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1 INTRODUCTION

In the new epoch, the concentration of scientific community international has carried to the inves-
tigation of the behavior of matters at the atomic scale of material. The growth of scientists at this
length scale has carried to the creating of the phrase nanotechnology. Nanotechnology is one of
the most encouraging technologies to be researched now. This technology could have enormous in-
fluence on information technology, aerospace, electronic devices, defence production and medical
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devices. Many endeavors have been made to construct nanodevices, expand and utilize matters on
the nano scale. Some encouraging utilization has commenced to appear. One of the best examples
of novel nanostructures are carbon nanotubes (CNTs). Carbon nanotubes are allotropes of carbon.
These are derived by bottom-up chemical synthesis processes. In carbon nanotubes, the chemical
compound and atomic bonding configuration is simple. However, these materials represent various
structure-property relations among the materials. Many nanostructures based on the carbon such
as CNTs (Iijima, 1991), nanorings (Kong et al., 2004), etc, are considered as deformed graphene
sheet. Graphene is two-dimensional atomic crystal with excellent electronic and mechanical pro-
perties. So analysis of graphene sheets is a fundamental subject in the study of the nanomaterials.
Up to this time, the mechanical behaviors of nanostructures has been studied by experimental
(Ruud et al., 1994; Wong et al., 1997), continuum mechanics (Ru and Mech, 2001; Behfar and
Naghdabadi, 2005) and computer simulation (Chowdhuri et al., 2010). In view of the fact that
controlled experiments in nanoscale are difficult and the molecular dynamic is com- putationally
expensive, the continuum mechanics has been vastly studied for mechanical proper- ties of two
dimensional nanostructures. At nanometer scales, size effects often become important. The ‘size-
effect’ is important in mechanical behaviors of materials when the size of these structures become
small. This problem has been shown by experimental and atomistic simulation results. On the o-
ther hand, the use of traditional classical continuum (Yoon et al., 2003; Liew et al., 2006) models
may be questionable in the analysis of nanostructures because the classical continuum elasticity
cannot predict the size-effects. There are various size dependent continuum theories such as cou-
ple stress theory (Zhou and Li 2001), strain gradient elasticity theory (Akgoz and Civalek, 2011a;
Akgoz and Civalek, 2012a; Akgoz and Civalek, 2013a), modified couple stress theory (Yong, 2002;
Akgoz and Civalek, 2011b; Akgoz and Civalek, 2012b; Akgoz and Civalek, 2013b)  and nonlocal
elasticity theory (Eringen, 1983; Farajpour et al., 2011a; Danesh et al., 2012; Moha-mmadi et al.,
2013a).

Ke et al. (2011) employed the modified couple stress theory for free vibration and buckling of the
microbeams with the effect of the temperature change. They found that the thermal effect on the
fundamental frequency and critical buckling load is slight when the thickness of the microbeam
has a similar value to the material length scale parameter. Akgoz and Civalek (2012a) investiga-
ted bending analysis of micro-sized beams based on the Bernoulli-Euler beam theory. Modified
strain gradient elasticity and modified couple stress theories are used in that paper. Their study
highlighted that the bending values obtained by these higher-order elasticity theories have a signi-
ficant difference with those calculated by the classical elasticity theory. Akgoz and Civalek (2013
b) employed modified couple stress theory for bending, buckling, and vibration of micro-sized pla-
tes on elastic medium. The surrounding elastic medium is modeled as the Winkler elastic founda-
tion in their paper.

