by Ng and Araar (1989). The Ga-
lerkin method was used by Romeo and Frulla (1997) to study the postbuckling behavior of stiffened
composite panels under biaxial compressive load. Saadatpour and Azhari (1998) used Galerkin
technique for static analysis of simply supported plates of arbitrary quadrilateral shape. Further-
more, the small-deflection stability analysis of various quadrilateral nanoplates, such as skew, rhom-
bic, and trapezoidal nanoplates, was carried out on the basis of the Galerkin method (Babaei and
Shahidi, 2010). Using the general procedure of the method yields the following

Ifé[gajfj(xdﬂ f (x,y)dQ=0 (19)

where f, (X, y) (j =12,..., n) are the basic functions which must satisfy all boundary conditions but

not necessarily satisfy the governing equation. a, (J =12,.., n) are unknown coefficients to be de-

termined. The integration extends over the entire domain of the plate, Q. The symbol @ indicates
a differential operator and is defined as follows

Qo) =[1+7°(Ng+N;, ) [V (o) =(Ng +N; ) V2 (9) - 77 {(u 72 (N + N;)){dd—;(-)
+%dd_;(.)+%dd_;(.)_%;_p(.)H+2(1_ﬂ)yz {%dd; (o)
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In the present study, the boundary conditions for the circular SLGS of constant thickness along the
edge p=1 are assumed to be clamped. The boundary conditions are mathematically written as
W =dW/dp=0 at p=1.In the Galerkin method, the lateral deflection can be described by a

linear combination of the basic functions for the numerical solutions of the problem under investiga-
tion. The basic functions must satisfy all the above-mentioned boundary conditions. The chosen

basic function for W (X, y) are

2] 21
i (x y)z(Pz_l) 1)
Using Equations (19), (20) and (21), one can obtain the following system of linear algebraic equa-
tions

Bll BlZ Bln H 11 H 12 77 H 1n a,
B:21 B:22 ’ B.Zn " ( NG+ N ) H:21 H:22 H:Zn a:2 -0 (22)
Bnl an Bnn H nl H n2 Tt H nn a'n

where

By ; ZI:p(p2 _1)2k Li((p2 _1)2j )dp’

(23)
1 2k 2j
Hy; :jop(pZ_l) LZ((pz_l) J)dp
Here L, and L, are differential operators and are given by
d6 772 d5 7/2 d4
o)=_—4? °o)— ° 1-—(3+2 °
()= s T o)1 e am) [ o)
2 7? j d? 1 ( 3y? j d? 1 [ 3y? J d
+—| 1+ —=(1+2u o)——|1-—(1-2u o)+ —|1-———5(1-2u) |—/(®
2Lz |- S 2 | S A - F o | L0 .

L(o)=— 3 (o)1 d:(.)w{z—%ﬁ] d” (.)+K[4+%j 4 (o)

p)dp’
5o trsl o

The Galerkin method transforms the stability problem into a standard eigenvalue problem. The
buckling parameters (N, + N, ) are the eigenvalues of Equation (22) that can be found by using

standard eigenvalue extraction techniques. Since no quadratic functional or virtual work principle is
necessary, the Galerkin method is more general that the Ritz method. When dealing with the gov-
erning differential equations is more convenient rather than with the energy functional, the Galerkin
method may be more suitable. Hitherto no satisfactory variational principle has been reported for
the axisymmetric buckling of circular nanoplates. In these analyses of complicated problems for
which no variational principle has been formulated, the Galerkin method offers the only reasonable
approach. Therefore, the Galerkin method is even broader in application than the Ritz method.
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4 Results and discussion
4.1 Convergence study of present computed results

In this section, the convergence and accuracy of the present Galerkin method is investigated
through examples of local and nonlocal isotropic circular plates. As a first example, the convergence
of the non-dimensional buckling loads of classical circular plates with clamped edges is presented in

Table 1. The results are listed for the first five mode numbers (m :1—5). Fast rate of convergence

and excellent agreement of the present results with those of the exact solution (Wang et al. 2005) is
quite evident. As another example, the elastic buckling of circular nanoplates without any tempera-

ture change (AT = 0) is considered here. Non-dimensional buckling loads for different values of non-

local parameter are presented in Table 2. The radius of the circular SLGS is taken as 10 nm. The
value of nonlocal parameter is taken in the range of 0-2 nm. Wang and Wang (2007) presented the
constitutive relations of nonlocal elasticity theory for application in the analysis of carbon nanotubes
(CNTs) when modeled as Euler—Bernoulli beams, Timoshenko beams or as cylindrical shells. They
also reported that the scale factor (g,a) of a single-wall carbon nanotube (SWCNT) must be small-

er than 2.0 nm. Recently, these values for the nonlocal parameter are used by many researchers.
Again, in all cases, the fast rate of convergence of the present approach is obvious.

