
www.lajss.org
Latin American Journal of Solids and Structures 3 (2006) 107–123

Minimum weight design of framed structures using a genetic
algorithm considering dynamic analysis
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Braśılia, DF - Brazil

Abstract

Genetic Algorithms can be considered as a family of computational models inspired on
the principals of evolution. These algorithms start from a set or population of chromosomes
in which each chromosome contains a possible solution to the specific problem. Genetic
operators, (selection, crossover and mutation) are applied which generate a new population
preserving and improving the information considered in the original chromosomes.

Here the optimization of the cross-sectional area of frame structures is considered in order
to obtain the minimum weight for dynamic analysis. The optimization is obtained through
the minimization of an objective function, which, for the examples considered is written
using the cross-sectional area and the length of the bars and the specific weight of the mate-
rial from which the total weight of the structure can be obtained. The cross-sectional areas
are the project variables which should be within certain limits in order to obtain realistic
solutions. Restrictions are applied on the natural frequencies. Results are obtained for some
test problems.
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1 Introduction

A large part of the engineers who design framed structures employ robust commercial software
for the structural analysis such as ANSYS or SAP2000N. In general, such users do not have access
to the source code or detailed knowledge of the structural analysis algorithms employed in this
software. On the other hand, the biggest challenge for researchers in structural optimization is
the development of methods which are appropriate for use with the commercial codes mentioned
above. Another important challenge is the high computational cost associated with the more
complicated optimization problems encountered. This is all the more serious given that the
project engineer who designs the structure, does not have time to analyse it exhaustively. Given
the above it is of practical interest to find techniques which minimise the need for commercial
software and require as few iterations as possible.
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An interesting approach to such problems is the use of a Genetic Algorithm (GA) for the
optimisation combined with the finite element method for evaluating the configurations encoun-
tered. In this way an open code can be written. Genetic Algorithms have the advantages of
not needing derivatives or other auxiliary information, starting only from the initial population.
The use of the binary coding of the parameters rather than the parameters themselves improves
accuracy. In addition, using the GA, there is a better chance of obtaining a true global minimum.

The use of Genetic Algorithms for optimization in science and engineering is widespread,
applications having been made for example to problems such as the design of turbines for
aircraft and even recently in anlyses of the structure of proteins. A review paper, considering
4300 articles is given in reference [13].

The GAs have been applied to static structural weight optimization of frames since 1989,
[1, 10–12, 19], and more recently some applications to dynamic analysis have been considered,
including damage detection, [5, 16, 23, 30], support location and the location of sensors and
actuators, [20–22].

In structural design for which the comfort of users is to be taken into account, it is necessary
that the structure has a specific dynamic response, for example a limitation on the range of
the natural frequencies. This is an important area of research particularly in relation to weight
optimization, [28].

Here, after a description of the algorithm used, numerical results are given for some examples
employing different frequency constraints.

2 Description of the computer code employed

The computer code considered here was implemented using FORTRAN 90. The Genetic Algo-
rithm employed is described below, followed by some considerations on dynamic analysis and
the penalty function used to impose the frequency constraints. A block flow diagram is given in
Fig. 1.

2.1 Encoding of possible solutions

There are several different alternatives for mapping a finite length string to the parameters of
an optimization problem. Here a binary coding is employed, though real numbers may also
used. An important consideration is that the coding be capable of representing the entire search
space being investigated, that is, any solution should be capable of being represented by a
chromosome, and reciprocally, any chromosome generated by the GA should be associated with
a valid solution for the problem under consideration. The chromosome contains a discrete or
continuous value of one or more parameters, each of which is called an allele.

The number of bits to be used to represent each variable defines the size of the allele, and
depends on each problem. For a search space with continuous variables, one has
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Figure 1: Block flow diagram for Genetic Algorithm employed

` ≥ log2

xU − xL

ε
(1)

where ` is the length of the string, or the number of bits used for each allele in the chro-
mosome. One allele in the chromosome with this length is capable of representing 2` values
uniformly distributed over the range

[
xL, xU

]
with a interval ε between each value.

