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Design of tensegrity structures by minimizing static compliance
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1 INTRODUCTION

Tensegrities are structures whose integrity is based on a balance between tension and compres-
sion. They are a kind of spatial structural system composed of cable (in tension) and strut (in
compression) components with reticulated connections, and assembled in a self-balanced fashion,
(Barbarigos et al. 2010). Several descriptions of tensegrity structures have been recommended so
far depending on their intended focus. A recent and the most accepted definition was suggested
by Motro (2003). Optimal design of tensegrity structures is relatively complex, mainly because
they have a non-linear behaviour.

The design of tensegrity structures can be categorized into two sections. The first one, which is
called a form-finding step, focuses on finding a super stable geometry and normalized force densi-
ty coefficients corresponding to a proper topology of the structure. In the second step, the optimal
self-stress (pre-stress) force and cross-sectional area of elements are obtained based on minimizing
an objective function such as static compliance work or dynamic behaviour etc.

In the literature, the first section has been broadly investigated by different approaches such
as nonlinear programming (Pellegrino, 1986), dynamic relaxations (Barnes, 1999), force density
(Vassart and Motro, 1999), stochastic search (Paul et al., 2005), numerical analysis (Tran and
Lee 2010-a, Tran and Lee 2010-b) and more recently by finite-element approach (Pagitz and Tur,
2009) and genetic algorithm (Xu and Luo, 2010-b). The form-finding is usually seen like a dis-
tinct stage in the structural design process of tensegrity, yet it can also be considered as a part of
the static analysis (Dalilsafaei et al. 2011). There are many contributions on finding initial ele-
ment forces for a given geometry is known as pre-stress design, (Dalilsafaei et al. 2011). The pre-
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stress not only plays a key role to prevent slackening of cable elements, but also it provides the
structural stability of the system. Pellegrino and Calladine (1986) proposed a method to obtain
the force density coefficient from the null space of the equilibrium matrix. Moreover, Tran and
Lee (2010-b) provided an approach for finding a single force density coefficient by considering the
unilateral properties and the structure stability. More detailed information about finding the op-
timal design pre-stress force can be found in (Xu and Luo, 2010-a). More recently, Dalilsafaei et
al. (2011) suggested a method for finding the least value of the pre-stress corresponding to the
value of the direction and position of external loads. They used the flexibility-based in order to
finding the least magnitude pre-stress for a given tensegrity.

In spite of a vast literature on the form finding step, and pre-stress, few contributions have

focused on designing the tensegrity structures. Kebiche et al. (1999) stated that the level of the
pre-stress and rigidity ratio between strut and cables are important to design tensegrity structu-
res. Zhang et al. (2006) suggested a direct approach to design the geometry of tensegrity structu-
res. Smaili and Motro (2007) showed a design analysis of curved tensegrity systems and investiga-
ted the deployment procedure requirements of such systems. Despite of numerous contributions
used on the form finding and determination of the pre-stress of tensegrity structures, there is no
general investigation to obtain the optimal design parameters of tensegrity structures including,
the pre-stress force and cross-sectional area of elements, simultaneously.
The main contribution of this work is summarized as obtaining the optimal of pre-stress and
cross-sectional area of the tensegrity systems simultaneously in such a way that their static com-
pliance in terms of some physical constraints is minimized. The physical constraints include no
slacking for cable element, no buckle for strut element and yielding stress capacities of cable and
strut elements. Besides, the upper bound of the axial stresses at each member is smaller than the
ultimate stresses in both loaded and un-loaded equilibrium configurations. Here, genetic algorithm
is used for solving nonlinear constraints’ minimizations. It also should be noted that the lower
and upper bound of design variables should be defined. Modifying of the tensegrity structure
according to the obtained design variables increases the rigidity of the given tensegrity structure,
because all cable elements are in tension, and all compressive strut elements are not subjected to
buckle. In this study, it is assumed that the form finding step has been done. It means that a
super stable pre-stress configuration of the tensegrity and the normalized force density coefficients
are known. In order to finding the unilateral force density coefficients, a method suggested by
Tran and Lee (2010-b) is applied.

The rest of the paper is organized as follows: In Section 2, the analytical formulation used
for solving the nonlinear static response of the structure is described and optimization parameters,
nonlinear constraints are explained. Section 3 describes the solution procedure for solving the
nonlinear constrained minimization. Furthermore, numerical examples are given in Section 4.
Finally, in Section 5, some conclusions are drawn.

