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Abstract 
This problem deals with the thermo-elastic interaction due to step 
input of temperature on the stress free boundaries of a homogene-
ous visco-elastic orthotropic spherical shell in the context of a new 
consideration of heat conduction with fractional order generalized 
thermoelasticity. Using the Laplace transformation, the fundamen-
tal equations have been expressed in the form of a vector-matrix 
differential equation which is then solved by eigen value approach 
and operator theory analysis. The inversion of the transformed 
solution is carried out by applying a method of Bellman et al 
(1966). Numerical estimates for thermophysical quantities are 
obtained for copper like material for weak, normal and strong 
conductivity and have been depicted graphically to estimate the 
effects of the fractional order parameter. Comparisons of the re-
sults for different theories (TEWED (GN-III), three-phase-lag 
model) have also been presented and the effect of viscosity is also 
shown. When the material is isotropic and outer radius of the 
hollow sphere tends to infinity, the corresponding results agree 
with that of existing literature.  
  
Keywords 
Generalized thermo-visco-elasticity, Three-phase-lag model, Frac-
tional order heat equation, Eigen value approach, Vector-matrix 
differential equation, Step input temperatures. 
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1 INTRODUCTION 

Linear viscoelasticity has been an important area of research since the period of Maxwell, Boltzman, 
Voigt and Kelvin. Valuable information regarding linear viscoelasticity theory may be obtained in 
the books of Gross (1953), Staverman and Schwrzl, Alfery and Gurnee, Ferry, Bland and Lakes. 
Many researchers like Biot (1954, 1955), Gurtin and Sternberg, Liioushin and Pobedria, Tanner, 
Huilgol and Phan-Thein have contributed notably on thermoviscoelasticity. Freudenthal has point-
ed out that most of the solids, when subjected to dynamic loading, exhibit viscous effects. 
 The Kelvin-Voigt model is one of the macroscopic mechanical models often used to describe the 
viscoelastic behavior of a material. The model represents the delayed elastic response subjected to 
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stress when the deformation is time dependent but recoverable. The dynamic interaction of thermal 
and mechanical fields in solids has great practical applications in modern aeronautics, astronautics, 
Nuclear reactors and high-energy particle accelerators. Several researchers are working in this field. 
A problem involving Two-Temperature Magneto-Viscoelasticity with thermal Relaxation time in 
Perfect conducting medium have been solved by Ezzat and El-Karamany (2009). A two tempera-
ture thermo-electro-viscoelastic problem subjected to modified Ohm's and Fourier's Laws have been 
solved by Ezzat et al. (2012). 
 The classical theories of thermoelasticity involving infinite speed of propagation of thermal sig-
nals, contradict physical facts. During the last five decades, non-classical theories involving finite 
speed of heat transportation in elastic solids have been developed to remove the paradox. In con-
trast with the conventional coupled thermoelasticity theory, which involves a parabolic-type heat 
transport equation, these generalized theories involving a hyperbolic-type heat-transport equation 
are supported by experiments exhibiting the actual occurrence of wave-type heat transport in solids, 
called second sound effect. The first generalization to this theory is due to Lord and Shulman 
(1967) who formulated the generalized thermoelasticity theory involving one thermal relaxation 
time, which is known as extended thermo-elasticity theory (ETE). The second generalization to the 
coupled thermoelasticity theory due to Green and Lindsay (1972), involves two relaxation times.   
  The third generalization to the coupled thermoelasticity theory is known as low-temperature 
thermoelasticity introduced by Hetnarski and Ignaczak called the H-I theory. This model is charac-
terized by a system of non-linear field equations. 
The fourth generalization in concerned with the thermo-elasticity without energy dissipation (TE-
WOED) and thermoelasticity with energy dissipation (TEWED) introduced by Green and Naghdi 
(1991, 1992, 1993) and provide sufficient basic modifications in the constitutive equations that per-
mit treatment of a much wider class of heat flow problems, labeled as types I, II, III. The natures of 
these three types of constitutive equations are such that when the respective theories are linearized, 
type-I is same as the classical heat equation (based on Fourier’s law) whereas types II and III per-
mit propagation of thermal signals at a finite speed. When Fourier conductivity is dominant the 
temperature equation reduces to classical Fourier’s law of heat conduction and when the effect of 
conductivity is negligible, the equation has undamped thermal wave solutions without energy dissi-
pation. Applying the above theories of generalized thermoelasticity, several problems have been 
solved by Mallik and Kanoria (2008), Kar and Kanoria (2009), Islam and Kanoria (2011), Ghosh 
and Kanoria (2010), Banik and Kanoria (2011). 
 Recently Roychoudhury (2007) has established a generalized mathematical model of a coupled 
thermoelasticity theory that includes three-phase lags in the heat flux vector, the temperature gra-
dient and in the thermal displacement gradient. The more general model established reduces to the 
previous models as special cases. According to this model 

    
!q = − K

!
∇T (P,t +τT )+ K★

!
∇ν(P,t +τν )⎡⎣ ⎤⎦ , 

where    
!
∇ν ( "ν = T )  is the thermal displacement gradient and   K★  is the additional material constant. 