2.2 Mapping of variables

The chromosome as shown in Fig. 2, consists of a set of alleles. In order to recuperate the
value contained in an allele with binary coding a decoding procedure is necessary. In the case
of continuous values, Eq. (2) is employed.
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xi = xL + ID
xU − xL

2` − 1
(2)

 

Figure 2: Binary code string for chromosome

Consider for example the first allele in Fig. 2, the value of which is x1 = 10 in binary
notation, with ` = 2. Consider also that the search space for this variable has lower limit
xL = 20 and upper limit xU = 50, respectively. Considering ID to be the value of the binary
code, in this case ID = 1×21 + 0×20 = 2. If one substitutes the values given above in Eq. (2),
one obtains xi = 40 which is the decoded value of the first allele in the interval [20; 50]. For this
example, as ` = 2 the binary code may take 4 values, 00, 01, 10 and 11 corresponding to the
decoded values 20, 30, 40, 50. The value of ε in Eq. (1) is thus 10.

2.3 Population size

The population size (npop) indicates the total number of chromosomes to be considered for a given
problem. With an insufficient population size, the GA will probably not perform satisfactorily,
because a too small population is unable to represent the problem search space correctly. On the
other hand, a large population will be able to represent a large and diverse number of solutions,
however as the population size increases so does the computer cost necessary to carry out the
repeated evaluations of the fitness function. In this way the population size has a direct influence
on the overall performance and efficiency.

There are as yet no well defined criteria for fixing the population size for a given case, the
choice will depend on the experience acquired in the optimization process and on the problem
itself, [12].

Khan, [17] suggests that the population size for the great majority of problems should be
between ` and 2`

` ≤ npop ≤ 2` (3)
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2.4 Evaluation of the chromosomes

According to Ochi and Rocha, [27], the evaluation of the chromosomes is the most important
part of the process, it is here that one finds the connection between the algorithm and the
problem. In order to evaluate a chromosome in a GA, it is necessary to calculate its fitness for
survival in relation to the other individuals in the population. At this stage the first step in
the selection process is carried out: each individual is associated with a numerical value which
represents its degree of fitness, obtained using the objective function (OF).

The value of the objective function is not always adequate for use as a fitness parameter.
If the OF produces values which are very close to each other, the selection process becomes
random. On the other hand, a very high value in relation to the rest of the population causes
the algorithm to converge too soon. For this reason the fitness is obtained by ordering the values
calculated by the objective function. Amongst the methods available, the linear scale introduced
by Baker, [2], is most often encountered in the GA literature. The modified objective function
(AFi) is given by

AFi = min + (max−min)
npop − i

npop − 1
(4)

The value of i is the position of the chromosome in decreasing order of the value of the
objective function and npop is the number of individuals in the population. Here, the values min
= 1 and max = 2 were taken.

2.5 Selection of chromosomes

At this stage the fittest individuals from the present generation are selected. These individuals
are used to generate a new population by crossover and each individual has a probability of being
selected which is proportional to its fitness. This method is known as roulette wheel selection.

Given a population of npop individuals, the probability of selection pi in Eq. (5), for each
chromosome i with fitness fi, is given by Goldberg, [12], as:

pi =
fi∑npop

j=1 fj
(5)

In order to visualise roulette wheel selection, consider the circle shown in Fig. 3 representing
a population of size npop = 4.The circle is divided into npop regions, in such a way that the area
of each region is proportional to the fitness of each individual.

The individuals in regions with larger areas will have a larger probability of being selected
more than once. As a consequence, the selection of individuals may contain several copies of the
same high fitness individual, while others will disappear.

It is possible that in the process of evolution a high fitness individual is eliminated in the pro-
cess of crossover or mutation. For this reason the elitist model is used, in which it is guaranteed
that the best individual passes to the next generation without modification.
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Figure 3: Roulette wheel: probabilities of the selection of each chromosome

2.6 Probability of crossover

This parameter indicates the probability of an individual being mated with another. After
the selection of the new set of chromosomes by the roulette wheel described above, pairs of
individuals are chosen randomly for mating. This is done by exchanging part of the two strings
to form a new pair, a process known as crossover. The probability of an individual being chosen
is pc.

 

Figure 4: Two point crossover

Crossover is an important mechanism of the GA since it permits the exchange of genetic
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material between the two individuals involved producing two new points in the optimization
space. The two point crossover, shown in Fig. 4, works as follows. Two random positions, the
same for each of the two strings, are chosen. The part of the string between these two positions
is then exchanged to form two new individuals which will then receive a value for individual
fitness.