2. Analytical formulation

2-1 Static formulation of the problem

The pre-stress state between tensioned cables and compressed struts makes a tensegrity structure
stable. The feasible node coordinates (nodal coordinate), element pre-stressed lengths, [;, and

normalized force density coefficients 0, of tensegrity systems are known.

To describe the static behaviour of a tensegrity structure around an equilibrium configuration, a
static model can be used. The matrix form of the equilibrium equation at a pre-stressed configu-
ration along with external force in the global coordinates is as follows:

Kou=F* (1)
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where Kg and F* denote respectively the tangent stiffness matrix and external load vector.

Also, U is the vector of nodal displacement. It is worth mentioning that, an incremental- iterati-
ve solution scheme such as modified Newton- Raphson method is employed to obtain the solution
of nonlinear Eq. 1. The components of the tangent stiffness matrix are the material stiffness ma-

trix Kg , normally used for small-deformation truss, and the geometrical stiffness matrix Kg cau-
sed by pre-stresses, (Guest, 2006).

KS =K +KS 2)

A finite-element model of a tensegrity system can be developed in local coordinates by the follo-
wing stiffness matrices for each member in the structure, (Ali and Smith, 2010).
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where, E,, A, and b express the elastic modulus, cross-sectional area of elements and the number

of sum cable and strut elements, respectively. Furthermore, lj; indicates the rest length of the
member computed using the following Eq. 4-a:
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whereF, expresses the pre-tension force, and it is calculated as follows:
R =aq I (4-b)

where « is the coefficient of pre-stress force. The main goal of this study is to find the optimal
coefficients of pre-stress force and cross-sectional area of strut and cable elements when the tense-
grity structure is subjected to various external forces. Generally, in tensegrity structures, the de-
sign task for the element optimization is to find out such an optimal design variables that produ-
ce the structure with the high rigidity. If design variables are not optimally selected, it will be
possible that one or more cable elements might go to slack, and/or internal member stresses get
bigger than the ultimate stresses. Or, one or more strut members might go to bucking. Therefore,
the rigidity of the tensegrity structures reduces, and then the risk of the structure failure increa-
ses. To overcome this problem, the following nonlinear constraint of the minimization is taken
into account to design tensegrity structures.

2.2. Defining the objective function and design variables

The rigidity of the tensegrity structure can be measured by different criteria. One possible evalua-
te is the work done by the external loads in deforming the tensegrity structure from the pre-
stressed configuration to the new equilibrium configuration. Therefore, the inner product of the
external forces and deformation of the structure called the static compliance and then it is consi-
dered as the objective function.
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Fit=f7 (5)
It is obvious from Egs. 1-4 that the static responses of the system are depended to the coefficient
of the pre-stress, cross-sectional area of members, pre-stressed length member (I, 1 ), normalized

force density coefficients (0,0 ) and the mechanical properties. It is mentioned previously

that, in this study, the normalized force density coefficients and pre-stressed length of members
(which are computed from the form finding stage) along with the mechanical properties are
known as a given data. Therefore, the design variables are the coefficient of pre-stress force (&)

and cross-sectional area of strut (Ag;) and cable (A ) elements. As a result, the minimization

of the static compliance of tensegrity structures in terms of some constraints is mathematically
formulated as the following:

Givendata: E,Eg,q .04, 1.1
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where, Eci,ACi and Esi,ASi are the modulus of elasticity, cross-sectional area of cable and strut

elements, respectively. |, and | denote the rest lengths of the cable and strut elements,

respectively which is computed from Eq. 4-a. | g and |, are the lengths of the strut and cable

elements at new equilibrium configuration. The system is moved from pre-stress configuration to
a new equilibrium configuration when it is subjected to external loading. It should be noted that
these lengths are calculated by adding the pre-stressed length plus the vector of nodal displace-

ment U . S‘S’t?ut and S‘C’abble denote the upper bound constraints on the member stress in the strut

and cable elements. I, shows the minimum moment of the inertia of strut elements. The linear
and nonlinear constraints of the optimization problem for tensegrity structures are described as
below.

The first and second constraints express that the internal stress capacity in cable and strut ele-
ments at pre-stressed configuration should be smaller than the upper bound for ultimate stresses
in cable and strut elements.
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The third constraint is only applied for string elements. By satisfying this constraint, it is gua-
ranteed that the cable elements do not prone to slacking, and all of them are in tension so the
rigidity of the structure is higher than those cases in which one or more cables go to slacking.
The fourth constraint states that the member stress capacity in string elements must be less than
the upper bound ultimate stress for a member after applying the external load. Thus, the tense-
grity structure will go to yielding if this constraint is not satisfied.

