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Abstract 
The flexural motions of elastically supported rectangular plates 
carrying moving masses and resting on variable Winkler elastic 
foundations is investigated in this work In order to solve the 
fourth order partial differential equation governing the problem, a 
technique based on separation of variables is used to reduce the 
governing fourth order partial differential equations with variable 
and singular coefficients to a sequence of second order ordinary 
differential equations. These equations are then solved using a 
modification of the Struble’s technique and method of integral 
transformations. Numerical results are then presented in plotted 
curves. The results show that response amplitudes of the plate 
decrease as the value of the rotatory inertia correction factor Ro 
increases and for fixed value of Ro, the displacements of the elasti-
cally supported rectangular plates resting on variable elastic foun-
dations decrease as the foundation modulus Fo increases. Also, for 
fixed Ro and Fo, the transverse deflections of the rectangular pla-
tes under the actions of moving masses are higher than those when 
only the force effects of the moving load are considered. Therefore, 
the moving force solution is not a safe approximation to the mo-
ving mass problem. Hence, safety is not guaranteed for a design 
based on the moving force solution. Furthermore, the results show 
that the critical speed for the moving mass problem is reached 
prior to that of the moving force for the elastically supported 
rectangular plates on Winkler elastic foundation with stiffness 
variation. 
 
Keywords 
Winkler Foundation, Foundation Modulus, Rotatory Inertia, Re-
sonance, Critical Speed, Moving Force, Moving Mass. 
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1 INTRODUCTION 

The analyses of elastic structures, such as beams and plates, acted upon by moving loads and 
resting on a foundation constitute an important part of Engineering and applied Mathematics 
literatures. In general, such analyses are mathematically complex due to the difficulty in modeling 
the mechanical response of the subgrade which is governed by many factors.  

When the vehicle-track interaction is completely neglected, we have the so called ‘moving for-
ce’ problem which has been shown by several researchers that it is a crude approximation to the 
‘moving mass’ problem where the vehicle-track interaction is considered, Muscolino and Palmeri 
(2007). Several researchers have considered the vehicle-track interaction in their analyses. These 
researchers include Stanisic et al (1974), Milornir et al (1969), Clastornic et al (1986), Sadiku and 
Leipholz (1981) and Gbadeyan and Oni (1995). Douglas et al (2002) solved the problem of plate 
strip of varying thickness and the center of shear. In their work, they considered a free-vibrating 
strip with classical boundary conditions, precisely, they assumed the plate strip clamped at one 
end and free at the other end. Pesterev et al (2001) came up with a series expansion method for 
calculating bending moment and shear force in the problem of vibration of a damped beam sub-
ject to an arbitrary number of moving loads. This kind of solution, though could be accurate, 
cannot account for vital information such as the phenomenon of resonance in the dynamical sys-
tem. 

Recently, several other researchers have made tremendous efforts in the study of dynamics of 
structures under moving loads, these include Oni (2004), Oni and Omolofe (2005), Oni and 
Awodola (2003), Omer and Aitung (2006), Adams (1995), Savin (2001), Jia-Jang (2006). In all of 
these, considerations have been limited to cases of one-dimensional (beam) problems. Where two-
dimensional (plate) problems have been considered, the foundation moduli are taken to be con-
stants. No considerations have been given to the class of dynamical problems in which the foun-
dation is the type with stiffness variation. In an attempt to solve such two-dimensional problem, 
all the methods used in the above works break down due to the variation of the foundation mod-
el.        

Generally, the dynamical problems of structures under moving load and resting on a founda-
tion is complex, the complexity increases if the foundation stiffness varies along the structure. 
Aside the problem of singularity brought in by the inclusion of the inertia effects of the moving 
load, the coefficients of the governing fourth order partial differential equation are no longer con-
stant but variable. Earlier researchers into beam member on variable elastic foundation include 
Franklin and Scott (1979) who presented a closed-form solution to a linear variation of the foun-
dation modulus using contour-integrals. In a recent development, Oni and Awodola (2005) inves-
tigated the dynamic response to moving concentrated masses of uniform Rayleigh beams resting 
on variable Winkler elastic foundation.  

However, in all these, the problem of determining the dynamic response of structures under 
the action of moving concentrated masses has been almost exclusively reserved for elastic struc-
tures having the normal ideal boundary conditions. Such ideal boundary conditions include 
among others, Clamped edge, Free edge, Simply supported edge and Sliding edge boundary condi-
tions. For practical applications in many cases, it is more realistic to consider non-classical 
boundary conditions because the ideal boundary conditions can seldom be realized. A common 
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example is the elastically supported end conditions. As a problem of this kind, Wilson (1974) 
studied the response of a cantilever plate strip restrained elastically against rotation and subject-
ed to a moving normal line load. 