The nonlocal continuum theory has been usually used in the theoretical researches of structures
at small scale (Reddy, 2007; Heireche et al., 2008; Wang and Duan, 2008; Aydogdu, 2009; Shen
and Zhang, 2010; Wu et al., 2011; Aksencer and Aydogdu, 2011; Narendar and Gopalakrishnan,
2011; Moosavi et al., 2011; Farajpour et al., 2011b; Farajpour et al., 2012; Civalek and Akgoz,
2013; Ghorbanpour Arani et al., 2013; Mohammadi et al., 2013b) among all size-dependent theo-
ries. To overcome the disadvantages of classical elasticity theory, Eringen and Edelen (1972) in-
troduced the nonlocal elasticity theory in 1972. He modified the classical continuum mechanics for
taking into account the small scale effects. Microtubules (MTs) are important components of cy-
toskeletal structures, which, in conjunction with actin and intermediate filaments, provide both
the static and dynamic framework that maintains cell structure. Bending, vibration and buckling
analyses of microtubules have been recently investigated using the continuum model (Civalek and
Demir, 2010; Civalek and Demir, 2011; Demir and Civalek, 2013). Amara et al. (2010) employed
the nonlocal elasticity theory for the buckling of multiwalled carbon nanotubes (MWCNTSs) under
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temperature field. They reported that the thermal effect on the buckling strain is dependent on
the temperature changes, the aspect ratios, and the buckling modes of carbon nanotubes. Pradhan
and Phadikar (2009) investigated the vibration of embedded multilayered graphene sheets
(MLGSs) based on the nonlocal elasticity theory. In their paper, they showed that the small scale
effect is quite important and needs to be included in the continuum model of graphene sheet.
Pradhan and Murmu (2009) investigated the buckling of single-layered graphene sheets under
biaxial compression via nonlocal continuum mechanics. They reported that the nonlocal effect is
quite significant in graphene sheets and has a decreasing effect on the buckling loads. When com-
pared with uniaxially compressed graphene, the biaxially compressed one show lower influence of
nonlocal effects for the case of smaller side lengths and larger nonlocal parameter values. Murmu
and Pradhan (2009) studied the free in-plane vibration of nanoplates by nonlocal continuum
model. They are obtained explicit relations for natural frequencies through direct separation of
variables. Ansari et al. (2010) have shown that the nonlocal elasticity theory is quite accurate and
reliable for the free vibration analysis of SLGSs by employing molecular dynamics modelling. Ba-
baei and Shahidi (2010) investigated the buckling of quadrilateral nanoplates based on nonlocal
elasticity theory and by using the Galerkin method. In this article, the buckling load of skew,
rhombic, trapezoidal, and rectangular nanoplates considering various geometrical parameters are
obtained. Pradhan and Kumar (2011) investigated vibration analysis of orthotropic graphene
sheets using nonlocal elasticity theory. The solution procedure was based on the discretization of
the spatial derivatives by employing the differential quadrature method (DQM) as an accurate
and efficacious numerical method. In that paper, effect of boundary conditions is investigated on
frequencies of vibration. With respect to developmental works on mechanical behavior analysis of
SLGSs, it should be noted that none of the researches mentioned above, have considered a circu-
lar graphene sheet. Herein, Farajpour et al. (2011a) studied axisymmetric buckling of the circular
graphene sheets with the nonlocal continuum plate model. In that paper, the buckling behavior of
circular nanoplates under uniform radial compression is studied. Explicit expressions for the buck-
ling loads are obtained for clamped and simply supported boundary conditions. It is shown that
nonlocal effects play an important role in the buckling of circular nanoplates. In that paper, their
results compared with the results obtained by molecular dynamic and it is observed that results
predicted by nonlocal theory are in exactly match with Molecular dynamics (MD) results. Thus
the reliability of nonlocal theory and presented solution is demonstrated. Mohammadi et al.
(2013a) employed the nonlocal plate theory to analyze vibration of circular and annular graphene
sheet. They found that scale effect is less prominent in lower vibration mode numbers and is high-
ly prominent in higher mode numbers.

It is cleared that the natural frequency is easily affected by the applied in-plane pre-stressed and
temperature change. As a result, the effect of in-plane pre-stressed on the property of transverse
vibration of graphene sheet is of practical interest. Researches that investigated on the nonlocal
circular graphene sheets are very limited in number with respect to the case of rectangular nano-
plate. In the present paper, the effect of the in-plane pre-stressed and temperature change on the
vibration frequency of single layered circular and annular graphene sheet is investigated. The
circular and annular graphene sheet embedded in an elastic medium. The governing equation of
motion is derived using the nonlocal elasticity theory. Exact solution for the frequency equations
of circular and annular nanoplate with simply supported and clamped boundary conditions are
derived and nonlocal parameter, in-plane pre load and temperature change appears into argu-
ments of Bessel functions. From the results, some new and absorbing phenomena can be observed.
To suitably design nano electro-mechanical system (NEMS) and micro electro-mechanical systems
(MEMS) devices using graphene sheets, the present results would be useful.

Latin American Journal of Solids and Structures 11 (2014) 659-682



662 M. Mohammadi et al./ Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium

2. NONLOCAL PLATE MODEL

For linear homogenous elastic body, using nonlocal continuum theory the equations of motions
has the form.

o, + f, = pl; (1)
where fi and p are the applied or body forces and the mass density respectively; U; is the dis-
placement vector; and oy is the nonlocal elasticity stress tensor, defined by

oy (x) = J‘l(|x - X’| , 77)Cijk|‘9k| (X)dV (X), vxeV, (2)

here &; and Cijkl are the strain and fourth order elasticity tensors, respectively. /1(|X— X'

,77) is
the nonlocal modulus (attenuation function) incorporating into constitutive equations the non-
local effects. |X— X,| represents the distance between the two points (X and X' ). 77 is a material
constant (7 =€y, /@) that depends on the internal (lattice parameter, granular size, distance

between C —Cbonds), | and external characteristics lengths (crack length, wave length), |.

i
Choice of the value of parameter € is vital for the validity of nonlocal models. Hence the effects
of small scale and atomic forces are considered as material parameters in the constitutive equa-
tion. This parameter was determined by matching the dispersion curves based on the atomic
models. In other words, results can be justified by an approximation of the atomic dispersion rela-

tions. Eringen (1972; 1983) equated the relationship between the frequency given by BornKarman
model of lattice dynamics and that of nonlocal theory for plane waves and obtained a value of

0.39 for€,. Wang and Wang (2007) reported that the scale factor €y, of single-wall carbon nano-
tubes (SWCNTSs) must be smaller than 2.0 nm. Therefore, in the present study the value of non-
local parameter (€‘0|i is taken in the range of 0-2 nm. The integro-partial differential equation

Equation (1) based on nonlocal elasticity with that kernel function can be simplified to