The fifth constraint dictate that the member stresses capacity in strut elements must be less than
the upper ultimate stress on member after applying the external load. The tensegrity structure
again goes to yielding when this constraint is not satisfied.

The last constraint is only applied to the strut elements owing to this fact that the strut ele-
ments are the only members that should be compressed. Satisfying of this constraint causes that
the strut elements are prevented of buckling mode in tensegrity structure.

3. Genetic algorithm

In the literature there are many options for static compliance optimization of regular structures.
One of the popular methods is classical deterministic models. In classical deterministic models, the
end result is a function of the starting point or starting interval. Another disadvantage of deter-
ministic methods is the computational difficulty involved in the calculation of derivatives and
hessians. Genetic algorithms, on the other hand, are simple and competence to execute and inclu-
de evaluations of only the objective function and the use of certain genetic operators to investiga-
te the design space. Moreover, a population of optimum points is obtained that will allow the
designer to select a design that satisfies all subjective constraints as well. These characteristics
make this approach well suited for finding optimal solutions to the non-linear tensegrity problems.
Genetic algorithm (GA) is a stochastic global search technique corresponding on Darwin’s evolu-
tion theorem of ‘survival of fittest’ (Goldberg, 1989; Michalewicz, 1992). GA is a powerful method
for different types of optimization problems. This approach was first inspired by Holland (Ho-
lland, 1975) and used by many others as one of the most common and practical meta-heuristic
methods. The algorithm starts from an initial set of random feasible solutions which is known as
population. The individuals of the population called ‘chromosomes’ are estimated according to a
predefined fitness function. The chromosomes develop through successive iterations based on some
genetic operators (selection, crossover, mutation, etc.). This process is called ‘generations’. At
each generation, a new population is generated by applying the crossover and mutation operators
on old population. The procedure is repeated until a particular stopping criterion is reached (El-
Baz, 2004). Here, GA is used as a global search to find optimal solution of the attempted pro-
blem. The procedure of the genetic search algorithm used for our desired problems is described in
the following steps.

First of all, an initial population of individuals is randomly generated. Secondly, the nodal of the
system are calculated based on the initial population. Using the obtained nodal displacement, the
other constraints given in Eq. 6 are checked. If all constraints are satisfied this set of population
will be feasible, otherwise, if one or more of these constraints are not satisfied this set of popula-
tion will be removed from the initial population. Among all initials population, the value of the
objective function for all extracted feasible solutions is computed, and is ordered from minimum
value to maximum one. This ordering is necessary for starting new selections. In each iteration,
the minimum objective function is picked which is then called elite. Next, in order to select the
parents, the roulette wheel technique is used. The selection chance of each chromosome is relative
to its fitness value, the selection chance of chromosome i denoted by P .qi0n (1) is stated by the

Eq. 7 in which Ft(i)is the fitness of chromosome, i, (Lee et al., 2003).
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1/Ft()
pselection (I) - Zjll Ft(_]) (7)

It is worth noting that the objective function value associated with a chromosome is considered as
the fitness value of that chromosome. Since the objective function of the formulated model is mi-
nimized, we consider the reverse value of the fitness in Eq. 7 to enhance the selection probability
of the chromosome with lower fitness. Furthermore, in order to generate offspring (children) from
parents the cross over operator is employed in such a way that the two genes are chosen ran-
domly between two parents and their contents are swapped. Therefore, the first parent and the
second parent construct the first child code and vice versa for the second child. Then, Mutation is
mainly used to discover new areas in the investigation space and used to avoid being trapped in
local optimum. The mutation used in this study is called swap mutation. First a random number,
says R, is generated between zero and three, because there are, here, three design variables. If the

random number is 0SR <1, 1<R <2 and 2<R <3 | the first, second and third columns of
the population are respectively selected and their contents are swapped by a random value in the
range of their design parameters. The new generation is then chosen between the old generation
and newly generated children. Here, in order to select the new generation two mechanism, namely
the roulette wheel and elitism policy are taken into consideration. This procedure is repeated until
the number of iterations is reached to the specified stopping criterion. The flow chart of the GA
procedure is shown in Fig.1.