To study some practical relevant problems, particularly in heat transfer problems involving very 
short time intervals and in the problems of very high heat fluxes, the hyperbolic equation gives 
significantly different results than the parabolic equation. According to this phenomenon the lag-
ging behavior in the heat conduction in solid should not be ignored particularly when the elapsed 
times during a transient process are very small, say about 710− s or the heat flux is very much high. 
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Three-phase-lag model is very useful in the problems of nuclear boiling, exothermic catalytic reac-
tions, phonon-electron interactions, phonon-scattering etc., where the delay time qτ captures the 
thermal wave behavior (a small scalar response in time), the phase-lag Tτ captures the effect of pho-
non-electron interactions (a microscopic response in space), the other delay time ντ is  effective 
since, in the three-phase-lag model, the thermal displacement gradient is considered as a constitu-
tive variable whereas in the conventional thermoelasticity theory temperature gradient is considered 
as a constitutive variable. Banik and Kanoria (2012) have solved the effect of three-phase-lag in an 
infinite medium with a spherical cavity. The magneto-thermo-elastic responses in a perfectly con-
ducting medium under three-phase-lag model have been studied by Das and Kanoria (2012). 
 However, over the last few decades, anisotropic materials have been increasingly used. There are 
materials which have natural anisotropy such as zinc, magnesium, sapphire, wood, some rocks and 
crystals, and also there are artificially manufactured materials such as fiber-reinforced composite 
materials which exhibit anisotropic character.  The advantage of composite materials over the tra-
ditional materials lies on their valuable strength, elastic and other properties (1980). A reinforced 
material may be regarded to some order of approximation, as homogeneous and anisotropic elastic 
medium having a certain kind of elastic symmetry depending on the symmetry of reinforcement. 
Some glass fibre reinforced plastics may be regarded as transversely isotropic. Thus, problems of 
solid mechanics should not be restricted to the isotropic medium only. Increasing use of an aniso-
tropic media demand that the study of elastic problems should be extended to anisotropic medium 
also. 
 Differential equations of fractional order have been the focus of many studies due to their fre-
quent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics and 
engineering. The most important advantage of using fractional differential equations in these and 
other applications is their non-local property. It is well known that the integer order differential 
operator is a local operator but the fractional order differential operator is non-local. This means 
that the next state of a system depends not only upon its current state but also upon all of its his-
torical states. This is more realistic, and this is one reason why fractional calculus has become more 
and more popular (1967, 1997, 1999). 
  Fractional calculus has been used successfully to modify many existing models of physical pro-
cesses. One can state that the whole theory of fractional derivatives and integrals was established in 
the second half of the nineteenth century. The first application of fractional derivatives was given 
by Abel who applied fractional calculus in the solution of an integral equation that arises in the 
formulation of the Tautochrone problem. The generalization of the concept of derivative and inte-
gral to a non-integer order has been subjected to several approaches, and some various alternative 
definitions of fractional derivatives appeared in Refs. (1974, 1997, 2000). In the last few years, frac-
tional calculus was applied successfully in various areas to modify many existing models of physical 
processes, e.g., chemistry, biology, modeling and identification, electronics, wave propagation and 
viscoelasticity (1971, 1974, 1983, 1984, 1997). One can refer to Padlubny (1999) for a survey of ap-
plications of fractional calculus.  
 Recently, a considerable research effort is expended to study anomalous diffusion, which is char-
acterized by the time-fractional diffusion-wave equation by Kimmich (2002) as follows 
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ρc =κ I ξc,ii  (1) 

 
where ρ is the mass density, c  is the concentration, κ is the diffusion conductivity, i the coordinate 
symbol, which takes the value 1, 2, 3. The notation I ξ is the Riemann-Liouville fractional integral, 
introduced as a natural generalization of the well-known n-fold repeated integral ( )nI f t  written in 
a convolution-type form as in (2000). 
 Youssef (2010) introduced another formula of heat conduction in the following form 
 

  
qi +τ 0

∂qi

∂t
= −KI ξ−1∇T , 0 < ξ b2,

 
0  < ξ # 2    

(2) 
 
and a uniqueness theorem has also been proved.  
 Ezzat established a new model of fractional heat conduction equation by using the new Taylor 
series expansion of time-fractional order, developed by Jumarie (2010) as 
 

0 , 0 1,
!

i
i

q
q K T

t

ξ ξ

ξ

τ ξ
ξ

∂
+ = − ∇ <

∂
b   

(3) 
 

El-Karamany and Ezzat (2011) introduced two general models of fractional heat conduction law 
for a non-homogeneous anisotropic elastic solid. Uniqueness and reciprocal theorems are proved, and 
the convolutional variational principle is established and used to prove a uniqueness theorem with 
no restriction on the elasticity or thermal conductivity tensors except symmetry conditions. For 
fractional thermoelasticity not involving two-temperatures, El-Karamany and Ezzat (2011) estab-
lished the uniqueness, reciprocal theorems and convolution variational principle. The dynamic cou-
pled and Green-Naghdi thermoelasticity theories result as limit cases. The reciprocity relation in 
case of quiescent initial state is found to be independent of the order of differintegration. Fractional 
order theory of a perfect conducting thermoelastic medium not involving two temperatures was 
investigated by Ezzat and El-Karamany (2011). Thermal wave propagation in an infinite half-space 
under fractional order Green-Naghdi theory was studied by Sur and Kanoria (2012). 
 To the authors’ knowledge, under three-phase-lag effect, no solution of visco-elastic orthotropic 
materials for fractional heat conduction equation has been reported. With this motivation in mind 
the present analysis is to study the thermoelastic stresses, displacement and temperature distribu-
tion in a orthotropic hollow sphere in the context of GN-III and three-phase-lag model of general-
ized thermoelasticity where the heat equation consists of some non-local fractional operator signify-
ing not only the present state, but also the previous states due to sudden temperature change on 
the stress-free boundaries. The governing equations are formed in Laplace transform domain which 
is then solved by eigen-value approach and operator theory analysis. The inversion of the trans-
formed solution are carried out numerically applying the method of Bellman et al. A comprehensive 
analysis of the result have been presented for 3P model and GN-III model for both viscous and non-
viscous isotropic materials. The effect of the fractional order parameter is also discussed. 
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2 FORMULATION OF THE PROBLEM 

We consider a homogeneous orthotropic thermo-visco-elastic spherical shell of inner radius a  and 
outer radius b  in an undisturbed state and initially at uniform temperature   T0 . We introduce 
spherical polar coordinates   (r,θ ,φ)  with the center of the cavity at the origin as shown in Figure a. 
 We consider spherically symmetric thermal problem so that the displacement component 

   !
u = [u(r,t),0,0]  and the temperature  T  are assumed to be functions of  r  and  t  only.  
  

      Y 
 
 
 
 
 
 
 

            
         x 
                                                                                                                                                                                                        

 
 
                                                           (r=b) 
 

Z 
 

Figure a   Visco–elastic spherical shell. 
 
The stress-strain-temperature relations in the present problem are (Kelvin-Voigt type) 
 

  
τ rr = C33 1+ t0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟
∂u
∂r

+ C13 +C23( ) 1+ t0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟

u
r
− βrT ,

 
 

(4) 
 

  
τθθ = C13 1+ t0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟
∂u
∂r

+ C11 +C12( ) 1+ t0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟

u
r
− βθT ,

 
 

(5) 
 

  
τφφ = C23 1+ t0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟
∂u
∂r

+ C12 +C22( ) 1+ t0

∂
∂t

⎛
⎝⎜

⎞
⎠⎟

u
r
− βφT ,

 
 

(6) 
 

and the generalized heat conduction equation for fractional order three-phase-lag model is  
 

    

1
r 2

∂
∂r

r 2 Kr
★ Iα−1 ∂T

∂r
+τν

★ Iα−1 ∂ !T
∂r

+ KrτT Iα−1 ∂ !!T
∂r

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥ =

1+τ q

∂
∂t

+
τ q

2

2
∂2

∂t2

⎛

⎝
⎜

⎞

⎠
⎟ ×

∂2

∂t2 ρCeT +T0 βr

∂u
∂r

+ βθ + βφ( ) u
r

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

 (7) 

P(r,θ,𝜙) 
 
 
 
 

   (r=a)      