(1—(e0|i)2v2)a“' —C:¢ (3)
where “.” represents the double dot product and V? is the Laplacian operator. The nonlocal con-
stitutive equation Equation (3) has been recently employed for the study of micro and nano-
structural elements (Moosavi et al 2011; Mohammadi et al., 2013). We consider monolayer gra-
phene sheets in our present study. In two-dimensional forms the stress—strain relations are written
as;

o on| | E/@-0") vE/@-0%) 0 |[z,-aAT
oy = (&l Vi oy =[VE/(1-0%)  E/(W-0%) 0 |je, —aAT (4
oy o 0 0 26 “

where E, G v and «a are the Young’s modulus, shear modulus Poisson’s ratio and coefficient of

nl

| | o
o O';y and ny represent the nonlocal stresses. The strains in

thermal expansion, respectively. o

terms of displacement components in the middle surface can be written
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o’w o*w o*w
PR LA LA (5)
OX oy oxoy
Stress resultants are defined as below
hi2 hi2 hi2
[ | |
M, = I zo,dz, M = I 20,0z, M = I 20,,dz (6)
—h/2 “hi2 —h/2

Here h denotes the thickness of the plate. By inserting Equation (4), and Equation (5) into
Equation (6) we can express stress resultants in terms of lateral deflection on the classical plate
theory as follows

2 2 9 )
MXX_(eOIi)szMxx:_D a_\gv_‘_ua_vzv ’Myy_(eoli)zszyy:_D 8_\2/4‘1)8_\2/
2 oy dy ox
) (7)
22 oW
M, — (&) VM, =-D(1-v)

oxdy

Where
3
D= Lz
12(1-0%)

Note that relations given in Equation (7) are in the nonlocal plate model and those reduce to that

(8)

of the classical equation when the nonlocal parameter eoli is set to zero. By using the principle of

virtual work, we can obtain governing equations.

2 o°M o°M
aMZXX+2 2 4 Zyy+f+2 Nxxa—W+NXy@
OX OXoy oy OX OX oy (9)
2
+%(NW%+ N, éﬂjzph Zt‘:"mww—Kszw
X

here f,p, KW, KG are distributed transverse load acting on the nanoplate per unit area of the
nanoplate, density, Winkler modulus and the shear modulus of the surrounding elastic medium,
respectively. It is assumed that the nanoplate is free from any transverse loadings (f =0) we
can express stress resultants in terms of lateral deflection on the classical plate theory as follows
NXX:NW:Nr+Ntemp, ny:0 (10)
Here N,and N
the basis of the theory of thermal elasticity mechanics, the resultant thermal stress can be written
as

remp ar€ the uniform boundary tension and resultant thermal stress respectively. On

_ Ea
temp — (1_—0)
So we have Using Equation (7), Equation (9) and Equation (10) we have the following governing
equation of motion in terms of the displacements for the present analysis
2
2 (g2 252 (2 2 2| O°W )
DV (V) (N, + Ny ) ()2 (V20) - o (6, ( i~ ]—(Nr Ny )V

2

+ph%T\;v+ K W= K V2w—K, (e, ) V2w+ K (gl )" V2 (Vew)=0

N hAT (11)

(12)
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where VZ is laplacian operator in polar coordinate, the two-dimensional Laplace operator is given
bsz /6!’ /8r+(l/l’ )82 )/86’2 . The parameters D,(eoli),w are the

flexural rlgldlty of the nanoplate, nonlocal parameter and transverse displacement of the circular
nanoplate, respectively. For free vibration, we can write the motion of the plate in polar coordi-
nates as

w(r,0,t)=W(r,0)e" (13)

where @ is the natural frequency and i° =—1. By inserting Equation (13) into Equation (12)
yields a four order partial differential equation involving natural mode W(r,0)

% (VZW)+F2V2W—24W =0 (14)
where,
(phwz (eoli)Z/D_(Nr + Ntemp)/D_ Ko /D =Ky (&l )Z/D)
(1+(Nr N ) (60 )° /D + Ko (&) )Z/D)
4_ Pha)z/D_Kw/D
(1+(N,+Ntemp)(eoli)2/D+KG(e0Ii )Z/D)

Using Laplacian operator in polar coordinates, the complete solution to the above Equation (14)
can be obtained by superimposing the solutions of the two following Bessel equations

2=

(15)

2 2 2 4 4

aVl/JrlaWJrizaV\Z/Jr 2 —\I*+43 W =0 (16)
or ror r°o0 2

2 2 2 4 4
6V;/+E6W+%GV\2/+ 2+ +43 W =0 (17)
or ror r°o0 2

We will put W(r,0)=R(r)p(8), in the Equations (16) and (17), afterwards these equations are
written by multiplying with r? / { R(r)p(6 )}

r’ | d? R+1dR+ 2 -r*+4z* R(r) |=— 1 d?*p(0) (18)
R(r)| dr® rdr 2 o(0) do?

r d2R+1d_R+ 2 +4I* +43* R(F) |=— 1 d?p(0)
R(r)| dr® rdr 2 p(0) do?