4. Numerical examples

It is worth mentioning that static compliance optimization of regularly truss structure is a rather
well-investigated problem. But, this work is one of the pioneers study dealing with simultaneous
cross-sectional area of elements and pre-stress force optimization of tensegrity. The lack of resear-
ches in the discipline leads to the problem of result comparison in this study. In order to remove
this obstacle another truss numerical example is investigated to prove the formulation accuracy.

4.1 A 72 bar double layered grid

Tensegrities are considered as a particular case of spatial trusses, and, therefore, an application of
space lattice systems in which mainly axial efforts are observed (Kahla and Moussa, 2002). There-
for, the following numerical example is studied for ability and validation of proposed algorithm.

A 72 bar double layerd grid from Levy and Hanaor (1992) is considered. The truss is prestressed
with configuration shown in Figs.2-a, b. The system is composed 72 elements having equal lengths
of 54 in. An external load of 13,534 1b acts on the center node in the vertical direction.
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Figure 2-a. A top view of three-dimensional bar Figure 2-b. A perspective of three-dimensional
grid bar grid

All edge nodes are constrainted in vertical direction while the center node is free to move in the
vertical direction. Additionally, one corner node is restrainted in all directions. Material properties
are specified as follows: Young modulus E= 16e6 ksi, the allowable stress in tension 40000psi and
for compression 20000 psi. Due to symmetry, one eighth of the structre is numberd as shown in
Fig. 2-a. In this system, the memebrs 5 and 9 is prestressed and the value of prestress is -0.1205
and -0.3085 lb respectively. Levy and Hanaor (1992) studied the effect of prestress on the mini-
mum wieghit design of singly loaded trusses. The optimal force and cross sectional area of mem-
bers are tabulated in Table 1. Also, the results obtained from proposed algorithm are tabulated in
Table 1. It is worth mentioned that number of generations and number of individuals in each
generation are 30 and 1000.

Table 1. Optimal design of a 72 bar double layerd grid

Optimal force  Optimal force  Optimal force  Optimal force  Cross sectio-

(Ib) (Ib) (Ib) (Ib) nal area (in%)
Bar 1 Bar 3 Bar 5 Bar 6
Levy (1991) 5583 22791 1595 798 0.1395
Proposed 5405 2700 1570 782 0.1363
algorithm

According to Table 1, the results from Levy’s approach (1992) and proposed algorithm are in a
good agreements.

In continue, three numerical examples of tensegrity optimozation are provided. Due to the aim of
the minimization of static compliance, the original shape, topology, the pre-stressed length, nor-
malized force density coefficient, mechanical constraints and external loading conditions are
known. Here, the design parameters are only the coefficient of the pre-stress force and cross-
sectional area of strut and cable elements. The main idea of this study is that design parameters
are selected in lower and upper bounds of them in such a way that tensegrity structures subjected
to various external loads have the minimum deformation.

4.2 Two- module Snelson’s X tensegrity
A two-module tensegrity grid truss assembled from basic Snelson’s X is shown in Fig. 3. It is
composed of six nodes, four struts and nine cables.
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F=P+1000 F=P+1000

Figure 3. Two module Snelson's X tensegrity truss

Using the form finding procedure, the pre-stressed lengths of cable components are 3 m. A nor-
malized force density coefficient ((];) for the two module of Snelson’s X tensegrity structure are

found based on Tran and Lee (2010-b) approach as ( = [1, 12,1,-1,-1,111 -1, —l]T . To obtain

a more rigid structure, however, minimizing static compliance has to be taken into account in the
design process. For this example, the mechanical properties are considered as follows: Young’s
modulus and yield strength of cable and strut elements are 206 GPa and 690 MPa, respectively.
Three degrees of displacements for the bottom nodes are fixed in order to avoid rigid body mo-
tions. The nodes (4, 5 and 6) are loaded by external loads as shown in Fig.3. The upper bound for
radius of strut and cable are 25 mm and 10 mm, respectively, and for the coefficient member force
is 4 kN. Number of generations and number of individuals in each generation are 25 and 1000.

Table 2. Optimal design parameters two-module tensegrity grid

Radius of Radius of

cable strut Pre-stress Generation The value
v coefficient kN number of fitness
m m
Proposed 0.0080 0.0248 2.0154 25 1.3145
algorithm

Employing these data into proposed algorithm, the optimum coefficient of pre-stress, cross-section
area of cable and strut are easily obtained as reported in Table 2. The history of optimization of
two-module tensegrity structure is shown in Fig. 4.
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static compliance

1 ! . ;
5 10 15 20 25

Number of iterations

Figure 4: Two- module Snelson’s X tensegrity optimal history
Tables 3 and 4 present internal force members after applying design parameters into tensegrity
structures for cable and strut elements. In other words, the internal force members given in Ta-

bles 3 and 4 are referred to the state after the application of the load.