O 
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where   
τ ij (i, j = r,θ ,φ)  are the stress tensor,  T  is the temperature increase over the reference tem-

perature   T0 ,   
Cij (i, j = 1,2,3)  are the elastic constants,   βi (i = r,θ ,φ)  are the thermal moduli,  Kr  is the 

coefficient of thermal conductivity along the radial direction,   Kr
★  is the additional material con-

stant along the radial direction, ρ  is the mass density,  Ce  is the specific heat of the solid at con-

stant strain, 0t  is the mechanical relaxation time,  τT  and  
τ q  are the phase-lag of temperature gra-

dient and the phase-lag of the heat flux respectively.  Also   τν
★ = Kr +τν Kr

★  where τν  is the phase-lag 
of thermal displacement gradient.  
 In the case 0rK =  and 0,T q ντ τ τ= = =  we arrive at the thermo-elasticity equations with energy 
dissipation (TEWED(GN-III)).  
 The stress equation of motion in spherical polar co-ordinate is given by  
 

  

∂τ rr

∂r
+ 1

r
2τ rr −τθθ −τφφ( ) = ρ ∂2u

∂t2 .  (8) 

 
Introducing the following non-dimensional quantities  

 

  

U =
C33

aβrT0

u, (R,S ) = r
a

, b
a

⎛
⎝⎜

⎞
⎠⎟

, σ R ,σθ ,σφ( ) = 1
βrT0

τ rr ,τθθ ,τφφ( ),
Θ = T

T0

, η = Gt
a

, G2 =
C33

ρ
, ′τ q , ′τν , ′τT( ) = G

a
τ q ,τν ,τT( ).

 
 

Equations (4)-(8) become 
 

  
σ R = 1+

t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟
∂U
∂R

+
C13 +C23

C33

1+
t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟

U
R
−Θ,

 
 

(9) 
 
 

  
σθ =

C13

C33

1+
t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟
∂U
∂R

+
C11 +C12

C33

1+
t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟

U
R
−
βθ

βr

Θ,
 

 

(10) 
 
 

  
σφ =

C23

C33

1+
t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟
∂U
∂R

+
C12 +C22

C33

1+
t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟

U
R
−
βφ

βr

Θ,
 

 

(11) 
 

  

CT
2Iα−1 + CK

2 + ′τνCT
2( ) Iα−1 ∂

∂η
+ ′τTCK

2 Iα−1 ∂2

∂η2

⎡

⎣
⎢

⎤

⎦
⎥

∂2Θ
∂R2 + 2

R
∂Θ
∂R

⎛
⎝⎜

⎞
⎠⎟
=

1+ ′τ q

∂
∂η

+ 1
2

′τ q
2 ∂2

∂η2

⎛
⎝⎜

⎞
⎠⎟

∂2Θ
∂η2 + ε ∂2

∂η2

∂U
∂R

+ M U
R

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (12) 
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and 
 

  
1+

t0G
a

∂
∂η

⎛
⎝⎜

⎞
⎠⎟

∂2U
∂R2 + 2

R
∂U
∂R

− AU
R2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
= ∂Θ
∂R

+ ∂2U
∂η2 .  (13) 

 
where  
 

  
A =

C11 + 2C12 +C22 − (C13 +C23)
C33

,  (14) 

 
and 
 

  
M =

βθ + βφ

βr

.  (15) 

 

Also, 
   
CT

2 =
Kr
★

ρCeG
2 , CK

2 =
Kr

aρCeG
 and 

  
ε =

βr
2T0

ρCeC33

 are dimensionless constants, ε  being the thermoe-

lastic coupling constant. Where  CT  is the non-dimensional thermal wave velocity and  CK  is the 
damping co-efficient.  
  The boundary conditions are given by 
 

  σ R = 0  on   R = 1, S η r 0, η P 0 
 

(16) 
 

  
Θ = χ1 H (η)− H (η−η1

0 )( )  on   R = 1,η> 0,  
 

(17) 
 

  = χ2H (η)  on   R = S ,η>0.
 (18) 

                                                                                                                          
where  χ1  and  χ2  are dimensionless constants, and   H (η)  is the Heaviside unit step function. The 
above condition indicate that for time η P η1

0 there is no temperature  (Θ = 0) on the inner bounda-
ry and for η # 0 there is no temperature  (Θ = 0) on the outer boundary. Thermal shocks are given 
on the boundaries of the shell   (R = 1,S ).  Thermal stresses in the elastic medium due to the applica-
tion of these thermal shocks are calculated. We assume that the medium is at rest and undisturbed 
initially.  
 The initial and the regularity conditions can be written as  
 

  
U = ∂U

∂η
= ∂2U
∂η2 = ∂3U

∂η3 = 0 and 
 
Θ = ∂Θ

∂η
= ∂2Θ
∂η2 = ∂3Θ

∂η3 = 0 at  η = 0,  R P 0 

 

 
(19) 
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U =Θ = ∂U

∂η
= ∂Θ
∂η

= 0
 
when   R →∞.  (20) 

                 
3 METHOD OF SOLUTION 

Let  

  
U (R, p),Θ(R, p){ } = U (R,η),Θ(R,η){ }

0

∞

∫ e− pηdη  

 
with   Re( p) > 0  denote the Laplace transform of  U and Θ  respectively. 

Since we have 
 

  
L Iα f (t){ } = 1

pα L f (t){ }.  

 
On taking Laplace transform, equations (12) and (13) reduce to  

 

  

d 2Θ
dR2 + 2

R
dΘ
dR

= a3 Θ + ε dU
dR

+ 2U
R

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ,  (21) 

 
and 
 

  

d 2U
dR2 + 2

R
dU
dR

− 2U
R2 = a4

dΘ
dR

+ p2U
⎛
⎝⎜

⎞
⎠⎟

,  (22) 

 

where 
  
a3 =

pα+1 1+ ′τ q p + 1
2

′τ q
2 p2⎛

⎝⎜
⎞
⎠⎟

1+ ′τν p( )CT
2 + p 1+ ′τT p( )CK

2 ,  
  
a4 =

a
a + t0 pG  

and assuming   M = 2.  

Differentiating equation (21) with respect to  R  and using equation (22), we get  
 

  

d 2

dR2

dΘ
dR

⎛
⎝⎜

⎞
⎠⎟
+ 2

R
dΘ
dR

⎛
⎝⎜

⎞
⎠⎟
− 2

R2

dΘ
dR

⎛
⎝⎜

⎞
⎠⎟
= a3 ε p2a4U + (1+ εa4 ) dΘ

dR
⎡

⎣
⎢

⎤

⎦
⎥.  (23) 

 
Equations (22) and (23) can be written in the form  

 

  
L U( ) = a4 p2U + a4

dΘ
dR

,  (24) 

 
and 
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L dΘ

dR
⎛
⎝⎜

⎞
⎠⎟
= εa3a4 p2U + a3 1+ εa4( ) dΘ

dR
,  (25) 

 
where, we assume that  A = 2,  ε  is the thermo-elastic coupling constant and  
 

  
L ≡ d 2

dR2 +
2
R

d
dR

− 2
R2 .  (26) 

 
From equations (24) and (25), we have the vector-matrix differential equation as follows 

 

   L
!V = !A !V ,  (27) 

 
where 
 

   

!V = U dΘ
dR

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

,

   

!A =
D11 D12

D21 D22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  

 
(28) 

 

and    D11 = a4 p2 ,
  D12 = a4 ,   D21 = εa3a4 p2 ,

  
D22 = a3 1+ εa4( ).  