Equations (18) and (19) are satisfied only if each expression in the above is equal to constant

(19)

4 2. Thus, we obtain three ordinary differential equations as

d*p(9)

4 +&%p(0)=0 (20)
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2 2 4 4 2
IR IR JENT +4 < r(ry=0 (21)
dr® rdr 2 r
2 2 ’ 4 4 2
d I§+1d—R+ "=Vl +4% —5—2 R(r)=0 (22)
dr® rdr 2 r
The solution of Equation (20) will become
o(6)=Acos(£0)+Bsin(LB) (23)

Since W(r,8) has to be a continuous function, ¢(@) must be a periodic function with a period
of 27 so that W(r,0)=W(r,0+2x). Thus, { must be an integer

{=m m=012,.. (24)
Equation (21) is recognized as forms of Bessel's equation of order M=¢ with the argument ar

whose solution is given by
R(r) = APJ, (&) + ALY, () (25)

Jm ,Ym are Bessel functions of order m of the first and second kind, respectively. The parameter

of a in the argument of Bessel function is defined asé = \/(Fz +T* +43° )/2 . Equation (22)

is a Bessel differential equation of order M=¢ with the argument 7'  whose the solution in
this case may be written as

Ry (1) = AV1, (1) + APK,, (r) (26)

where 7= \/(—Fz +T* +45° ) / 2 and | ,K_ are hyperbolic or modified Bessel functions of

order M of the first and second kind, respectively. The general solution of Equation (12) can be
expressed as

w(r,0) =
+AD 1, (1) + APK ()
Where the constants B, A ,A%A),Ais),Af),A;l) and &,77 depend on the boundary conditions of

the nanoplate.

J(A; cos(mo) + B sin(md)) m=0,1,2,... (27)

3. IMPLEMENTATION OF BOUNDARY CONDITIONS

3.1 circular plates

3.1.1 Clamped boundary condition

Let us consider a circular nanoplate as shown in Figure 1, where @ is the radius of nanoplate.
Since the origin of the polar coordinate system is taken to coincide with the center of the circular

plate having no internal holes or supports at the center, the terms Y, (£r)and K_(7r) must be
discarded into avoid infinite deflections and stresses atr =0. So, for a circular nanoplate one, we
take constants A;Z’,A‘n‘” as zero. Assume that the nanoplate is clamped along its contour. The

boundary conditions are

W(a,0)=0 (28)

Latin American Journal of Solids and Structures 11 (2014) 659-682



666 M. Mohammadi et al./ Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium

W
oW (r,0) 0 (29)
or o
By inserting Equation (27) in Equation (28) and Equation (29), we have
AVJ, (Ga)+ A, (2) =0 (30)
AV (Ea)+ AP (na) =0 (31)

Figure 1: A continuum plate model of the circular graphene sheet

Where the primes are used to indicate a differentiation with respect to I'. Using the following
recursion relationships of Bessel’s function

10) =20 <1 )=, ) (32)

e =220 gy en-T, e (33)

Using above two equations, Equatlon (30) and Equation (31), are written in matrix form as
[Jm(é‘a) |m(77&)HAS)}:O o)
Jn(a) 1.(ma)]|AY
This equation is satisfied in a meaningful way only if the determinant of coefficient is equal to
zero. This gives the frequency equation

In(ca)l;,(ma)—-1,(na)d; (fa) =0 (35)
The Equation (35) can be simplified by using the Equation (32) and Equation (33)
élm(na)"]mfl(ga)_nJm(ga)lmfl(na):O (36)

where non-dimensional frequency parameter and non-dimensional preload are defined in the fol-
lowing form. Q= /ph/Dwa’, N; =N,a’/D, N, =N,.a>/D, 1= (el )/a, K, =K,a*/D
K = KGaZ/D , Thus we have,
\/anz +Ia* +4x‘a’
da=
2
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2 2 * * * * 2 *
FZaZZQ/’l_Nr_Ntemp_KG_KW/u 4.4 QZ—KW

x 2 * 2 * 2 Za‘ = x 2 * 2 * 2
1+ N7 + N + Ko 1+ N/ g2 + NG+ Ko

(38)

3.1.2 Simply supported boundary condition
For circular nanoplate with simply supported edge, the boundary conditions are, at the boundary
radius =@

W(a,0)=0 (39)

(62W(r,6’)+28W(r,<9)+£82w(r,9)]

=0 (40)

or’ r o or r’  06?
By inserting Equation (27) into Equation (39), Equation (40) can be written in a matrix form
similar to previous section. For nontrivial solution, the characteristic determinant is set to zero.
By expanding the determinant, one can get the frequency equation of circular nanoplate with
simply supported boundary condition as follows

r=a

C), (2a)-CO1, (7a) =0 (a1)
WhereC" and C'?) are defined
m’v ?

co =J”(§a)+§J’(§a)— J(¢a) and C@ = |"(§a)+§|'(§a)-’2“|(§a) (42)

a2 2
3.2 Annular plate

3.2.1 Clamped boundary condition in outer and inner radius

An annular plate consists of a circular outer boundary and a concentric circular inner boundary.
Throughout this work the radius & and b will define the outer and inner boundaries, respectively.
We consider an annular graphene sheet with clamped boundary condition on Outer and inner
edges of the plate. Now, we will substitute the solution Equation (27) into the clamped boundary

conditions at '=a andr =Db. So, we will have.

W(r,0)| _, =wW(r.0)_ =0 (43)
dw(r,0)| _ dw(r,0)| 0 (44)
dl’ r=a dr |r:b

This will give four homogeneous equations in four unknowns Aﬁl),Agz),Af) and Ar(n4). Similar to

the complete circular plates in the previous section for a nontrivial solution, the determinant of
coefficient will be zero. The frequency determinant will consist of Bessel function of higher orders.