More recently, Oni and Awodola (2010) considered the dynamic response under a moving load 
of an elastically supported non-prismatic Bernoulli-Euler beam on variable elastic foundation. The 
technique was based on the generalized Galerkin’s method and integral transformations.  

In all these previous investigations, extension of the theory to cover two-dimensional (plate) 
problem has not been effected, when the plate is on variable foundation.  Therefore, this study 
concerns the response to moving concentrated masses of elastically supported rectangular plate 
resting on Winkler elastic foundation with stiffness variation. 
 
2 GOVERNING EQUATION 

Consider a rectangular plate carrying an arbitrary number (say N) of concentrated masses Mi 
moving with constant velocities ci, i = 1, 2, 3, … , N along a straight line parallel to the x – axis 
( no difficulty arises by assuming that masses travel in an arbitrary path ) issuing from point y = 
s on the y – axis. The equation governing the dynamic transverse displacement W(x,y,t) of an 
elastically supported rectangular plate when it is resting on a variable Winkler foundation and 
traversed by several moving concentrated masses is the fourth order partial differential equation 
given by; Oni and Awodola (2011), 
 

D∇4W (x, y,t)+ µ ∂2W (x, y,t)
∂t 2

= µR0
∂4

∂t 2 ∂x2
+ ∂4

∂t 2 ∂y2
⎡

⎣
⎢

⎤

⎦
⎥W (x, y,t)

−F0 4x − 3x
2 + x3⎡⎣ ⎤⎦W (x, y,t)+ Migδ (x − cit)δ (y − s)[

i=1

N

∑

−Mi
∂2

∂t 2
+ 2ci

∂2

∂t ∂x
+ ci

2 ∂2

∂x2
⎛
⎝⎜

⎞
⎠⎟
W (x, y,t)δ (x − cit)δ (y − s)]

 (1) 

   
where 
 

D = Eh2

12(1− v)
 (2) 

 
is the bending rigidity of the plate, ∇2  is the two-dimensional Laplacian operator, h is the plate’s 
thickness, E is the Young’s Modulus, v  is the Poisson’s ratio (v <1) , µ  is the mass per unit 
area of the plate, 0R  is the Rotatory inertia correction factor, F0 is the foundation‘s stiffness, g is 
the acceleration due to gravity, x and y are respectively the spatial coordinates in x and y direc-
tions and t is the time coordinate. δ(.) is the Dirac – Delta function. 
The initial conditions, without any loss of generality, is taken as 
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W (x, y,t) = 0 = ∂W (x, y,t)
∂t

 (3) 

 
In this paper, in the first instance, we consider rectangular plate resting on a variable Winkler 

elastic foundation elastically supported at edges y = 0, y = LY with simple support at edges x = 
0, x = LX, the boundary conditions can be written as; Oni and Awodola (2010) 

 
W (0, y,t) = 0, W (LX , y,t) = 0  (4) 

 
∂2W (x,0,t)

∂y2
− k1

∂W (x,0,t)
∂y

= 0, ∂2W (x,LY ,t)
∂y2

− k1
∂W (x,LY ,t)

∂y
= 0  (5) 

 
∂2W (0, y,t)

∂x2
= 0, ∂2W (LX , y,t)

∂x2
= 0  (6) 

 
∂3W (x,0,t)

∂y3
+ k2W (x,0,t) = 0,

∂3W (x,LY ,t)
∂y3

+ k2W (x,LY ,t) = 0
 

(7) 

 
and for normal modes 
 

Ψni (0) = 0, Ψni (LX ) = 0  (8) 
 

∂2Ψnj (0)
∂y2

− k1
∂Ψnj (0)

∂y
= 0,

∂2Ψnj (LY )
∂y2

− k1
∂Ψnj (LY )

∂y
= 0  (9) 

 
∂2Ψni (0)

∂x2
= 0, ∂2Ψni (LX )

∂x2
= 0  (10) 

 
∂3Ψnj (0)

∂y3
+ k2Ψnj (0) = 0,

∂3Ψnj (LY )
∂y3

+ k2Ψnj (LY ) = 0  (11) 

 
where k1 is the stiffness against rotation and k2 is the stiffness against translation. 