 
4 EIGEN VALUE APPROACH 

Let  
 

   
!V = !X (m)ω (R,m),  (29) 

 
where  m  is a scalar,   !X  is a vector depending on  R  and   ω (R,m)  is a non-trivial solution of the 
scalar differential equation  
 

  Lω = m2ω .  (30) 
 

Let   ω = R−1/2ω1 . Therefore, from equation (30) we have   
 

  

d 2ω1

dR2 + 1
R

dω1

dR
− 9

4R2 + m2⎛
⎝⎜

⎞
⎠⎟
ω1 = 0.  (31) 

 
The solution of equation (30) is 

 

  
ω = A1I3/2 (mR)+ B1K3/2 (mR)⎡⎣ ⎤⎦ / R ,  (32) 
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Using equation (29) and (30) into equation (27) we get  
 

   
!A !X = m2 !X ,  (33) 

 
 
where    

!X (m)  is the eigen vector corresponding to the eigen value   m2 . 
The characteristic equation corresponding to   !A  can be written as  

 

  m
4 − (D11 + D22 )m2 + (D11D22 − D12D21) = 0.  (34) 

 
The roots of the characteristic equation (37) are of the form 2 2

1m m= and 2 2
2m m= , where  

 

  m1
2 + m2

2 = D11 + D22 , m1
2m2

2 = D11D22 − D12D21.  (35) 
 

Equation (34) can be written as  
 

  m
4 − (a3 + a4 p2 + εa3a4 )m2 + a3a4 p2 = 0.  (36) 

 
Therefore, the positive roots of the equation (36) are 
 

  
m1, m2 =

1
2

α ± β( ),  (37) 

 
where 
 

  
α , β = a3 ± a4 p( )2

+ εa3a4. (38) 

 
Therefore,   m1  and   m2  are real positive quantities. 

The eigen vectors   
X (mj ), j = 1,2

 corresponding to the eigen values   
mj

2 , j = 1,2  can be calculated as  

 

   

!X (mj ) =
X1(mj )

X2(mj )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

D12

− D11 − mj
2( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, j = 1,2.   

(39) 

 
Therefore, from equation (29) and using equation (28) we get 

 

  
U = D12 Ai I3/2 (mi R)+ Bi K3/2 (mi R)⎡⎣ ⎤⎦ / R ,

i=1,2
∑  (40) 
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and 
 

  

dΘ
dR

= − D11 − mi
2( ) Ai I3/2 (mi R)+ Bi K3/2 (mi R)⎡⎣ ⎤⎦ / R ,

i=1,2
∑  (41) 

 
where   I3/2 (mi R)  and   K3/2 (mi R)  are the modified  Bessel functions of order 3/ 2 of first and second 
kind respectively.  Ai ’s and  Bi ’s   (i = 1,2)  are independent of  R  but dependent of  p  and are to be 
determined from the boundary conditions. 
 Using the recurrence relations of modified Bessel functions we obtain from equation (41) 
 

  
Θ =

D11 − mi
2( )

mi

Ai I1/2 (mi R)+ Bi K1/2 (mi R)⎡⎣ ⎤⎦ / R ,
i=1,2
∑  (42) 

 
since 
 

  

1
R1/2 P3/2 (mR) = − d

dR
P1/2 (mR)

mR1/2

⎡

⎣
⎢

⎤

⎦
⎥ ,  (43) 

 
where   P = I , K .  Taking Laplace transform on the equations (9), (10) and (11) we get  
 

2
4

5 3/ 2 1/ 23/ 2
1,2

2
4

5 3/ 2 1/ 23/ 2
1,2

( ) 2 ( )

( ) ( )

i
R i i i

i i

i
i i

i i

A a pa I m R m R R I m R
mR

B a pa K m R RK m R
mR

σ
=

=

⎡ ⎤⎛ ⎞
= + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤

−⎢ ⎥
⎣ ⎦

∑

∑
 (44) 

 
2 2

11 12 13 4 13
3/ 2 1/ 23/ 2

1, 2 33 33

2 2
11 12 13 4 13

3/ 2 1/ 23/ 2
1, 2 33 33

2
( ) ( )

2
( ) ( )

i i
i i i

i r i

i i
i i i

i r i

A C C C a p m C
I m R m RI m R

C m CR

B C C C a p m C
K m R m RK m R

C m CR

θ
θ

θ

βσ
β

β
β

=

=

⎡ ⎤⎧ ⎫⎛ ⎞+ − −⎪ ⎪= + − +⎢ ⎥⎜ ⎟ ⎨ ⎬
⎪ ⎪⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫⎛ ⎞+ − −⎪ ⎪− +⎢ ⎥⎜ ⎟ ⎨ ⎬
⎪ ⎪⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦

∑

∑
 (45) 

 
2 2

12 22 23 4 23
3/ 2 1/ 23/ 2

1, 2 33 33

2 2
12 22 23 4 23

3/ 2 1/ 23/ 2
1, 2 33 33

2
( ) ( )

2
( ) ( )

i i
i i i

i r i

i i
i i i

i r i

A C C C a p m C
I m R m RI m R

C m CR

B C C C a p m C
K m R m RK m R

C m CR

φ
φ

φ

β
σ

β

β
β

=

=

⎡ ⎤⎧ ⎫⎛ ⎞+ − −⎪ ⎪= + − +⎢ ⎥⎜ ⎟ ⎨ ⎬
⎪ ⎪⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫⎛ ⎞+ − −⎪ ⎪− +⎢ ⎥⎜ ⎟ ⎨ ⎬
⎪ ⎪⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦

∑

∑
 (46) 
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where  13 23 33
5

33

3 .
C C C

a
C

⎛ ⎞+ +
= − +⎜ ⎟
⎝ ⎠

  Using the boundary conditions  0Rσ = on 1,R R S= = and 1

p
χ′

Θ =

on 1R = , where ( )011 1 1
pe ηχ χ −′ = − , 2

p
χ

Θ =  on .R S=   

 Using the recurrence relations (Watson, 1980) from equations (42) and (44) we obtain  
 

1 11 2 12 1 13 2 14

1 21 2 22 1 23 2 24

1
1 31 2 32 1 33 2 34

2
1 41 2 42 1 43 2 44

0,
0,

,

,

AW AW BW BW
AW AW BW BW

AW AW BW BW
p

AW AW BW BW
p

χ

χ

+ + + =
+ + + =

′
+ + + =

+ + + =

 (47) 