Mode Number of basic functions (n) Exact
Nirisalses () (Wang et
umber (m 4 6 8 10 12 al., 2005)
1 14.69 14.69 14.68 14.68 14.68 14.68
2 49.27 49.23 49.23 49.22 49.22 49.22
3 103.58 103.54 103.52 103.51 103.50 103.50
4 195.14 177.62 177.55 177.54 177.53 177.52
5 -—- 271.53 271.34 271.31 271.30 271.28

Table 1: Convergence and comparison of non-dimensional buckling load of classical circular plate.

Number of basic functions (n)

€a (nm) = 6 8 10 12

0 14.69 14.69 14.68 14.68 14.68
0.5 13.74 13.69 13.67 13.66 13.66
1 10.73 10.72 10.72 10.72 10.72
15 7.38 7.38 7.38 7.38 7.38
2 4.97 4.97 4.97 4.97 4.97

Table 2: Convergence of non-dimensional buckling load of circular nanoplate (R=10 nm).

4.2 Nonlocal effects on the buckling of circular SLGS

In order to illustrate the nonlocal effects (small scale) on the stability of circular graphene sheets,
the buckling load ratio is defined as follows:
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Nonlocal buckling load
Local buckling load

Buckling load ratio = (25)

Figure 2 shows the variation of load ratio with the nonlocal parameter (e,a) for the first mode

number (m=1) and various radiuses (R =5-25nm). The SLGS without the effect of temperature
change is considered. From Figure 2, it is found that the buckling load calculated using nonlocal
theory, are always smaller than the buckling load calculated using local theory for all radiuses. Fur-
thermore, the amounts of load ratios decrease by increasing the nonlocal parameter. This implies
that the stiffness of structure decreases with the increase in nonlocal parameter for a fixed value of
radius. As the radius of graphene sheet reduces, the load ratio decreases. This is obvious because the
size effects increase with the decrease of nanoplate’s radius. To illustrate the small scale effect on
the higher buckling modes, the variation of load ratio with nonlocal parameter for the second and
third mode numbers are plotted in Figures 3 and 4, respectively. Similar nonlocal effects could be
found for higher buckling modes. When Figure 2 is compared with Figures 3 and 4, one can easily
observed that all curves shift down by increasing the mode number. In other words, the effect of
small length scale is higher for higher modes. This phenomenon is because of small wavelength effect
for higher modes. At smaller wavelengths (higher mode numbers), the interaction between atoms
increases and it causes an increase in the small scale effects.

1 {7 v I m=1 |—
-X-X-X‘X~X_
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=¥=R =25 nm
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Figure 2: Change of load ratio with nonlocal parameter for different radiuses (m=1).
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Figure 3: Change of load ratio with nonlocal parameter for different radiuses (m=2).
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Figure 4: Change of load ratio with nonlocal parameter for different radiuses (m=3).
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4.3 Thermal effects on the buckling of circular SLGS

Figure 5 shows the variation of critical buckling load ratio with the nonlocal parameter for different
temperature changes. The temperature changes are taken as AT =0K, 40K, 80 K and 120 K.
The material properties of graphene sheets are the Young’s modulus E =1.06 Tpa, the mass densi-

ty p=2250 kg / m® and the Poisson’s ratio g =0.25 (Behfar and Naghdabadi, 2005). Jiang et al.
(2004) presented a method to obtain the thermal expansion coefficient for the single-walled carbon
nanotubes (SWCNT). They also reported that the thermal expansion coefficient is negative for the
low or room temperature but positive for the high temperature. In this section, temperature change
at low or room temperatures is considered. Therefore, the thermal expansion is negative and taken
as a=—-1.6x10° K™ (Murmu and Pradhan, 2010; Wang et al., 2011). The geometric properties of
the nanoplate are considered as R/h=50 and R=15 nm. From Figure 5, it is found that the
thermal effects have a very significant effect on the buckling characteristics of circular graphene
sheets. In the case of a SLGS without any temperature change (AT = O), the buckling load ratio is

lower than other cases of temperature change. This means the small scale effects are more noticea-
ble without thermal effect. Furthermore, load ratio increases by increasing the temperature change
from 0 K to 120 K. This implies that the difference between local and nonlocal buckling load is
relatively less for the case of large temperature changes. In addition, the gap between any two
curves gradually increases with increasing nonlocal parameter.