The higher the probability pc, the more rapidly new individuals are introduced into the
population. On the other hand, if this probability is too high, individuals with high levels of
fitness will be removed quickly from the population, which represents a loss of good solutions.
Low values can make the algorithm slow to converge. Usually a probability of crossover between
0.50 and 0.95 is used. These numbers are only a guideline, given that there are many types of
crossover, limited only by the creative capabilities of the researcher. Here pc = 0.80.

2.7 Probability of mutation

The probability of mutation pm, is the chance that the binary value of a given position in the
chromosome be changed. Mutation is employed in order to introduce new information into the
population. Without this feature, after many crossovers, the population may be saturated with
similar chromosomes. Employing mutation the diversity of the population increases and new
points in the search space are found. High probabilities of mutation make the strings become
random. For this reason some researchers recommend the choice of a probability of mutation
related to the size of the chromosome and to the total population. Hesser and Manner, [15],
suggest that an optimum probability of mutation can be found using the expression

pm =
1

npop

√
`

(6)

 

Figure 5: Mutation operator

Mutation is carried out on the individuals which result from the crossover process (offspring).
Each bit of the chromosome is considered with a probability of change of pm. If the change is
carried out, a bit originally 0 will become 1 and vice versa. Fig. 5 illustrates the basic procedure
adopted for the mutation operator. As is the case for the other parameters, the probability of
mutation depends on the problem being considered.
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2.8 Stopping criterion

At this stage, the individuals resulting from the process of crossover and mutation are inserted
into the new population. The population continues to be of the same size; the same number
of individuals were created as in the previous population, substituting this completely, [25], in
such a way that this algorithm can be classified as generational.

The process is stopped by a test to establish if the GA has reached a predetermined stopping
point. Here this point is given when 98% of the chromosomes have the same value.

2.9 Dynamic analysis

In order to evaluate each of the possible solutions obtained by the Genetic Algorithm a dynamic
analysis using finite elements is carried out as shown in the block flow diagram given in Fig. 1.
This analysis has the basic objective of determining the natural frequencies, the vibration modes
may be calculated optionally. The damping which normally exists in a structure is considered
to be relatively small and does not practically effect the calculation of the natural frequencies
or the vibration modes, [4, 6, 7, 29]. The consistent mass and stiffness matrices used here were
obtained from [32]. Here the generalized Jacobi method is employed given that both the mass
and stiffness matrices are symmetric, [32]. Here in the optimisation problem, natural frequency
constraints are considered as explained below.

2.10 Penalty methods

A problem with constraints can be efficiently transformed into a problem without constraints
using a penalty function, [9,14,31]. The penalty function is used to modify the objective function
in the following way:

OF (Ai) = f(Ai) + Penal(x) =
n∑

i=1

ρAiLi + Penal(x) (7)

Classical applications of penalty functions to impose constraints can be classified as direct
or interior, in which only feasible solutions are considered, and indirect or exterior in which any
solution is used in the optimization process. However since the 1990s these techniques have been
classified as static, dynamic and adaptive penalty methods, [18,26].

Here the static penalty method as considered below is employed for simplicity. In the static
method the objective function is defined as a fixed part plus the product of a constant chosen
by the designer and the sum of the residuals of each violated constraint.

OF (Ai) = f(Ai) + α ·
n∑

i=1

Si (8)

For the present case including natural frequency limitations, the penalty function took the
form given below:
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F (Ai) =
n∑

i=1

ρAiLi + α
m∑

j=1

[ |wj |
wmax

− 1
]

(9)

where n is the number of bars considered, m is the number of frequency restrictions and ω

is a natural frequency.

3 Numerical examples

Three examples are considered, the first two being traditional frame structures and the third
being a real structure, [8], represented by a frame with some pin joints

Each problem was solved four times, once for each of the frequency constraints shown in
Table 1. The frequency constraints considered are based on Castro, [3].

Table 1: Natural Frequency constraints for problems considered

Case Characteristics
I First natural frequency ω1 = 5Hz
II Second natural frequency ω2 = 15 Hz
III Third natural frequency ω3 = 30 Hz

First natural frequency ω1 ≥ 5 Hz
IV Second natural frequency ω2 ≥ 15 Hz

Third natural frequency ω3 ≥ 30 Hz

Table 2 shows the material parameters for all of the cases considered. MacGee and Phan, [24]
propose that for structural problems which involve continuous sections, the moment of inertial
should be a function of the area of the section.