 
2

4
1 5 3 / 2 1/ 2

2
4

2 5 3 / 2 1/ 2

2
4

1 5 3 / 2 1/ 2

2
4

2 5 3 / 2 1/ 2

( ) 2 ( ), , 1, 2

( ) 2 ( ), , 1, 2

( ) ( ), 3, 4; 1, 2

( ) ( ), 3, 4; 1, 2

i j j j
j

i j j j
j

i j j
j

i j j
j

a pW a I m m I m i j
m

a pW a I m S m SI m S i j
m

a pW a K m K m i j
m

a pW a K m S SI m S i j
m

⎛ ⎞
= + − =⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞
= + − =⎜ ⎟⎜ ⎟⎝ ⎠

= − = =

= − = =

 
(48) 

 

 
and 
 

2 2
4

3 1/ 2

2 2
4

4 1/ 21/ 2

( ),

( ),

j
i j

j

j
i j

j

a p m
W P m

m

a p m
W P m S

m S

−
=

−
=

 

 
where P I=  for , 1, 2;i j = P K= for 3, 1i j= = and 4, 2.i j= =  

From (44), the values of 1A , 2A , 1B and 2B are given as 
 

1
11 12 13 141

21 22 23 242 1

31 32 33 341

41 42 43 442 2

0
0

.

W W W WA
W W W WA
W W W WB p
W W W WB

p

χ

χ

−
⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠

 (49) 
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5 SPECIAL CASES  

For the homogeneous and transversely isotropic material 11 22 ,C C=  13 23C C=  and .r θ φβ β β= =  

Therefore from (9) and (10), .θ φσ σ=  Hence, from (45) and (46), we can write 
 

2 2
13 4

3/ 2 1/ 23/ 2
1,2 33

2
13 4

3/ 2 1/ 23/ 2
1,2 33

2 2
2 ( ) ( )

2
2 ( ) ( )

i i
R i i

i i

i
i i

i i

A C m a p
I m R RI m R

C mR

B C a pK m R RK m R
C mR

σ
=

=

⎡ ⎤⎛ ⎞⎛ ⎞ −
= − + + +⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞
− + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑
 (50) 

 
2 2

11 12 13 4 13
3/ 2 1/ 23/ 2

1,2 33 33

2 2
11 12 13 4 13

3/ 2 1/ 23/ 2
1,2 33 33

2
( ) ( )

2
( ) ( )

i i
i i i

i i

i i
i i i

i i

A C C C a p m C
I m R m RI m R

C m CR

B C C C a p m C
K m R m RK m R

C m CR

θσ
=

=

⎡ ⎤⎛ ⎞⎛ ⎞+ − −
= + − +⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞+ − −

− +⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑
 (51) 

 
Also for an isotropic material, 33 132 ,C Cλ µ λ= + =  and ( )11 12 2C C λ µ+ = +   and for a non-viscous 

material, we have 0 0.t =  Hence, 4 1.a =  Thus, for an isotropic material, equations (45) and (46) 
reduce to  
 

2
3/ 24

3/ 2 1/ 2
1, 2

2
3/ 24

3/ 2 1/ 2
1, 2

4 ( ) 2 ( ) /
2

4 ( ) ( ) /
2

R i i i i
i i

i i i
i i

a pA I m R m RI m R R
m

a pB K m R RK m R R
m

µσ
λ µ

µ
λ µ

=

=

⎡ ⎤⎛ ⎞
= − + − +⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤
− −⎢ ⎥+⎣ ⎦

∑

∑
 (52) 

 
( )( )
( )

( )( )
( )

2 2 2
3/ 2

3/ 2 1/ 2
1, 2

2 2 2
3/ 2

3/ 2 1/ 2
1, 2

22 ( ) ( ) /
2 2

22 ( ) ( ) /
2 2

i i
i i i

i i

i i
i i i

i i

m p m
A I m R RI m R R

m

m p m
B K m R RK m R R

m

θ

λ λ µµσ
λ µ λ µ

λ λ µµ
λ µ λ µ

=

=

⎡ ⎤− + −
⎢ ⎥= + +

+ +⎢ ⎥⎣ ⎦
⎡ ⎤+ + −
⎢ ⎥−

+ +⎢ ⎥⎣ ⎦

∑

∑
 (53) 

 
Moreover, for large value of b i.e., for large value of S , 0 ( )iK m S  and 1( )iK m S  tend to zero. 

Thus we have  
 

( ) ( ),R R RI Kσ σ σ= +  (54) 
 

( ) ( ).I Kθ θ θσ σ σ= +  (55) 
 
Hence for large value ofb , the asymptotic expressions of ( )R Iσ  and ( )Iθσ  are given as 
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(56) 
 
0→ as S →∞  

 
and  
 

 
 
 

 
 

(57) 
 
0→ as S →∞  

 
Therefore, for an infinitely extended body 

 
2

3/ 2
3/ 2 1/ 2

1,2

4( ) ( ) ( ) / ,
2R i i i

i i

pK B K m R RK m R R
m

µσ
λ µ=

⎡ ⎤
= − −⎢ ⎥+⎣ ⎦
∑  (58) 

 
( )( )
( )

2 2 2
3/ 2

3/ 2 1/ 2
1,2

22( ) ( ) ( ) / .
2 2

i i
i i i

i i

m p m
K B K m R RK m R R

mθ

λ λ µµσ
λ µ λ µ=

⎡ ⎤+ + −
⎢ ⎥= −

+ +⎢ ⎥⎣ ⎦
∑  (59) 

 
where        
 

( ) ( )
( ) ( ) ( ) ( )

0
1 2

1 2 3 / 2 2 1/ 2 21
1 2 2 2 2 2 2 2

2 1 3 / 2 1 1/ 2 2 1 2 3 / 2 2 1/ 2 1 1 2 1/ 2 1 1/ 2 2

1 4 ( ) 2 ( )
,

4 ( ) ( ) ( ) ( ) 2 ( ) ( )

pe m m K m p K m
B

p p m m K m K m p m m K m K m p m m K m K m

η µ λ µχ
µ λ µ

− ⎡ ⎤− + +⎣ ⎦= − ×
⎡ ⎤− − − + + −⎣ ⎦

 (60) 

 
 

( ) ( )
( ) ( ) ( ) ( )

0
1 2

2 1 3/ 2 1 1/ 2 11
2 2 2 2 2 2 2 2

2 1 3/ 2 1 1/ 2 2 1 2 3/ 2 2 1/ 2 1 1 2 1/ 2 1 1/ 2 2

1 4 ( ) 2 ( )
.

4 ( ) ( ) ( ) ( ) 2 ( ) ( )

pe m m K m p K m
B

p p m m K m K m p m m K m K m p m m K m K m

η µ λ µχ
µ λ µ

− ⎡ ⎤− + +⎣ ⎦= ×
⎡ ⎤− − − + + −⎣ ⎦

 (61) 

The results agree with those of Kar and Kanoria (2007) for GN III model. 