Ja(ca) Y,(ca) I,(na) K,(na)
Jn(ga) Yp(ga) In(na) Ki(na) _
3a(¢b) Y, (éb) I,(mb) K,(nb)
Jn(éb) Yo(éb) 1(mb) K (nb)

3.2.2 Simply supported boundary condition in outer and inner radius
For annular nanoplate with simply supported boundary conditions on outer and inner radius of
the plate, the boundary conditions are defined as below:

W(r,0)| _, =W(r.0)_, =0 (46)
(82W(r,49)+2 8W(r,49)+£82W(r,9)J

(45)

-0 47
or? r or r 06° (47)

r=a
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=0 (48)

r=b

W (r,0) voW(r,0) v d°W(r,0)
2 T t= 2
or r or r 00

By inserting Equation (27) into Equations (46-48), one can write them in the matrix form (in this
section the order of matrix is 4) similar to previous section. To determine nontrivial solutions of
the above system of homogeneous equations, it is necessary to equate its determinant to zero. The
frequency equation of annular nanoplate with simply supported boundary condition on the outer
and inner radius can be written as follows:

Jn(éa) Y,(ca) 1,(na) K,(7a)
C*(J) C*(Y) C*(l) C*(Y)

= (49)
Jn(Sb) Y. (b)) 1,(nb) K, (7b)
C**(J) C**(Y) C**(l) C**(K)
Where,
*( y) _ y"( (50 )
Ch) = Y"(§b)+ Y(fb)— Y(fb) (31)
Note that the above equations are for y = J, Y, I, K. For other boundary conditions of annular

nanoplate, frequency equations are derived similarly.

4 RESULTS AND DISCUSSION

Effect of thermal on the vibration of circular and annular nanoplate under in-plane pre- load
investigated in this paper. We assumed that the scale coefficients are smaller than 2.0 nm because
these values for CNTs were taken by Wang and Wang (2007). The properties are considered same

as indicated in the reference (2006). E =1060 Gpa, v =0.25, p = 2250 kg/m3 .For the room or

low temperature case thermal coefficient is taken o =-1.6x10"° K™and for high temperature
case thermal coefficient is taken @ =1.1x10° K™ These values were used for CNTs (Zhang et

al., 2007; Benzair et al., 2008; Lee et al., 2009). Single layered annular graphene sheets have been
considered for the present nonlocal analyses. Following four boundary conditions have been inves-
tigated in the vibration analysis of the annular graphene sheets as:

SS: Annular graphene sheet with simply supported outer and inner radius.

CS: Annular graphene sheet with clamped outer and simply supported inner radius.

SC: Annular graphene sheet with simply supported outer and clamped inner radius.

CC: Annular graphene sheet with clamped outer and inner radius.

The non-dimensional natural frequency becomes equal zero when the in-plane compressive pre-
stressed achieve their critical value and the mode of vibration is buckled. We compared the re-
sults of circular nanoplates with published data. As shown in Figure 2 results of Farajpour et al.
(2011), compared to results obtained by present work for the critical compressive pre-stressed of

circular nanoplates without thermal change and elastic medium. Axisymmetric problem(m :0) ,

here, is considered and nonlocal parameter of circular nanoplate is given lnm. It can be observed
that represented results exactly match with other results reported.
For further validations, present results are compared to that obtained based on nonlocal elasticity
theory for square nanoplate (Pradhan and Phadikar, 2009) solutions without in-plane pre-
stressed, thermal change and elastic medium. The natural frequency parameters of circular and
Latin American Journal of Solids and Structures 11 (2014) 659-682
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square nanoplate for simply support boundary conditions were presented in Table 1. Given values
of radius of circular nanoplate @ =10 NM and length of square nanoplate L =20 nm have been
used in this analysis. The non-dimensional natural frequency in Table 1 is defined as

Q=wx? x/ph/D / 7% where L is explained L=2a for circular nanoplate and L as defined
length of square for square nanoplate.

16
—4—Clamped (Farajpour et al. 2011a)

B Clamped (Present)

o

[
&

Simply supported (Farajpour et al. 2011a

@ Simply supported (Present)

-
~N

-
=)

o

Critical value of compressive in-plane pre-load

h= o

@

[

o

®

[ ]
®

~

0
0 0.5 1 15 2
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Figure 2: Comparison of results of critical value of compressive in-plane pre-stressed obtained by the present
study and that obtained by Ref. (Farajpour et al. 2011a)

Results
e, (nm)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Pradhan and Phadikar 2.000 1.998 1.992 1.982 1.969 1.952 1.932 1.909 1.884 1.857 1.827
2009

Mohammadi et al. 2013a 2.000 1.997 1.990 1.974 1.964 1944 1921 1.895 1.866 1.835 1.802

Present 2.000 1.997 1.990 1974 1964 1.944 1921 1.895 1.866 1.835 1.802

Table 1: Comparison of non-dimensional fundamental natural frequency of square nanoplate with circular one
(simply support boundary condition).

Figure 3 shows the frequency difference percent with respect to nonlocal parameter. It is seen that
the frequency difference percent increases with the increase of the temperature change. Also, the
results show that the difference percent increases monotonically by increasing the nonlocal pa-
rameter. In other words, that nonlocal solution for difference percent is larger than the local solu-
tions. In Figs. 3, the gap between low and high temperature cases increases with increasing the
temperature change.