Secondly, we consider an elastic rectangular plate resting on a variable Winkler elastic founda-
tion and having elastic supports at all its edges, the boundary conditions are given by; Oni and 
Awodola (2010) 

 
∂2W (0, y,t)

∂x2
− k1

∂W (0, y,t)
∂x

= 0, ∂2W (LX , y,t)
∂x2

− k1
∂W (LX , y,t)

∂x
= 0  (12) 
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∂2W (x,0,t)

∂y2
− k1

∂W (x,0,t)
∂y

= 0, ∂2W (x,LY ,t)
∂y2

− k1
∂W (x,LY ,t)

∂y
= 0  (13) 

 
∂3W (0, y,t)

∂x3
+ k2W (0, y,t) = 0,

∂3W (LX , y,t)
∂x3

+ k2W (LX , y,t) = 0  (14) 

 
∂3W (x,0,t)

∂y3
+ k2W (x,0,t) = 0,

∂3W (x,LY ,t)
∂y3

+ k2W (x,LY ,t) = 0  (15) 

 
and for normal modes 
 

0
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 (18) 

 
∂3Ψnj (0)

∂y3
+ k2Ψnj (0) = 0,

∂3Ψnj (LY )
∂y3

+ k2Ψnj (LY ) = 0  (19) 

 
where k1 and k2 are the stiffness against rotation and the stiffness against translation respectively. 
 
3 ANALYTICAL APPROXIMATE SOLUTION 

The method of analysis involves expressing the Dirac – Delta function as a Fourier cosine series. 
Because of the variable foundation term, the elegant method of the generalized integral transform 
breaks down while the generalized Galerkin’s method used in one-dimensional structural problems 
(Beam problems) could not handle the two-dimensional structural problem (Plate problems). 
Thus, In order to solve equation (1), in the first instance, the deflection is written in the form; 
Shadnam et al (2001) 
 

W (x, y,t) = ϕn (x, y)Tn (t)
n=1

∞

∑  (20) 
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where φn are the known eigenfunctions of the plate with the same boundary conditions. The φn 
have the form of 
 

∇4ϕn −ω n
4ϕn = 0  (21) 

 
where   
 

ω n
4 = Ωn

2µ
D

 (22) 

 
Ωn, n = 1, 2, 3, … , are the natural frequencies of the dynamical system and Tn(t) are amplitude 
functions which have to be calculated. 

At this juncture, the right hand side of equation (1) is written in the form of a series and we 
have 

 

R0
∂4

∂t 2 ∂x 2
+

∂4

∂t 2 ∂y2
⎡
⎣⎢

⎤
⎦⎥
W (x, y, t ) −

F0
µ
4x − 3x 2 + x 3[ ]W (x, y, t ) + Mig

µ
δ (x − cit )δ (y − s)

⎡
⎣⎢i=1

N

∑

−
Mi

µ

∂2

∂t 2
+ 2ci

∂2

∂t ∂x
+ ci

2 ∂2

∂x 2
⎛
⎝⎜

⎞
⎠⎟
W (x, y, t )δ (x − cit )δ (y − s)] = ϕn (x, y)Bn (t )

n=1

∞

∑
 (23) 

 
Substituting equation (20) into equation (23) we have  
 

R0 ϕn,xx (x, y)Tn,tt (t)+ϕn,yy (x, y)Tn,tt (t)⎡⎣ ⎤⎦{
n=1

∞

∑ − F0
µ
4x − 3x2 + x3⎡⎣ ⎤⎦ϕn (x, y)Tn (t)

+ [
i=1

N

∑ Mig
µ

δ (x − cit)δ (y − s)−
Mi

µ
ϕn (x, y)Tn,tt (t)+ 2ciϕn,x (x, y)Tn,t (t)(

+ci
2ϕn,xx (x, y)Tn (t) )δ (x − cit)δ (y − s) ] } = ϕn (x, y)Bn (t)

n=1

∞

∑

 (24) 

 
where 
 

ϕn,x (x, y) implies
∂ϕn (x, y)

∂x
, ϕn,xx (x, y) implies

∂2ϕn (x, y)
∂x2

,

ϕn,y(x, y) implies
∂ϕn (x, y)

∂y
, ϕn,yy(x, y) implies

∂2ϕn (x, y)
∂y2

,

Tn,t (t) implies
dTn (t)
dt

and Tn,tt (t) implies
d 2Tn (t)
dt 2

 (25) 
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Multiplying both sides of equation (24) by φp(x,y) and integrating on area A of the plate, we 
have  

 

A∫ R0 ϕn,xx (x, y)ϕ p (x, y)Tn,tt (t)+ϕn,yy(x, y)ϕ p (x, y)Tn,tt (t)⎡⎣ ⎤⎦{
n=1

∞

∑

− F0
µ
4x − 3x2 + x3⎡⎣ ⎤⎦ϕn (x, y)ϕ p (x, y)Tn (t)+ [

i=1

N

∑ Mig
µ

ϕ p (x, y)δ (x − cit)δ (y − s)