 
 

2 1

2
2

2 2 2 2
( ) ( )

1 2 2 1
1 1 2 2 2 2 1 1

( )

4 1 4 1 4 1 4 11 2 1 2 1 2 1 2
2 2 2 2

R

m S R m S R

SI
p R

p p p pe m S m R e m S m R
m S m m R m m S m m R m

χσ

µ µ µ µ
λ µ λ µ λ µ λ µ

− − − −

= ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − − × − − − − − − − × − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2 2 22 2
1 2

2 1
1 2 2 2 1 1

4 1 4 11 2 1 2
2 2

p m p mp pm S m S
m m S m m m S m

µ µ
λ µ λ µ

⎥
⎥

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −− − − − − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

1 2

2
2

2 2 2 2 2 22
( ) ( )1 1 2 2

2
1 1 2 2 2 2 1

( )

( 2 )( ) ( 2 )( )2 1 4 1 2 1 4 11 1 2 1 1
2 ( 2 ) 2 2 ( 2 ) 2

m S R m S R

SI
p R

m p m m p mpe R m S e R
m R m m S m m R m m S

θ
χσ

λ λ µ λ λ µµ µ µ µ
λ µ λ µ λ µ λ µ λ µ λ µ

− − − −

= ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛− + − − + −− + × − − − − − + × −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2

1
1

2 2 2 22 2
1 2

2 1
1 2 2 2 1 1

2

4 1 4 11 2 1 2
2 2

pm S
m

p m p mp pm S m S
m m S m m m S m

µ µ
λ µ λ µ

⎡ ⎤⎞ ⎛ ⎞
− −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −− − − − − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
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6 OPERATOR THEORY ANALYSIS 

Equations (12) and (13) can be expressed in the following form 
 

( ) ( )

( )

2
2 1 2 2 1 2 1

12

2 2 2
2

12 2 2

11 ,
2

T K T T K

q q

C I C C I C I D D

DU

α α α
ντ τ

η η

τ τ ε
η η η η

− − −⎡ ⎤∂ ∂′ ′+ + + Θ =⎢ ⎥∂ ∂⎣ ⎦
⎛ ⎞⎧ ⎫∂ ∂ ∂ Θ ∂′ ′+ + +⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎩ ⎭

 (62) 

 
with 2M =  and   
 

( )
2

0
1 21 ,

t G UDD U D
a η η

⎛ ⎞∂ ∂+ = Θ+⎜ ⎟∂ ∂⎝ ⎠
  

(63) 
 

where 2,A =  D
R
∂≡
∂

 and  1
2 .D

R R
∂≡ +
∂

 

Taking the Laplace transform, we have 
 

( )1 3 3 1DD a a DUε− Θ =  (64) 
 
and 
 

( )21 4 4 .DD a p U a D− = Θ  (65) 
 

Where 
( ) ( )

1 2 2

3 2 2

11
2

1 1

q q

T T K

p p p
a

p C p p C

α

ν

τ τ

τ τ

+ ⎛ ⎞′ ′+ +⎜ ⎟⎝ ⎠=
′ ′+ + +

 and 4
0

.aa
a t pG

=
+

 

Operating 1DD  on (64) and using (65) we have  
 

( ){ }2 2 2 2 2
1 2 1 2 0.M m m M m m− + + Θ =  (66) 

 
Similarly, operating 1DD  on (65) and using (64) we have  

 

( ){ }2 2 2 2 2
1 2 1 2 0,L m m L m m U− + + =  (67) 

 
where  1L DD≡  and 1M DD≡  are the two operators and 2

1m  and 2
2m are the roots of the quadratic 

equation in 2m given by    
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4 2 2
3 3 4 4 3 4( ) 0.m a a a a p a a pε− + + + =  (68) 

 
As the solution of equation (66) and (67) we have  

 

3 3
2 21,2
( ) ( ) / ,i i i i

i
U A I m R B K m R R

=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑  (69) 

 
and  
 

1 1
2 21,2
( ) ( ) / .i i i i

i
C I m R D K m R R

=

⎡ ⎤Θ = +⎢ ⎥⎣ ⎦∑  (70) 

 
Where ( )j iI m R  and ( )j iK m R  are the modified Bessel functions of order j  of first and second 

kind respectively; iA , iB , iC and iD are independent of R but dependent on .p  
Therefore, substituting the expressions of U  and Θ in equation (65), we get 
 

2 2
4

4

i
i i

i

a p m
C A

a m
−

=  (71) 

 
and  
 

2 2
4

4

.i
i i

i

a p m
D B

a m
−

=  (72) 

 
Therefore 

 

4 3 3
2 21, 2

( ) ( ) / ,i i i i
i

U a A I m R B K m R R
=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑
 

 

(73) 
 

2 2
4

1 1
2 21,2
( ) ( ) / .i

i i i i
i i

a p m
C I m R D K m R R

m=

− ⎡ ⎤Θ = +⎢ ⎥⎣ ⎦∑  (74) 
 

 
Equations (73) and (74) are the same as that of equations (40) and (42) (i.e., the solutions ob-

tained by Eigen-value approach).  
 
 7 NUMERICAL RESULTS AND DISCUSSIONS 

To get the solutions for displacement, temperature distribution and stresses in the space-time do-
main we have to apply Laplace inversion formula to the equations (40), (42), (44) and (45) respec-
tively, which have been done numerically using the method of Bellman et al. (1966) for fixed value 
of the space variable and for iη η= , 1(1)7i = , where iη ’s are computed from roots of the shifted 
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Legendre polynomial of degree 7 (see Appendix) with 4.S =  The computations for the state varia-
bles are carried out for different values of ( 1)R R r  and values of 

2.04612, 3.67119.  The materials chosen for nu-
merical evaluation are copper material. The physical data for orthotropic material are (2009) 
 

3 3
0

11 2 11 2
11 12

11 2 11 2
13 22

11 2 11 2
23 33

1 2

6.96 10 / , 0.0186, 20 ,

1.544 10 / , 0.617 10 / ,

0.597 10 / , 1.747 10 / ,

0.496 10 / , 1.716 10 / ,
4, 3, 2, 1.2,T K

kg m T C

C N m C N m
C N m C N m

C N m C N m
C C

ρ ε

χ χ

= × = =

= × = ×

= × = ×

= × = ×
= = = =

o

 

 
and the hypothetical values of the relaxation time parameters are taken as  
 

7 7 7 7
0 1.0 10 sec, 2.0 10 sec, 1.5 10 sec, 1.0 10 secq Tt ντ τ τ− − − −= × = × = × = × . 