Table 2: Material Parameters for all of the problems considered

Parameter Value
Cross-sectional area: Lower limit xL = 0.1in2

Upper limit xU = 100.0in2

Youngs Modulus (E) 3 ×107 Ksi
Density (ρ) 0.283lb/in3

Moment of Inertia (I) for 0.1 ≤ Ai ≤ 44.2in2 I = 4.62 ∗A2
i

(McGee and Phan, [35]) for 44.2in2 ≤ Ai ≤ 100.0in2 I = 256 ∗Ai − 2300
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3.1 Problem 1: plane 6-bar frame

The structure considered is shown in Fig. 6. In this case, the cross-sectional areas of each of
the six bars of which the frame is composed are the project variables, in such a way that the
chromosomes posses 6 alleles.

 

Figure 6: Problem 1: 6-bar plane frame

The size of the alleles of the chromosomes is determined using Eq. (1). Considering ε = 0.1,
and the maximum and minimum values for the cross-sectional area as given in Table 2, each
variable cross-sectional area is represented using 10 bits, given that there are six bars, and thus
6 alleles, the chromosome is of size 60 bits.

Using Eq. (3) and Eq. (6) one obtains the total number of individuals in the population,
npop and the probability of mutation pm respectively,

npop = 100

pm = 0.001

The results obtained by the program for the first three natural frequencies for each of the
four cases of frequency constraints given in Table 1 are shown in Table 4. The GA solution, show
in Table 3, gives the areas of the bars for each of the four constraints considered. A solution is
obtained for the natural frequencies using the SAP2000N commercial code. The cross-sectional
areas of the bars considered are those given by the GA, the other information required is input
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Table 3: Results for Cross-sectional areas for Problem 1, (in2)

Case 1 Case 2 Case 3 Case 4
Section 1 5.90 6.63 6.12 10.60
Section 2 5.90 6.58 6.70 10.80
Section 3 19.20 18.00 13.00 10.50
Section 4 19.20 18.20 12.20 10.50
Section 5 5.60 6.80 5.88 2.90
Section 6 2.80 1.50 10.90 3.00

Total Weight (lb) 3079.95 3056.40 2783.71 2791.17

data. From this point the graphical capabilities of this program can be taken advantage of.
The solutions obtained for the four cases considered converged at generation numbers 756, 1032,
1422 and 823, respectively. Table 3 also presents the minimum weight of the structure for each
of the four cases considered. The best solution was found for case 3 in which a constraint is
placed on ω3.

Table 4: Results for natural frequencies for Problem 1, (Hz)

Case 1 Case 2 Case 3 Case 4
frequency GA SAP GA SAP GA SAP GA SAP

ω1 5.00 4.96 9.72 9.51 22.38 21.97 7.21 6.99
ω2 7.44 7.12 14.87 14.20 25.87 25.06 22.11 21.92
ω3 10.48 10.01 20.20 20.01 29.53 28.99 32.28 31.02

3.2 Problem 2: plane 14-bar truss

The structure considered is shown in Fig. 7. In a similar way to the previous problem, there
are now 14 alleles per chromosome. The number of bits in each allele is found in the same way
as in the previous problem, giving a chromosome of 140 bits. The population size npop and the
probability of mutation, pm will then be

npop = 200

pm = 0.0004

The results obtained by the program for the first three natural frequencies are shown in
Table 6 for the four different frequency constraint cases considered. Comparison is made with
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Figure 7: Problem 2: 14-bar plane truss

results obtained using the commercial software SAP2000N, as in the previous problem. For this
problem, the minimum weight solutions for the four cases considered were obtained at generation
numbers 926, 1256, 1223 and 1822. The values obtained for the cross-sectional areas of the bars
are given in Table 5, for each case, together with the minimum weight of the frame. The best
solution was found for case 2 in which a constraint is placed on ω2.

3.3 Problem 3: industrial building

The structure considered in this case is shown in Fig. 8 and is a real problem analysed statically
by Erbatur, [8]. The frame comprises 29 bars with pin-joints at the places indicated. For this
problem the bars are considered to be grouped together, each group shown in Table 7 has the
same cross-sectional area.