− Mi

µ
ϕn (x, y)ϕ p (x, y)Tn,tt (t)+ 2ciϕn,x (x, y)ϕ p (x, y)Tn,t (t)(

+ci
2ϕn,xx (x, y)ϕ p (x, y)Tn (t) )δ (x − cit)δ (y − s) ] }dA =

A∫ ϕn (x, y)ϕ p (x, y)Bn (t)
n=1

∞

∑ dA

 (26) 

 
Considering the orthogonality of φn(x,y) 
 

Bn (t) =
1
P* A∫ R0 ϕn,xx (x, y)ϕ p (x, y)Tn,tt (t)+ϕn,yy(x, y)ϕ p (x, y)Tn,tt (t)⎡⎣ ⎤⎦{

n=1

∞

∑

− F0
µ
4x − 3x2 + x3⎡⎣ ⎤⎦ϕn (x, y)ϕ p (x, y)Tn (t)+ [

i=1

N

∑ Mig
µ

ϕ p (x, y)δ (x − cit)δ (y − s)

− Mi

µ
ϕn (x, y)ϕ p (x, y)Tn,tt (t)+ 2ciϕn,x (x, y)ϕ p (x, y)Tn,t (t)(

+ ci
2ϕn,xx (x, y)ϕ p (x, y)Tn (t) )δ (x − cit)δ (y − s) ] }dA

 (27) 

 
where 
 

P* = ϕ p
2 dA

A∫  

 
Using (27), equation (1), taken into account (21), can be written as 
 

ϕn (x, y)
Dω n

4

µ
Tn (t)+Tn,tt (t)

⎡

⎣
⎢

⎤

⎦
⎥ =

ϕn (x, y)
P* A∫ R0 ϕq,xx (x, y)ϕ p (x, y)Tq,tt (t)⎡⎣{

q=1

∞

∑

+ϕq,yy(x, y)ϕ p (x, y)Tq,tt (t)⎤⎦ −
F0
µ
4x − 3x2 + x3⎡⎣ ⎤⎦ϕq (x, y)ϕ p (x, y)Tq (t)

+ [
i=1

N

∑ Mig
µ

ϕ p (x, y)δ (x − cit)δ (y − s)−
Mi

µ
ϕq (x, y)ϕ p (x, y)Tq,tt (t)(

+2ciϕq,x (x, y)ϕ p (x, y)Tq,t (t)+ ci
2ϕq,xx (x, y)ϕ p (x, y)Tq (t) )δ (x − cit)δ (y − s) ] }dA

 (28) 
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Equation (28) must be satisfied for arbitrary x, y (that is, each point of the plate) and this is 
possible only when  

 

Tn,tt (t)+
Dω n

4

µ
Tn (t) =

1
P* A∫ R0 ϕq,xx (x, y)ϕ p (x, y)Tq,tt (t)⎡⎣{

q=1

∞

∑

+ϕq,yy(x, y)ϕ p (x, y)Tq,tt (t)⎤⎦ −
F0
µ
4x − 3x2 + x3⎡⎣ ⎤⎦ϕq (x, y)ϕ p (x, y)Tq (t)

+ [
i=1

N

∑ Mig
µ

ϕ p (x, y)δ (x − cit)δ (y − s)−
Mi

µ
ϕq (x, y)ϕ p (x, y)Tq,tt (t)(

+2ciϕq,x (x, y)ϕ p (x, y)Tq,t (t)+ ci
2ϕq,xx (x, y)ϕ p (x, y)Tq (t) )δ (x − cit)δ (y − s) ] }dA

 (29) 

 
The system in equation (29) is a set of coupled ordinary differential equations. 
Considering the property of the Dirac-Delta function and expressing it in the Fourier cosine 

series as 
 

δ (x − cit) =
1
LX

1+ 2 cos jπcit
LXj=1

∞

∑ cos jπ x
LX

⎡

⎣
⎢

⎤

⎦
⎥  (30) 

 
and 
 

δ (y − s) = 1
LY

1+ 2 cos kπs
LYk=1

∞

∑ cos kπ y
LY

⎡

⎣
⎢

⎤

⎦
⎥  (31) 

 
equation (29) becomes 
 

d 2Tn (t )

dt 2
+α n

2Tn (t ) −
1

P*
R0P1

* d
2Tq (t )

dt 2
−
F0
µ
P2
*Tq (t )

⎧
⎨
⎩q=1

∞

∑

−
i=1

N

∑ Mi

LXLYµ
2

P3
*

2
+ cos

kπ s

LYk=1

∞

∑⎛
⎝⎜

⎡
⎣⎢

P3
** (k) + cos

jπcit

LX

P3
*** ( j)

j=1

∞

∑

+2 cos
jπcit

LXk=1

∞

∑
j=1

∞

∑ cos
kπ s

LY

P3
**** ( j, k)