Table 3. Internal forces of cable elements after optimal designing

elements 1 2 3 4 7 8 9
Internal =g 07 1471 12272 7472 4348 6848 5849
force (N)
Table 4. Internal forces of strut elements after optimal designing
Elements 5 6 10 11
Internal force (N) -7738 -11980 -9684 -11807

The benefit of using the results given in Table 2 is that modifying the tensegrity systems accor-
ding to these data causes the system has not tend to collapse under external loads. Because all
cable and strut elements in the structure have no slacking and buckling, respectively, and also
yielding load capacity is satisfied in both elements. The vertical displacement of nodes 5 and 6
versus the applied external load (F) after implementing the optimal design variables is shown in
Fig.5. Here, the value of P varies from 0 to 1500 N.
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Figure 5: Behaviour of the two-module tensegrity grid truss under external loads

4.3 A quadruplex unit
A three-dimensional tensegrity structure is considered as Fig. 6, which consists of sixteen mem-
bers (12 strings and 4 struts) and eight nodes.

500
mm

Figure 6. A unit Perspective quadruplex module

The boundary conditions are implemented as following: Node 1 is completely fixed, node 2 is fixed
in the X and Y directions, and node 3 is fixed only in X directions. Before applying the external
load, the method presented by Tran and Lee (2010-b) is employed to obtain the normalized force
density coefficient. Mechanical properties are chosen as follows: Young’s modulus of cable and
strut elements are 40 GP and 206GPa, respectively and also yield strength of cable and strut 134
MPa and 690 MPa respectively. As illustrated in Fig.6, the loads are applied on nodes 6, 7 and 8
along x direction. The quadruplex unit is subjected to a tension external load of F= 2 kN. The
upper bound for design parameters are taken into account as: radius of strut and cable are 30 mm
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and 10 mm, respectively, and the coefficient member force is 20 kN. Individulas in each genera-
tion is 1000 and maximum genereation is 30.

Applying this information into proposed algorithm, the optimum values for design variables are
obtained as tabulated in Table 5.

Table 5. Optimal design parameters for quadruplex unit tensegrity

radius of radius of Generation

cable strut Pre-stress coef- number The value of
ficient kN fitness
m m
Proposed 0.0047 0.0281 12.397 30 22.2307
algorithm

The history of optimization of the two-module quadruplex unit tensegrity structure is shown in
Fig. 7.

static compliance

1
5 10 15 20 25 30

Number of iterations

20

Figure 7: A quadruplex unit optimal history
Tables 6 and 7 present internal force members after applying design parameters into tensegrity
structures for cable and strut elements. These internal force members given in Tables 6 and 7 are

referred to the state after the application of the load.

Table 6. Internal forces of cable elements after optimal designing

elements 1-2 2-7 3-5 5-8 7-8 4-6
Internal =507 4951 6251 5906 6012 5707
force (N)
Table 7. Internal forces of strut elements after optimal designing
elements 1-5 4-7 8-2 3-6
Internal force (N) -2132.9 -2151.2 -1930 -1991.1
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Results shown in Table 5 evince that all cable elements are in tension and no strut elements are
in bucking mode. Therefore, modifying the system based on results given in Table 5 cause that
the system becomes more rigid. In other words, the super stability of the system is guaranteed
when tensegrity structure is modified by using the optimal design parameters. The behaviour of
the quadruplex module versus external tension load after implemnting the new design parameters
in the structure is shown in Fig. 8. Here the tension external load value of each load varies from 0
to 2 kN.
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Figure 8: Behaviour of the quadruplex module under tensile load

4.4 Three dimension tensegrity structure

Consider a double layer quadruplex tensegrity, which is assembled from 20 quadruplex units. The
foundation constraints of the 20 quadruplex module which is built of 79 nodes, 209 strings and 80
struts as depicted in Figs. 9-a and 9-b.
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Figure 9-a: A perspective of three-dimensional tensegrity grid formed of 9(3 X 3) quadruplex modu-
les

100cm

AN -4

30 ()
Y

IS

A
L

(o)