 
Here, in this article we have considered three-phase-lag model. Now, for this model, the solution 

of heat conduction is stable if 2
,Tq

q

KK ν
ττ τ

τ
< <★ ★ where K Kν ντ τ= +★ ★ i.e., the stability condition of 

Quintanilla and Racke is verified (2008). 
Also, for an isotropic material, the physical data are taken as (www.matweb.com). 
 

3
0

12 2 12 2

0
1

8.96 / , 0.0186, 20 ,

1.387 10 / , 0.448 10 / ,
0.23 / , 0.92 , 0.1.e

gm cm T C

dy cm dy cm
C cal gm C K cal

ρ ε
λ µ

η

= = =

= × = ×
= = =

o

o

 

  
In case of GN theory, K★ is an additional material constant depending on the material. For 

copper like material, we take ( 2 )
.

4
eCK
λ µ+

=★  

The results of the numerical evaluation of the thermo-elastic stress variations and temperature 
distribution are illustrated in figures 1-8 for both large time ( 1.21)η =  and small time ( 0.026)η = for 
weak conductivity ( 0.5)α = , normal conductivity ( 1.0)α =  and strong conductivity ( 1.2)α =  respec-
tively for 3P and GN III models. In these figures, the magnitudes of the variation of stresses and 
temperature are observed for viscous material when the step-input temperatures are applied on the 
inner boundary 1R =  and outer boundary 4S =  of the hollow sphere. Figures 1 and 2 depict the 
variation of the radial stress against the radial distance R  of the sphere. From the figures it is ob-
served that the radial stress ( )Rσ vanishes at the inner boundary ( 1)R = and the outer boundaries 
( 4)R = of the shell which satisfy our theoretical boundary conditions. The magnitude of the radial 
stress is maximum near 2.1R = for a strong conductive material and for GN III model. Also, for 
three-phase-lag model, the oscillatory nature is observed. This is due to the presence of the oscilla-

= 0.0257750, 0.138382, 0.352509, 0.693147, 1.21376,iη
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tion term in the heat equation of three-phase-lag model. For weak conductivity ( 0.5)α = , the oscilla-
tory nature is also seen for GN III model. 

 

 
 

Figure 1   Rσ versus R  for 0.5,1.0,1.2α = and 1.21.η =  
 

Figure 2 represents the variation of Rσ for 0.026η =  and 0.5,1.0,1.2α =  respectively. It is seen 
that Rσ vanishes at the boundaries of the shell where there are thermal sources which agree with 
our theoretical boundary conditions. As may seen from the figure, the stress wave is compressive in 
nature near both the boundaries. Also, at earlier stage of wave propagation, both the models give 
close results, whereas with advancement of time time, the stress wave is propagating with different 
speeds. For 0.5α = , the effect of Rσ  is very prominent inside the shell, whereas, for 1.0α =  and

1.2α = , the radial stress vanishes for 2 3R< <  and 1.5 3.5R< <  respectively, which is physically 
plausible.  

 
 

Figure 2   Rσ versus R  for 0.5,1.0,1.2α = and 0.026.η =  
 

Figures 3 and 4 are plotted to show the variation of the stress θσ  along the radius of the sphere 
for different values of the non-local fractional parameter α  and for 1.21, 0.026η = respectively.  In 
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figure 3, variation of θσ is shown for larger time 1.21η =  for same set of parameters.  As seen from 
the figure, θσ attains the maximum magnitude near the inner boundary of the shell. The magnitude 
of θσ for 1.2α =  is larger than that of 1.0α = which is again larger than that of 0.5α = when 
1 3Rb b and the rate of decay in magnitude of θσ for 1.2α =  is faster than that of 1.0α =  which is 
again faster than that obtained for 0.5α = .  

 

 
 

Figure 3   θσ versus R  for 0.5,1.0,1.2α = and 1.21.η =  
 
In both cases, the stress corresponding to each model and for different nonlocal fractional pa-

rameterα , the stress propagates for 1 4.Rb b  For small time, the stress is compressive in nature 
near the inner boundary of the shell. Here also, for 1.2,α = the stress component almost disappears 
for 2.2 3.5Rb b  and for 1.0α = , it vanishes for 2.3 3R< < . For 2.5R = ,i.e., the region equidistant 
from the boundaries θσ vanishes in earlier situations for normal conductivity and strong conductivi-
ty of the materials.  

 
 

 
 

Figure 4   θσ versus R  for 0.5,1.0,1.2α = and 0.026.η =  
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Figures 5 and 6 are plotted to show the variation of the stress component φσ  for different frac-
tional parameter .α  From the figure 5, it is seen that when 1.21,η = the magnitude of φσ is maxi-
mum near the inner boundary of the shell. Also it is observed that increase in the nonlocal fraction-
al parameter α also increases the magnitude of the stress component .φσ  For 1.0α = and 1.2,α =

the decay in magnitude of φσ is more rapid compared to that of 0.5.α =  As may seen from the fig-
ure, φσ is compressive near the inner boundary of the shell and the similar qualitative behavior is 
seen in the variation of φσ as that in figure 4. 

 

 
 

Figure 5   φσ versus R  for 0.5,1.0,1.2α = and 1.21.η =  
 

 
 

Figure 6   φσ versus R  for 0.5,1.0,1.2α = and 0.026.η =  
 

Figures 7 and 8 depict the variation of the temperature Θ along the radius of the sphere R  for 
different values of .α  It is seen that whenever 0.1,η > (i.e., for 1.21η = ) the inner boundary of the 
shell is kept at zero temperature whereas for 0.026,η = the inner boundary is maintained the fixed 
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temperature value 1 4.18χ′ = while in both situations, outer boundary maintains the same step-input-
temperature 2 3.χ = For larger time, Θ attains the maximum magnitude near 2.3R = for GN III 
model. Whereas in the earlier situations, the magnitude of Θ decays sharply near the inner bounda-
ry of the shell for 1.2α = compared to that of 0.5α = and 1.0.α =  The rise in magnitude near the 
outer boundary is rapid also. For 1.2α = and for 0.026η = , the magnitude of the temperature al-
most disappears for 1.8 3.4.R< <  

 

 
 

Figure 7   Θ versus R  for 0.5,1.0,1.2α = and 1.21.η =  
 

 
 

Figure 8   Θ versus R  for 0.5,1.0,1.2α = and 0.026.η =  
 

Figures 9-16 are plotted to show the effect of viscosity for two set of times for weak conductive 
materials.  Form figures 9-10 it is seen that Rσ satisfies our theoretical boundary conditions. As may 
seen from figure 10, it is seen that Rσ  attains the maximum value for non-viscous material for both 
models near the inner boundary of the shell.  
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Figure 9   Rσ versus R  for 0.5α = and 1.21.η =  
 

 
 

Figure 10   Rσ versus R  for 0.5α = and 0.026.η =  
 

Figures 11-12 are plotted to show the variation of θσ versus .R from these figures it is seen that 
the effect of viscosity is more prominent in GN III model compared to that of 3P lag model for a 
large time when 1 4.Rb b  Whereas, for earlier situations, the effect of viscosity for GN III model is 
very prominent near the boundaries of the shell compared to the interior of the shell. 
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Figure 11   θσ versus R  for 0.5α = and 1.21.η =  

 
Figure 12   θσ versus R  for 0.5α = and 0.026.η =  

 
From figures 13-14, the similar qualitative nature is seen in the variation of φσ  for both viscous 

and non-viscous materials. 