The relationships between non-dimensional frequency versus temperature change for different
boundary condition and low and high temperature case are demonstrated in Figure 4. From Fig-
ure 4 it is observed that the non-dimensional frequency of the low temperature case is always
larger than that of high temperature case. It is demonstrated that the non-dimensional frequency
decreases as the change in temperature increases at higher temperature but increases as the
change in temperature increases at room or low temperature. Furthermore, the gaps between the
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two curves (high and low) increases with increasing the temperature change. In other words, the
difference between the non-dimensional natural frequencies calculated by high temperature and
low temperature decreases with decreasing temperature change. The temperature change is im-
portant for graphene sheet with simply supported boundary condition because the slope of curve
with simply supported boundary conditions is more than clamped boundary condition curves.

= AT=30 High Temperature
AT=30 Low Temperature ]
AT=60 High Temperature >
a0 AT=60 Low Temperature P ~
-+-AT=90 High Temperature T ‘
~+-AT=90 Low Temperature o
8 =53

Difference percent
)

0 0.5 1 15 2
Nonlocal Parameter (nm)
Figure 3: Variation of difference percent with nonlocal parameter for the cases low and high temperature and
various changes temperature.

To study the influence of temperature change on difZference percent of non-dimensional frequency
of nanoplate, the results from the solution for nondimensional frequency of nanoplate for simply
supported boundary condition and for different temperature change, are plotted in Figure 5. The
nonlocal parameter is taken 1 nm and high temperature case is considered in this figure. Figure 5
shows the difference percent versus radius of circular nanoplate. It is cleared that the difference
percent increase with increase in temperature. It is demonstrated that as the radius of circle in-
creases the difference percent also increases. In other words, at larger radius of circular nanoplate,
the effect of temperature change is more importance.
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Figure 4: Change non-dimensional frequency with temperature change for various boundary conditions in the
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Figure 5: Change difference percent with radius of circle for various temperature changes.
Table 2 presents the change of the frequency parameters with temperature change for the annular
nanoplates withv =0.3. To illustrate the effect of boundary condition and thermal case on fre-
quency response, in this section we tabulate the lowest six temperature change for different ther-
mal case and four cases different boundary conditions of annular nanoplate. In this investigation,
we consider the non-dimensional frequency of first mode number, the outer radius of the annular
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nanoplate 20 nm and the nonlocal parameter is 1 nm. From this table it is seen that frequency
parameters increase with increase of temperature change for all boundary condition and room or
low temperature case. In the other hand, it is observed that the effects of the temperature change
on the non-dimensional frequency are different for the case of low and high temperature. From
this table obvious the important influence of temperature change, in the cases low and high tem-
perature case on the non-dimensional frequency of annular graphene sheet.

Boundary Condition Thermal Case Temperature Change
0 20 40 60 80 100
CcC room or low temperature case 76.5525 77.8325 79.1066 80.3738 81.6336 82.8852
high temperature case 76.5525 75.6695 74.7852 73.8997 73.0137 72.1283
SS room or low temperature case 35.9875 37.7473 39.2251 40.4844 41.5775 42.5442
high temperature case 35.9875 34.5823 33.0095 31.2912 29.4905 27.7019
CS room or low temperature case 53.7851 55.5609  57.34 59.115  60.8793 62.6257
high temperature case 53.7851 52.5694 51.3603 50.1594 48.9681 47.7875
SC room or low temperature case  57.814  58.233  58.678  59.1565 59.6778 60.2523
high temperature case 57.814 57.5377 57.2685 57.006 56.7471 56.4914

Table 2: Change of dimensionless frequency parameters for the four cases different boundary conditions and

different temperature change. (Q = wa? /ph/D, a=20nm, b/a =05¢l =1 nm)

To illustrate the effect of aspect ratio on the non-dimensional frequency, in this section, the non-
dimensional frequency versus temperature change of annular nanoplate for different aspect ratio is
plotted in Figure 6. Figure 6 shows the important influence of aspect ratio on the natural fre-
quency of annular graphene sheet with CC boundary conditions and low temperature case. The
radius of circular nanoplate a=10 nm and nonlocal parameter e l,=1 nm are considered. It is
found that the non-dimensional frequency increases with increase of aspect ratio from 0.1 to 0.5
and temperature change in low temperature case. Similarly these phenomena are observed for
annular nanoplate with different boundary conditions. The effect of temperature change on the
frequency of circular graphene sheet embedded in an elastic medium is studied. The Winkler
modulus parameter Ky, for the surrounding polymer matrix is gotten in the range of 0-400. Then
shear modulus factor Kg is gotten in the range 0-10. Similar values of modulus parameter were
also applied by Liew et al. (2006). The relationships between frequency difference percent versus

Winkler constant K, and shear modulus KG for different temperature changes and low and high

temperature case are demonstrated in Figure 7a, b. A scale coefficient ey, = 2.0 nm is used in the
analysis. As can be seen, the Winkler constant or shear modulus decreases then the effect of
thermal on the difference percent increases. It can be seen for the results that the difference per-
cent increases with increasing the temperature change. For larger temperature change, the de-
cline of difference percent is quite important. Also, the difference percent for low temperature case
is larger than that for case of high temperature.

Furthermore the decline for the high temperature case is much less than that for case of low tem-
perature. From these plots obvious the important influence of temperature change, in the cases
low and high temperature case on the non-dimensional frequency of embedded orthotropic gra-
phene sheet. In Figs. 7a, b the gap between low and high temperature cases increases with in-
creasing the temperature change.
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Figure 7: Change difference percent frequency of circular nanoplate versus a) Winkler elastic factor, b) shear
elastic factor, for low and high temperature case and various temperature changes.