⎞
⎠⎟
d 2Tq (t )

dt 2
+ 4ci

P4
*

2
+ cos

kπ s

LY

P4
** (k)

k=1

∞

∑⎛
⎝⎜

 

(32) 
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+ cos
jπcit

LX

P4
*** ( j) +

j=1

∞

∑ 2 cos
jπcit

LXk=1

∞

∑
j=1

∞

∑ cos
kπ s

LY

P4
**** ( j, k)

⎞
⎠⎟
dTq (t )

dt

+2ci
2 P5

*

2
+

⎛
⎝⎜

cos
kπ s

LY

P5
** (k)

k=1

∞

∑ + cos
jπcit

LX

P5
*** ( j)

j=1

∞

∑

+ 2 cos
jπcit

LXk=1

∞

∑
j=1

∞

∑ cos
kπ s

LY

P5
**** ( j, k)

⎞
⎠⎟
Tq (t )

⎤
⎦⎥
⎫
⎬
⎭
=

Mig

P*µi=1

N

∑ ϕ p (cit, s)

 

 

where α n
2 = Dω n

4

µ
, 

 

P1
* = ϕn,xx (x, y)+ϕn,yy(x, y)⎡⎣ ⎤⎦0

LY∫0

LX∫ ϕ p (x, y)dydx, P2
* = 4x − 3x2 + x3⎡⎣ ⎤⎦0

LY∫0

LX∫ ϕn (x, y)ϕ p (x, y)dydx,

 

,),(),(cos)(,),(),(
0 0

**
30 0

*
3 dxdyyxyx

L
ykkPdxdyyxyxP pn

L L

Y
p

L L

n
X YX Y φφπφφ ∫ ∫∫ ∫ ==

 
 

P3
***( j) = cos jπ x

LX
ϕn (x, y)0

LY∫0

LX∫ ϕ p (x, y)dydx, P3
****( j,k) = cos jπ x

LX
cos kπ y

LY0

LY∫0

LX∫ ϕn (x, y)ϕ p (x, y)dydx,
 

 

P4
* = ϕn,x (x, y)0

LY∫0

LX∫ ϕ p (x, y)dydx, P4
**(k) = cos kπ y

LY0

LY∫0

LX∫ ϕn,x (x, y)ϕ p (x, y)dydx,
 

 

P4
***( j) = cos jπ x

LX
ϕn,x (x, y)0

LY∫0

LX∫ ϕ p (x, y)dydx, P4
****( j,k) = cos jπ x

LX
cos kπ y

LY0

LY∫0

LX∫ ϕn,x (x, y)ϕ p (x, y)dydx,

 

P5
* = ϕn,xx (x, y)0

LY∫0

LX∫ ϕ p (x, y)dydx, P5
**(k) = cos kπ y

LY0

LY∫0

LX∫ ϕn,xx (x, y)ϕ p (x, y)dydx,
 

 
P5
***( j) = cos jπ x

LX
ϕn,xx (x,y)0

LY∫0
LX∫ ϕ p (x, y)dydx and P5

****( j, k) = cos jπ x
LX

coskπ y
LY

0
LY∫0

LX∫ ϕn,xx (x, y)ϕ p (x, y)dydx,  

 
Equation (32) is the transformed equation governing the problem of an elastically supported 

rectangular plate on a variable Winkler elastic foundation. This is a coupled second order diffe-
rential equation. 

 
In what follows, φn(x,y) are assumed to be the products of the functions ψni(x) and ψnj(y) 

which are the beam functions in the directions of x and y axes respectively, Lee and Ng (1996). 
That is 
 

ϕn (x, y) =ψ ni (x)ψ nj (y)  (33) 
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Since each of these beam functions satisfies the boundary conditions in its direction, the kernel 

(the product of these beam functions) in the above integrals satisfies all boundary conditions for 
any plate problem of practical interest. In particular, these beam functions can be defined respec-
tively, as 

 

ψ ni (x) = sin
Ωnix
LX

+ Ani cos
Ωnix
LX

+ Bni sinh
Ωnix
LX

+Cni cosh
Ωnix
LX

 (34) 

 
and 
 

ψ nj (x) = sin
Ωnj y
LY

+ Anj cos
Ωnj y
LY

+ Bnj sinh
Ωnj y
LY

+Cnj cosh
Ωnj y
LY

 (35) 

 
where Ani, Anj, Bni, Bnj, Cni and Cnj are constants determined by the boundary conditions. Ωni 
and Ωnj are called the mode frequencies. 