 
Figure 13   φσ versus R  for 0.5α = and 1.21.η =  
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Figure 14   φσ versus R  for 0.5α = and 0.026.η =  

 

 
 

Figure 15   Θ versus R  for 0.5α = and 1.21.η =  
 

 
Figure 16 Θ versus R  for 0.5α = and 0.026.η =  
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Figures 15 and 16 are plotted to show the effect of viscosity on temperature Θ for two sets of 
time. For both viscous and non-viscous material, the temperature satisfies our thermal boundary 
conditions. Also, the effect of viscosity is very prominent in earlier situations than latter. As may 
seen from the figures, when 1.21η = , for 3P lag model, the magnitude of Θ is larger for viscous ma-
terial compared to the non-viscous material. Whereas for 0.026η = , the magnitude is larger for non-
viscous material compared to the viscous material. 

Figures 17-19 are plotted to show the variations of Rσ , θσ and φσ respectively against the time η
whenever 1.4R = and 0.5.α =  From these figures, it is seen that at the beginning of time, oscillatory 
natures are seen in the propagation of the stress components. Finally they reach to a steady state 
which supports the physical fact.  

 

 
 

Figure 17   Rσ versus η  for 1.4R = and 0.5.α =  
 

 
 

Figure 18   θσ versus η  for 1.4R = and 0.5.α =  
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Figure 19   φσ versus η  for 1.4R = and 0.5.α =  
 

Figures 20-22 are plotted to draw the comparison between isotropic and orthotropic material for 
0.5, 1.0α = and for 0.026η = for viscous material. From figure 20, it is seen that for orthotropic ma-

terial, the stress waves are reflected from either boundary whereas for isotropic material, the propa-
gation of each of the waves are found to occur. Also, amplitude of Rσ decreases with the increase of 
the non-local fractional parameterα .  

 
 

Figure 20   Rσ versus R  for 0.026η = and 0.5, 1.0.α =  

 
Figure 21   θσ versus R  for 0.026η = and 0.5, 1.0.α =  
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Figure 21 depicts the variation of θσ  versus R for isotropic and orthotropic materials. As may 
be seen from the figure that for an isotropic material, the oscillatory nature is observed due to the 
reflection as mentioned earlier. However, the magnitude of θσ is maximum near the outer boundary 
of the shell for an isotropic material.  
 

 
 

Figure 22   Θ versus R  for 0.026η = and 0.5, 1.0.α =  
 

Figure 22 is plotted to show the variation of Θ  versus R for two different materials. For both 
the materials, Θ  satisfies the thermal boundary conditions. The magnitude of Θ is larger for 

0.5α =  than that of 1.0α =  for an orthotropic material. As may seen from the figure, oscillatory 
behavior is seen near the boundaries for an isotropic material. It is seen that for isotropic material, 
when 2.5R = , i.e., at the surface equidistant from the boundaries, Θ  almost disappears at the pri-
mary stage of thermal load application.  

    
8 CONCUSIONS  

The problem of investigating the radial stress, hoop stress, temperature in a homogeneous isotropic 
viscoelastic spherical shell is studied in the light of three-phase-lag model and GN-III model in the 
context of space-fractional heat conduction equation. The method of Laplace Transform is used to 
write the basic equations in the form of a vector-matrix differential equation which is then solved 
by eigen-value approach. The numerical inversion of Laplace Transform is computed by the method 
of Bellmen. The analysis of the result permits some concluding remarks: 
 

(i) When the time is small, ( 0.026)η = , i.e., at early stage of wave propagation, both the 
models give close results, whereas for comparatively large time ( 1.21)η = , significant dif-
ferences are observed for weak, normal and strong conductivities ( 0.1,1.0,1.2)α =  respec-
tively. Also, in the earlier situations, maximum magnitude occurs for weak conductivity 
whereas for large time, magnitudes are maximum when conductivity is high inside the 
body. 
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(ii) It is observed that maximum magnitude of stresses will occur for viscous material and 
for strong conductivity ( 1.2)α = . 

(iii) For an isotropic material, the maximum temperature occurs near the boundaries of the 
shell and it almost disappears in the interior of the shell. 

(iv) The effect of Rσ is more prominent near the inner boundary for orthotropic material 
compared to that of an isotropic material. 
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Appendix 

Let the Laplace transform of ( , )i Rσ η  be given by 
 

0

( , ) ( , ) .p
j jR p e R dησ σ η η

∞
−= ∫  

 
(A.1) 

 
We assume that ( , )j Rσ η  is sufficiently smooth to permit the use of the approximate method to 

apply. 
Substituting x e η−= in equation (A.1) we obtain 

 
1

0

( , ) ( , ) ,p
j jR p x g R x dxσ

∞
−= ∫  

 
(A.2) 

 
where  
  

( , ) ( , log ).j jg R x R xσ= −  (A.3) 

 
Applying the Gaussian quadrature rule to (A.2) we obtain the approximate relation  

 
1

1

( , ) ( , ),
n

p
i i j i j

i
W x g R x R pσ−

=

=∑   
(A.4) 

 
where ix ’s ( 1,2,3, , )i n= K  are the roots of the shifted Legendre polynomial and iW ’s ( 1,2,3, , )i n= K
are the corresponding weights and 1(1) .p n=  

Thus, we have  
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Therefore 
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(A.5) 

 
As the matrix is the product of { }idiag W multiplied by Vander monde matrix, it can be shown 

that the matrix is non-singular. 
Hence, 1 2( , ), ( , ), , ( , )j j j ng R x g R x g R xK are known. For 7=n  we have 

 
Roots of Shifted Legendre Polynomial                        Corresponding Weights 

 
2.5446043828620886E-2 6.4742483084434816E-2
1.2923440720030282E-1 1.3985269574463828E-1
2.9707742431130145E-1 1.9091502525255938E-1
5.0000000000000000E-1 2.0897959183673466E-1
7.0292257568869853E-1 1.9091502525255938E-1
8.7076559279969706E-1 1.3985269574463828E-1
9.7455395617137909E-1 6.4742483084434816E-2

 

 
From equations in (A.5) we can calculate the discrete values of ( , )j ig R x i.e., ( , );j iRσ η

( 1,2, ,7)i = K  and finally using interpolation, we obtain the stress components ( , ); ( , ).i R i Rσ η θ=  
 