Variation of frequencies with Winkler elastic factor is shown for first mode of annular nanoplate
with CC boundary condition in Figure 8. The frequencies are computed considering radius of cir-
cular nanoplate r=10 nm. The frequency curves show that the non-dimensional frequencies are
sensitive to the elastic medium. As the Winkler modulus parameter increases the non-dimensional
frequency also increase. This increasing trend of non-dimensional frequency parameter with sur-
rounding matrix is noticed to be influenced significantly by temperature change. This interprets
that if the circular graphene sheets are embedded in a soft elastic medium, fundamental frequency
will be quite low for very small size circular graphene sheet as depicted in this figure. For lower
values of e0a the non-dimensional natural frequency are higher while this is lower for large e0a
values. This interprets that if the circular graphene sheets are embedded in a soft elastic medium,
the nondimensional natural frequency will be quite low. The difference between two curves in-
creases with by increase mode number. It is seen that effect of small length scale is higher for
higher wave modes. This can be clearly seen from Figure 8.
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Figure 8: Change non-dimensional frequency of circular nanoplate versus Winkler elastic factor for clamp and
simply boundary condition and various nonlocal parameters.

Figure 9 shows the important influence of elastic medium. The radius of circular nanoplate r=10
nm and Winkler elastic factor Ky=400 are considered. It is found that the nondimensional fre-
quency increases with increase of shear modulus factor from 0 to 10. As can be observed, the ef-
fect of nonlocal parameter on the non-dimensional natural frequency is less importance for circu-
lar graphene sheet embedded in an elastic medium in comparison with circular graphene sheet
without elastic medium because the shear modulus increases then the effect of nonlocal parameter
on the nondimensional frequency decreases. Similarly these phenomena are observed for annular
nanoplate with different boundary conditions.

In Figure 10 and 11, we consider a mono-layered circular graphene sheet with clamp boundary
conditions. To illustrated the influence in-plane pre-stressed on the natural frequency in two cases
compressive and tensile pre-stressed, we define frequency fraction as divide non-dimensional natu-
ral frequencies with the in-plane pre-stressed by those without the in-plane pre-stressed as the

following form:
Nondimensional frequency with the inplane pre — load

f fraction =
requency traction Nondimensional frequency without the inplane pre — load
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Figure 9: Change non-dimensional frequency of circular nanoplate versus shear elastic factor, for clamp and
simply boundary condition and various nonlocal parameters.

The scale coefficient is 2 nm and the first mode number is considered. The in-plane loads are con-
sidered P,=2, 4, 6, 8 and 10 for tensile pre-stressed case and P,=1, 2, 3and 4 for compressive pre-
stressed. In Figure 10 frequency fraction is plotted versus radius of circular nanoplate for various
compressive in-plane pre-stressed. It is shown that the frequency fraction with different in-plane
compressive loads will increase with the radius of nanoplate increasing. However, it is cleared the
non-dimensional frequency with in-plane compressive loads are smaller than the non-dimensional
frequency without in-plane loads for all radius of circular nanoplate. It can also be observed that
the frequency fraction will increases with the in-plane load decreasing. The plot of frequency frac-
tion with respect to radius of circular nanoplate for the case of tensile in-plane pre-stressed is
demonstrated in Figure 11. It is cleared; the behaviors of the frequency fractions for the tensile in-
plane pre-stressed are against compressive in-plane pre-stressed in Figure 11. In the two case of
in-plane pre-stressed (compressive and tensile loads), the effect of in-plane pre-stressed decreases
with the increasing of radius of circular nanoplate. This means that at larger radius of circular
nanoplate, the effect of in-plane pre-stressed is less importance.
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Figure 11: Change of frequency fraction with radius of circular nanoplate for various non-dimensional tensile pre-

stressed.

In Figure 12, the plot of non-dimensional natural frequency with respect to radius of circular na-
noplate is demonstrated. These results are plotted here for the circular nanoplate under compres-
sive pre-stressed, the case of circular nanoplate without in-plane pre-stressed and different values
of nonlocal parameter. The clamped boundary condition and first mode number is considered.
From Figure 12 it is observed that decreasing the nonlocal parameter yields to increases the natu-
ral frequency. This indicates that increasing the nonlocal parameter leads to decrease in the stiff-
ness of body. Furthermore, the non-dimensional natural frequency increases the radius of the na-
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noplate increases. It is clear as a matter of fact that, the influence of nonlocal effect reduces, by
increasing of radius. Furthermore, with further increase of radius the curves become smooth in

nature. Nearly, at a>50 nm all results close to the classical frequencies(eoli = 0), this insinu-

ates that the nonlocal effect decreases with growth of the plate radius and disappears after a cer-
tain radius. This may be explained that the wave length gets larger by decreasing of radius which
increases the effect of the small radius scale. Moreover, the non-dimensional natural frequency for
circular nanoplate with in-plane pre-stressed is smaller than that without in-plane pre-stressed.
The influence of nonlocal parameter is larger for circular nanoplate with in-plane pre-stressed in
comparison with circular nanoplate without in-plane pre-stressed. Further, at circular nanoplate

with in-plane pre-stressed all results converge to the local frequency (eoli = O) at higher radiuses.