In order to solve equation (32) we shall consider a mass M traveling with constant velocity c 
along the line y = s. The solution for any arbitrary number of moving masses can be obtained by 
superposition of the individual solution since the governing differential equation is linear. Thus 
for the single mass M1 equation (32) reduces to 

 

d 2Tn (t)
dt 2

+α n
2Tn (t)−

1
P*

R0P1
* d

2Tq (t)
dt 2

− F0
µ
P2
*Tq (t)

⎧
⎨
⎩⎪q=1

∞

∑

−Γ 2 P3
*

2
+ cos kπs

LYk=1

∞

∑⎛
⎝⎜

⎡

⎣
⎢ P3

**(k)+ cos jπct
LX

P3
***( j)

j=1

∞

∑

+2 cos jπct
LXk=1

∞

∑
j=1

∞

∑ cos kπs
LY

P3
****( j,k)

⎞

⎠⎟
d 2Tq (t)
dt 2

+ 4c P4
*

2
+ cos kπs

LY
P4
**(k)

k=1

∞

∑⎛
⎝⎜

+ cos jπct
LX

P4
***( j)+

j=1

∞

∑ 2 cos jπct
LXk=1

∞

∑
j=1

∞

∑ cos kπs
LY

P4
****( j,k)

⎞

⎠⎟
dTq (t)
dt

+2c2 P5
*

2
+

⎛
⎝⎜

cos kπs
LY

P5
**(k)

k=1

∞

∑ + cos jπct
LX

P5
***( j)

j=1

∞

∑

+2 cos jπct
LXk=1

∞

∑
j=1

∞

∑ cos kπs
LY

P5
****( j,k)

⎞

⎠⎟
Tq (t)

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
= Mg
P*µ

Ψ pi (ct)Ψ pj (s)

 (36) 

 
where 
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µYX LL
M=Γ  (37) 

 
Equation (36) is the fundamental equation of our problem. In what follows, we shall discuss 

two special cases of the equation (36) namely; the moving force and the moving mass problems. 
 
CASE I: RECTANGULAR PLATE TRAVERSED BY A MOVING FORCE 

Setting Γ = 0 in equation (36) gives an approximate model of the differential equation describing 
the response of a rectangular plate resting on a variable Winkler elastic foundation and traversed 
by a moving force. Thus, if  Γ = 0 in equation (36), we have 
 

d 2Tn (t)
dt 2

+α n
2Tn (t)−

P1
*R0
P*

d 2Tq (t)
dt 2

+ P2
*F0

µP*
Tq (t)

q=1

∞

∑
q=1

∞

∑ = Mg
P*µ

Ψ pi (ct)Ψ pj (s)  (38) 

 
Evidently, an exact analytical solution to this equation is not possible. Consequently, the ap-

proximate analytical solution technique, which is a modification of the asymptotic method of 
Struble discussed in Gbadeyan and Oni (1995) shall be used. 

To solve equation (38), first, we neglect the rotatory inertial term and rearrange the equation 
to take the form 

 
d 2Tn (t)
dt 2

+ α n
2 + Γ*P2

*⎡⎣ ⎤⎦Tn (t)+ Γ
*P2

* Tq (t)
q=1
q≠n

∞

∑ = Mg
P*µ

Ψ pi (ct)Ψ pj (s)  (39) 

 
where   
 

Γ* = F0
µP*

 (40) 

 
Consider a parameter λ < 1 for any arbitrary ratio Γ * defined as 
 

λ = Γ*

1+ Γ*  (41) 

 
so that 
 

Γ* = λ + o(λ 2 )  (42) 
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Substituting equation (42) into the homogenous part of equation (39) yields 
 

d 2Tn (t)
dt 2

+ α n
2 + λP2

*⎡⎣ ⎤⎦Tn (t)+ λP2
* Tq (t)
q=1
q≠n

∞

∑ = 0  (43) 

 
When λ is set to zero in equation (43), a situation corresponding to the case in which the ef-

fect of the foundation is regarded as negligible is obtained.  
Struble’s technique requires that the asymptotic solution of the homogenous part of equation 

(39) be of the form 
 

Tn (t) = An (t)cos α nt −Φn (t)[ ]+ λT1(t)+ o(λ 2 )  (44) 
 
where An(t) and Φn(t) are slowly varying functions of time or equivalently 
 

dAn (t)
dt

→ o(λ); d 2An (t)
dt 2

→ 0(λ 2 )
 

 
dΦn (t)
dt

→ o(λ); d 2Φn (t)
dt 2

→ 0(λ 2 )  

(45) 

 
where →  implies “ is of “ 

Thus, equation (43) can be replaced with 
 

d 2Tn (t)
dt 2

+ γ s
2Tn (t) = 0  (46) 

 
where 
 

γ s =α n +
λP2

*

2α n

 (47) 

 
represents the modified frequency due to the effect of the foundation. It is observed that when λ 
= 0, we recover the frequency of the moving force problem when the effect of the foundation is 
neglected. 