Given this, only 12 independent sections need to be obtained, and the chromosome has 120
bits, less than in the previous problem. Values for population size, npop and the probability of
mutation, pm are then given by

npop = 200

pm = 0.004

The solutions for the four sets of frequency constraints considered were given at generation
numbers 1052, 1832, 1364 and 2051 and the results for the cross-sectional areas of the bars, the
total weight of the structure and the first three natural frequencies are given in Tables 8 and 9
respectively in the same way as in the previous cases. It is observed that if several frequencies are
taken into consideration, as in case IV, a lighter structure is obtained than if only one frequency
is considered.
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Table 5: Results for cross-sectional areas for Problem 2, (in2)

Case 1 Case 2 Case 3 Case 4
Section 1 12.56 8.33 3.51 4.33
Section 2 1.23 7.00 2.78 4.00
Section 3 8.33 5.60 11.65 3.20
Section 4 9.25 1.38 5.23 3.18
Section 5 9.66 5.28 3.28 2.28
Section 6 9.51 2.31 8.54 3.30
Section 7 0.42 0.88 3.48 6.89
Section 8 0.63 1.62 3.02 4.89
Section 9 6.21 0.79 4.06 1.89
Section 10 9.57 6.33 1.32 3.23
Section 11 3.58 4.66 0.98 0.68
Section 12 6.32 0.98 8.23 0.54
Section 13 0.62 1.64 6.12 4.66
Section 14 0.22 2.62 3.55 6.66

Total Weight (lb) 630.86 402.34 562.17 442.14

4 Conclusions

The minimum weight of frame structures for free vibration analysis is considered using a Genetic
Algorithm of the generational type using binary coding for the chromosomes and employing the
elitist model. The constraints on natural frequency are considered using a modified objective
function in which a penalty term is added. The penalty function employs parameters which
remain constant during the evolutionary process.

The minimum weight for the structure was obtained by the algorithm for three problems, for
each problem four different cases of frequency constraints are considered. The natural frequencies

Table 6: Results for natural frequencies for Problem 2, (Hz)

Case 1 Case 2 Case 3 Case 4
frequency GA SAP GA SAP GA SAP GA SAP

ω1 4.81 4.31 12.13 11.95 19.89 19.23 7.03 6.57
ω2 7.65 7.25 14.53 14.10 24.68 23.88 15.53 14.99
ω3 13.07 12.89 20.45 19.11 30.00 29.60 31.66 29.86
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Table 7: Groups of sections for Problem 3

A1 = A24

A2 = A23

A3 = A26

A28 = A29

A4 = A5 = A22 = A25

A7 = A8 = A9 = A10

A11 = A12 = A13 = A14

A15 = A21

A16 = A20

A17 = A19

A18

Table 8: Results for cross-sectional areas for Problem 3, (in2)

Case 1 Case 2 Case 3 Case 4
Sections 1,24 10.61 4.33 11.20 8.30
Sections 2,23 13.70 20.50 14.30 10.10
Sections 3,26 4.74 1.11 3.10 2.56
Sections 28,29 8.00 5.24 9.80 13.00
Sections 6,27 5.55 3.30 2.03 3.55

Sections 4,5,22,25 6.59 3.28 2.55 3.25
Sections 7,8,9,10 2.24 4.89 3.20 0.68

Sections 11,12,13,14 6.21 4.66 1.00 1.35
Sections 15,21 0.92 0.38 1.23 0.98
Sections 16,20 0.69 2.00 0.64 1.32
Sections 17,19 1.12 1.72 2.30 1.11

Section 18 4.53 3.36 2.63 2.75
Total Weight (lb) 10171.33 8020.62 7510.12 6873.05

obtained are compatible with results obtained by the commercial code SAP in each case. For
the plane frame, Problem 1, the minimum weight is obtained with the restriction on ω3. For the
truss, Problem 2, the minimum weight is obtained with the restriction on ω2. For the industrial
building, Problem 3, the minimum weight is obtained with restrictions on several frequencies.

It is considered that the results presented show the versatility and robustness of the algo-
rithm, and that this can be used by designers in order to obtain initial values for cross-sectional
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Figure 8: Problem 3: Industrial Building

Table 9: Results for natural frequencies for Problem 3, (Hz)

Case 1 Case 2 Case 3 Case 4
frequency GA SAP GA SAP GA SAP GA SAP

ω1 4.92 4.42 12.13 12.01 19.31 19.20 6.12 5.89
ω2 11.20 10.80 14.87 14.53 25.20 24.92 19.65 19.31
ω3 19.89 19.69 19.53 19.20 29.27 29.03 33.44 32.99

areas for steel structures.
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