It is seen that influence of nonlocal effect is higher for circular nanoplate with in-plane pre-
stressed.
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Figure 12: Variation of non-dimensional frequency with radius of a circular graphene sheet for various nonlocal
parameters with in-plane pre-stressed and without in-plane pre-stressed.

Figures 13 and 14 present the comparison of the lowest five frequency parameters for the annular
nanoplates with outer radius 20 nm, aspect ratio 0.5 and SS boundary condition. To illustrate the
effect of nonlocal parameter and temperature change on the mode numbers, in this section we
plot the lowest five frequency parameters for different nonlocal parameters and low temperature
case. From this Figures it is seen that frequency parameters increase with decrease of nonlocal
parameter and those increase with increasing temperature change for all mode numbers in low
temperature case. However, small scale effects are more important in higher mode numbers. As
seen from these Figures, the small scale effect also depends on the temperature change. The effect
of nonlocal parameter on the frequency of vibration without temperature change compare to the
frequency with temperature change is more important. As the temperature change increases, the
small scale effect kept on decreasing. The small scale effect for vibration with thermal case is
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much less than that for vibration without thermal case. Therefore, in the vibration analyses it is
needful to include the nonlocal elasticity theory for higher mode number and lower temperature
change.
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Figure 13: Variation of non-dimensional frequency of annular nanoplate with Nonlocal parameter for various
mode numbers, AT=0 K.
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The non-dimension frequency against the Winkler and Pasternak modulus (Ky and K) for dif-
ferent values of the nonlocal parameter and temperature change is tabulated in Table 3. The ra-
dius of the circular grapheme sheet is taken as 20 nm. The value of nonlocal parameter is taken in
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the range of 0-2 nm. Computation has been carried out considering temperature change in the
range of 0-100 K at room temperature. As the Winkler and Pasternak coefficients increase, the
non-dimension frequency increases for all values of the nonlocal parameters. This is due to the
fact that increasing Winkler and Pasternak coefficients increase the sheet stiffness. The effect of
nonlocal parameter decreases for higher values of the Winkler and Pasternak modulus. Further-
more, the amounts of non-dimensional frequency decrease by increasing the nonlocal parameter.
This implies that the stiffness of structure decreases with an increase in the nonlocal parameter
for a fixed value of temperature change. It is also observed that non-dimensional frequency in-
creases as the value of temperature change increases from 0 to 100 K. In room or low temperature
case, the small scale effects are more noticeable for the single-layered graphene sheets (SLGSs)
without thermal effect compared to SLGSs with positive temperature change and size effect de-
creases with increase in the temperature change. This means that nonlocal effects decrease with
the increase of temperature change. When the environment temperature increases, the average
distance between atoms increases (the interaction between atoms decreases) and it causes a de-
crease in the small scale effects.

&), (nm)
Elastic medium AT—0 K AT—100 K
0 1 2 0 1 2

Ky=0 K,=0 10.2158 10.1284 9.8789 12.7891 12.7694 12.7129
Ke200 K,=0 17.446 17.395 17.2508 19.0673 19.0541 19.0162
W K;=10 19.3082 19.3005 19.2782 20.7567 20.7828 20.8534
Keoed00 K,=0 22.4580 22.4184 22.3068 23.7395 23.7288 23.6985
W K,=10 23.9334 23.9272 23.9092 25.1166 25.1381 25.1965

Table 3: Change of dimensionless frequency parameters for different elastic medium, nonlocal parameter and

different temperature change. (Q =wa’./ oh / D,a=20 nm)

5 CONCLUSIONS

This study illustrates the significance of small scale effects and temperature change on the vibra-
tion behavior of SLGSs under in-plane pre-stressed via nonlocal continuum mechanics. The closed
form solutions for the free vibration nanoscale circular and annular nanoplates are obtained. Re-
sults for circular and annular graphene sheets with simply supported, clamped and mix of them
are presented. From the results following conclusions are noticeable:

e By increasing in-plane tensile pre-stress the natural frequencies increases and the higher
in-plane compressive pre-stress leads to lower natural frequencies.

e In the case of compressive in-plane pre-stressed the frequency fraction will increase with
the radius of nanoplate increasing and in-plane pre-stressed.

e At smaller radius of circular nanoplate, the effect of in-plane pre-stressed is more im-
portance.

e The influence of nonlocal effect reduces, by increasing of radius.

e The influence of nonlocal effect is higher for circular nanoplate with in-plane pre-stressed.

e The non-dimensional natural frequency decreases at high temperature case with increasing
the temperature change.

o The effect of temperature change on the non-dimensional frequency vibration becomes the
opposite at low temperature case in compression with the high temperature case.
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e The nonlocal effect also depends on the temperature change. The influence of nonlocal ef-
fect for higher temperature case is much more than that for room temperature case.

e The difference percent increases monotonically by increasing the nonlocal parameter.

o The difference between low and high temperature cases increases with increasing the tem-
perature change.

o The effect of thermal on the frequency vibration increases with increasing the radius of
circular nanoplate.

o The sheet stiffness increases with increasing the Winkler and Pasternak coefficients.

o The effect of nonlocal parameter decreases for higher values of the Winkler and Pasternak
modulus.

o The effects of small length scale and surrounding elastic medium are significant to the
mechanical behavior of nanoplates or SLGSs and cannot be ignored.

o When the environment temperature increases, the average distance between atoms in-
creases (the interaction between atoms decreases) and it causes a decrease in the small
scale effects.
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