Thus; using (47), equation (38) can be written as 
 

d 2Tn (t)
dt 2

+ γ s
2Tn (t)−

P1
*R0
P*

d 2Tq (t)
dt 2q=1

∞

∑ = Mg
P*µ

Ψ pi (ct)Ψ pj (s)  (48) 
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The homogenous part of equation (48) is rearranged to take the form 
 

d 2Tn (t)
dt 2

+ γ s
2

1− λ0P1
* Tn (t)−

λ0P1
*

1− λ0P1
*

d 2Tq (t)
dt 2q=1

q≠n

∞

∑ = 0  (49) 

 

where  λ0 =
R0
P*

 

Now consider the parameter ε0 < 1 for any arbitrary mass ratio 0λ  defined as 
 

ε0 =
λ0
1+ λ0

 (50) 

 
It can be shown that 
 

λ0 = ε0 + o(ε0
2 )  (51) 

 
Following the same argument, equation (49) can be replaced with 
 

d 2Tn (t)
dt 2

+ γ sf
2Tn (t) = 0  (52) 

 
where 
 

γ sf = γ s 1+
ε0P1

*

2
⎡

⎣
⎢

⎤

⎦
⎥  (53) 

 
is the modified frequency corresponding to the frequency of the free system due to the presence of 
the rotatory inertia. It is observed that when ε0 = 0, we recover the frequency of the moving force 
problem when the rotatory inertia effect is neglected. 

In order to solve the non-homogenous equation (48), the differential operator which acts on 
Tn(t) is replaced by the equivalent free system operator defined by the modified frequency γsf. 
Thus 

 
d 2Tn (t)
dt 2

+ γ sf
2Tn (t) = K0Ψ pi (ct)Ψ pj (s)  (54) 

 
where 
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K0 =
Mg
P*µ

 (55) 

 
Therefore, the moving force problem is reduced to the non-homogeneous ordinary differential 

equation given as 
 
d 2Tn (t)
dt 2

+ γ sf
2Tn (t) = K0Ψ pj (s) sinα pit + Api cosα pit + Bpi sinhα pit +Cpi coshα pit⎡⎣ ⎤⎦  (56) 

 

where 
X

pi
pi L

cΩ
=α  

When equation (56) is solved in conjunction with the initial conditions, one obtains expression 
for Tn(t). Thus in view of equation (20), one obtains 

 

W (x, y,t) =
nj=1

∞

∑
ni=1

∞

∑ K0Ψ pj (s)
γ sf [γ sf

4 −α pi
4 ]
[γ sf

2 −α pi
2 ][Cpi{ γ sf (coshα pit − cosγ sf t)

+ Bpi (γ sf sinhα pit −α pi sinγ sf t)]+ [γ sf
2 +α pi

2 ][Apiγ sf (cosα pit − cosγ sf t)

− (α pi sinγ sf t −γ sf sinα pit)] }[sinΩnix
LX

+ Ani cos
Ωnix
LX

+ Bni sinh
Ωnix
LX

+Cni cosh
Ωnix
LX

][sin
Ωnj y
LY

+ Anj cos
Ωnj y
LY

+ Bnj sinh
Ωnj y
LY

+Cnj cosh
Ωnj y
LY

] (57)

 (57) 

 
Equation (57) represents the transverse displacement response to a moving force of a rectangu-

lar plate resting on variable Winkler elastic foundation. 
 
CASE II : RECTANGULAR PLATE TRAVERSED BY A MOVING MASS 

If the mass of the moving load is commensurable with that of the structure, the inertia effect of 
the moving mass is not negligible. Thus Γ ≠ 0 and one is required to solve the entire equation 
(36) when no term of the coupled differential equation is neglected. This is termed the moving 
mass problem. 