4

V"%

o

<

| LR

AN
L
IS
IQ/@?/Q

100cm

100cm

7

N
L

e

oY Ao

R
s,
VS
L

©®

100cm | 100cm 100cm

100cm

O

100cm

Figure 9-b. A top view of three-dimensional quadruplex modules tensegrity

Mechanical properties of the double layer quadruplex tensegrity are the same with the example 2.
Using the Tran and Lee’s method (2010-b), the force density coefficient is chosen as follows: for

string and strut elements of 1-10, 11-18,

19-33, 34-49, 50-

129, 130-209, and 210-289 are

q :[1,17,2,18,2,2,—2], respectively. In this numerical investigation, external loads are applied

on the top nodes in vertical directions and take values of 900N. The same upper bound of the
previous examples is considered for design parameters in this problem. Population in each genera-

tion is 500 and maximum genereation is 20.
Using the proposed method for this rather complicated example,
is calculated as reported in Table 8.

Table 8. Optimal design parameters for three dimension doub

the optimized design parameters

le layer quadruplex tensegrity

Radius of Radius of Generation
bl trut Pre-stress b The value of
cable stru coefficient kN number fitness
m m
Proposed 0.0078 0.0148 3.6565 20 266.8295
algorithm
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The history of optimization of the double layer quadruplex tensegrity structure is shown in Fig.
10. Tables 9 and 10 present some internal force members after applying design parameters into
tensegrity structures for cable and strut elements. These internal force members given in Tables 8
and 9 are referred to the state after the application of the load.

static compliance

D

1 1 1 | |
2 4 6 8 10 12 14 16 18 20

Number of iterations

1 I 1 1 1

Figure 10: a double layer quadruplex tensegrity optimal history

Table 9. Internal forces of cable elements after optimal designing

elements 1-6 1-2 2-7 6-7 4-3 1-3 2-5
Internal = 59,6 61901 7186 65898 5070 5003 4497
force (N)
Tablel0. Internal forces of strut elements after optimal designing
elements 3-6 1-5 2-8 5-7
Internal force (N) -14299 -683 -8932 -9910

The outlined results given in Table 8 show that all cable elements are in tension and strut ele-
ments are not in bucking mode. Therefore, modifying the system according to these optimal re-
sults cause the rigidity of the structure becomes much higher and it has not tend to collapse un-
der these external loading. In other words, one can conclude the super stability of the structure is
guaranteed when the structure is re-designed by using the optimal results given in Table 8. The
vertical displacements of top and bottom nodes such as 15, 49, 48 and 17, 51, 50 versus the exter-
nal load after applying the new design variables are shown in Figs.11 and 12 respectively. Here,
the value of each load varies from 0 to 900 N. the global external load-displacement behaviour of
the system is nearly linear. The structure is softened as the external loads increase. A similar
trend has been exhibited in previous study on nonlinear analysis tensegrity structures (Tran, Lee,
2011). Due to the symmetry of the structure, the displacement of nodes 15, 17 and 49, 51 are
similar respectively as depicted in Figs. 11 and 12.
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Figure 11: Vertical displacement versus external loads for nodes 15,49 and 48
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Figure 12: Vertical displacement versus external loads for nodes 17,51 and 50

5 Conclusions

This work has taken a new look on the influence of the pre-stress and cross-sectional area of ele-
ment simultaneously on tensegrity structure design. In the literature, most contributions have
focused on finding either the normalized of the pre-stress or the optimum pre-stress. However, the
aim of this study was to find the optimal pre-stress force and cross-sectional area of elements by
minimizing the compliance work in terms of some physical constraints until the rigidity of the
structure becomes much higher. Genetic algorithm as a global search has been taken into conside-
ration for solving the nonlinear minimization constraints. The proposed algorithm starts with an
initial randomly population along with given data such as nodal coordinates, normalized force
density coefficients as well as the mechanical properties of the structures. Afterward, the objective
function values for all extracted feasible solutions are computed, and using these values the new
generations are created by some genetic operators such as selection, crossover, mutation, etc. The
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procedure is repeated until a specific stopping criterion is met. Using this algorithm, the design
variables are determined by considering both yielding load capacity and no slacking of the cable
members and both yielding load capacity and no buckling of strut elements. Modifying the tense-
grity structure based on these optimal values of design parameters causes that the structure beco-
mes far more rigid and has no risk to collapse. In addition, the super stability of the structure at
new equilibrium configuration is guaranteed when the system is re-designed using the obtained
optimal design parameters. The efficiency and applicability of the algorithm in the tensegrity
design is then shown through three numerical examples.
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