0,95

0,85

Load Ratio

075 1 [—e=AT=0K
—W-AT=40K
0,65 1 [=a—=AT=80K
——AT=120K
0,55 . : : .
0 0,5 1 15 2

Nonlocal Parameter (nm)

Figure 5: Change of load ratio with nonlocal parameter for different temperature changes.
The variation of load ratio with radius-to-thickness ratio for various magnitudes of temperature
change at the room temperature is also plotted in Fig. 6. The thickness of the plate is assumed to
be constant (h =0.34 nm). A value of eja =2 nm is taken for the scale coefficient. The radius-to-

thickness ratio (R/ h) is varied from 40 to 100. From the figure t is clearly seen that the scale load

ratio increases with the increase of radius-to-thickness ratio of SLGS. Furthermore, the critical value
of the radial buckling load for the SLGS is dependent on the temperature change. As was men-
tioned earlier, the size effect decreases with increase in the temperature change. It is also observed
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that the rate of increase of load ratio is less for the larger values of R/h compared to smaller radi-
us-to-thickness ratio.

=—AT=0K

Load Ratio

=-AT=40K
== AT=80K
=—-AT=120K

0,5 T T T T T T
40 50 60 70 80 90 100

Radius-to-thickness Ratio (R/h)

Figure 6: Change of load ratio with radius-to-thickness ratio for different temperature changes.

In order to more clarify the thermal effect, a non-dimensional parameter named as the thermal load
ratio is introduced. This parameter is defined as follows:

(Buckling load)
(Buckling load )

AT #0 (26)

AT=0

Thermal load ratio =

As seen from Equation (26), thermal load ratio represents the ratio of buckling load with thermal
effect to buckling load without thermal effect. Figure 7 shows the variation of thermal buckling load

with the radius-to-thickness ratio (R/h) for different mode numbers (m =1—5). The scale param-
eter and temperature change are taken as e;a =2 nm and AT =40 K, respectively. It is observed

from the figure that the critical buckling load with thermal effect is always larger than the critical
buckling load without thermal effects. This is obvious because thermal expansion coefficient is nega-
tive at room or low temperature. The thermal effects on the stability of circular SLGSs become
more prominent as the ratio of radius to thickness increases. Furthermore, for the first mode num-
ber, the rate of increase of thermal load ratio with the increase of R/h is quite faster than higher

mode numbers. Moreover, the increase in mode number causes thermal load ratio curves get close to
unity. This means that the effect of temperature change on buckling load decreases as the buckling
mode number increases. Figure 8 depicts the variation of thermal load ratio of the SLGS with the
radius-to-thickness ratio for various temperature changes. Similarly, the effect of temperature
change on the critical buckling load is higher for larger values of R/h. Obviously, as the tempera-
ture change increases, the thermal effects become more significant and cannot be neglected, as seen
from Figure 8. In addition, the gap between any two curves gradually increases with increase in the
ratio of radius to thickness.
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Figure 7: Change of thermal load ratio with radius-to-thickness ratio for different mode numbers.
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Figure 8: Change of thermal load ratio with radius-to-thickness ratio for different temperature changes.
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4.4 Comparison of low and high temperature environments

Figures 9 and 10 illustrate the variation of scale load ratio and thermal load ratio with the radius-
to-thickness ratio, respectively. The results calculated for both low or room and high temperature

environments. The thermal expansion coefficient is taken as a=11x10°K™ and
a=-1.6x10"° K™ at the high and low or room temperatures, respectively (Murmu and Pradhan,
2010; Wang et al., 2011). The nonlocal parameter and temperature change are taken as e,a =2 nm

and AT =40 K , respectively, for the computation of critical buckling load. These figures are plot-
ted for comparison between low and high temperature environments. From Figure 9, it is clearly
seen that the nonlocal effects are more noticeable at high temperature environment when compared
with low or room temperature environment. Unlike low temperature environment, thermal load
ratio is smaller than unity at higher temperature environment as depicted in Figure 10. This obser-
vation means that the critical buckling loads obtained by considering the influence of temperature
changes are smaller than those ignoring thermal effects at high temperature environment. This phe-
nomenon arises due to negative value of thermal expansion coefficient at high temperatures. Fur-
thermore, thermal effects increase as the radius-to-thickness ratio increases for low or room temper-
ature environment. However, thermal effects reduce with increase in the ratio of radius to thickness
from 40 to 100 at a temperature higher than room temperature.
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Radius-to-thickness Ratio (R/h)

Figure 9: Change of load ratio with radius-to-thickness ratio for low or room and high temperatures.
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Figure 10: Change of thermal load ratio with radius-to-thickness ratio for low or room and high temperatures.

4.5 Effect of higher modes on the buckling of circular SLGS

To show the effect of small scale on higher buckling modes, load ratio versus the variation of non-
local parameter is plotted for the first four mode numbers (m=1-4) for different values of tempera-
ture change, i.e. AT =0, 40 K and AT =0, 120 K in Figures 11 and 12, respectively. The radius
of the nanoplate is taken as 15 nm. The value of radius-to-thickness ratio and Poisson’s ratio are
taken as R/h=50 and g =0.25, respectively. It should be noticed that the results are calculated

for the low or room temperature environment. From these figures, it is found that decreasing buck-
ling load ratio with the increase of nonlocal parameter is more intense for higher buckling modes. It
means the effect of small length scale is more significant for higher modes of buckling. This phe-
nomenon is because of small wavelength effect for higher modes. At smaller wavelengths (higher
mode numbers), the interaction between atoms increases and this leads to an increase in the size
effects (small scale effects). It is also observed that the gap between the curves becomes larger with
increasing nonlocal parameter. Namely, the influence of temperature change is more significant for
larger nonlocal parameter values. However, thermal effects decrease by increasing the buckling mode
number from 1 to 4.

It should be noted that both plate geometry and mode number with the nonlocal parameter have
significant effects on the buckling characteristics of circular SLGSs. For example, for a nanoplate
with R=15 nm and m=1 (AT =0 K, e,a=2 nm), the buckling load ratio is 0.57, while that is equal

to 0.34 for R=10 nm, m=1. In addition, in this case (R =15 nm, AT =0 K, e;a=2 nm) the load

ratio varies from 0.57 to 0.34 when the buckling mode number changes from m=1 to m=3. Thus, as
seen from Figures 2 and 11, both plate geometry and mode number play a prominent role in the
buckling behavior of circular nanoplates.
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Figure 11: Small scale effect on the higher mode buckling for different temperature changes (AT = 0,40 K).
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Figure 12: Small scale effect on the higher mode buckling for different temperature changes (AT =0,120 K),

5 CONCLUSIONS

Based on nonlocal plate theory, the small scale effect on the stability of circular graphene sheets
under uniform radial compression is investigated. Radial stress caused by the temperature changes
is also considered using the theory of thermal elasticity. Constitutive relations are modified to take
into account size effects. The governing equations are derived by decoupling the nonlocal constitu-
tive equations of Eringen theory in the polar coordinate in conjunction with the classical plate theo-
ry. It is observed that the nonlocal form of governing equation for the circular nanoplates become

Latin American Journal of Solids and Structures 11 (2014) 704-724



722 S.R. Asemi et al. / Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics

more complex than those of rectangular one. This is due to the fact that in the polar coordinate
system, Laplacian operator has variable coefficients while it has constant coefficients in the Carte-
sian coordinate system. Numerical solutions are obtained for the critical buckling loads of clamped
nanoplates by employing the Galerkin method. It is found that the influence of nonlocal effects is
quite significant in the axisymmetric buckling analysis of circular nanoplate and cannot be neglect-
ed. From the results of present manuscript following conclusions are noticeable:

e The nonlocal scale coefficient has a decreasing effect on the buckling loads of circular gra-
phene sheets.

o The effect of nonlocal parameter on the higher order buckling load is greater than those of the
lower ones.

e The small scale effects are more noticeable for the single-layered graphene sheets (SLGSs)
without thermal effect compared to SLGSs with temperature change and the size effect de-
creases with increase in the temperature change.

o Nonlocal effects decrease with the increase of radius-to-thickness ratio of SLGSs.

e Unlike the low or room temperature, where the critical buckling load with thermal effect is
larger than the critical buckling load without thermal effects, thermal load ratio is smaller
than unity at higher temperature environment. This is obvious because the thermal expan-
sion coefficient is negative for the low or room temperature but positive for the high tem-
perature.

e For low or room temperature environment, the influence of temperature change on stability
of circular SLGSs decreases at the higher buckling mode and for small values of radius-to-
thickness.

e The nonlocal effects are more significant at high temperature environment when compared
with low or room temperature environment.
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