Thus, equation (36) can be rewritten in the form       
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1+
2ε
P*

P3
*

2
+ cos

kπ s
LY

P3
**(k)+ cos

jπct
LX

P3
***( j)

j=1

∞

∑
k=1

∞

∑⎛
⎝⎜

⎡

⎣
⎢ +2 cos

jπct
LX

cos
kπ s
LY

P3
****( j,k)

k=1

∞

∑
j=1

∞

∑ ⎞
⎠⎟
⎤

⎦
⎥
d 2Tn (t)
dt 2

+
4εc
P*

P4
*

2
+

⎛
⎝⎜

cos
kπ s
LY

P4
**(k)+ cos

jπct
LX

P4
***( j)

j=1

∞

∑
k=1

∞

∑ + 2 cos
jπct
LX

cos
kπ s
LY

P4
****( j,k)

k=1

∞

∑
j=1

∞

∑ ⎞
⎠⎟
dTn (t)
dt

+ γ sf
2 +

2εc2

P*

P5
*

2
+ cos

kπ s
LY

P5
**(k)+ cos

jπct
LX

P5
***( j)

j=1

∞

∑
k=1

∞

∑⎛
⎝⎜

⎡

⎣
⎢ +2 cos

jπct
LX

cos
kπ s
LY

P5
****( j,k)

k=1

∞

∑
j=1

∞

∑ ⎞
⎠⎟
⎤

⎦
⎥Tn (t)

+
ε
P* 2

P3
*

2
+ cos

kπ s
LY

P3
**(k)+ cos

jπct
LX

P3
***( j)

j=1

∞

∑
k=1

∞

∑⎛
⎝⎜

⎡

⎣
⎢

q=1
q≠n

∑ +2 cos
jπct
LX

cos
kπ s
LY

P3
****( j,k)

k=1

∞

∑
j=1

∞

∑ ⎞
⎠⎟
d 2Tq (t)
dt 2

4c
P4
*

2
+

⎛
⎝⎜

cos
kπ s
LY

P4
**(k)+ cos

jπct
LX

P4
***( j)

j=1

∞

∑
k=1

∞

∑ + 2 cos
jπct
LX

cos
kπ s
LY

P4
****( j,k)

k=1

∞

∑
j=1

∞

∑ ⎞
⎠⎟
dTq (t)
dt

+2c2
P5
*

2
+ cos

kπ s
LY

P5
**(k)+ cos

jπct
LX

P5
***( j)

j=1

∞

∑
k=1

∞

∑⎛
⎝⎜

+2 cos
jπct
LX

cos
kπ s
LY

P5
****( j,k)

k=1

∞

∑
j=1

∞

∑ ⎞
⎠⎟
Tq (t)

⎤

⎦
⎥

=
εgLXLY
P* Ψ pi (ct)Ψ pj (s)

 
(58) 

  

where 
µ

ε
YX LL

M=    

we rearrange equation (58) to take the form 
 
d 2Tn (t)
dt 2

+ µ0R2 (t)
1+ µ0R1(t)

dTn (t)
dt

+
γ sf
2 + µ0R3(t)
1+ µ0R1(t)

Tn (t)+
µ0

1+ µ0R1(t)
R1(t)[ d 2Tq (t)

dt 2
+ R2 (t)

dTq (t)
dtq=1

q≠n

∞

∑

+R3(t)Tq (t)⎤⎦ =
µ0gLXLY

[1+ µ0R1(t)]P
* Ψ pi (ct)Ψ pj (s)

 (59) 

 
where ε has been written as a function of the mass ratio µo, 
 

R1(t) =
2
P*

P3
*

2
+ cos kπs

LYk=1

∞

∑⎡

⎣
⎢ P3

**(k)+ cos jπct
LX

P3
***( j)

j=1

∞

∑ +2 cos jπct
LX

cos kπs
LYk=1

∞

∑
j=1

∞

∑ P3
****( j,k)

⎤

⎦
⎥  

 

⎥
⎦

⎤
++⎢
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+= ∑∑∑∑
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∞
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∞
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1 11
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sk
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L
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P
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∞
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Considering the homogeneous part of the equation (59) and going through the same arguments 
and analysis as in the previous case, the modified frequency corresponding to the frequency of the 
free system due to the presence of the moving mass is 

 

βsf = γ sf 1−
µ0
2

R1 −
R3
γ sf
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (60) 

 
retaining terms to o(µo) only. 

Thus, to solve the non-homogeneous equation (59), the differential operator which acts on 
Tn(t) and Tq(t) is replaced by the equivalent free system operator defined by the modified fre-
quency βsf. Therefore, taking into account equations (34) and (35), we have 

 
d 2Tn (t)
dt 2

+ βsf
2Tn (t) = G0Ψ pj (s)sinα pit + Api cosα pit + Bpi sinhα pit +Cpi coshα pit  (61) 

 
where 
 

G0 =
µ0gLXLY

P*
 (62) 

 
It is noticed that equation (61) is analogous to equation (56) with βsf and G0 replacing γsf and 

K0 respectively. Therefore, when equation (61) is solved in conjunction with the initial conditions, 
one obtains expression for Tn(t) and in view of equation (20), one obtains  

 

W (x, y,t) =
nj=1

∞

∑
ni=1

∞

∑ G0Ψ pj (s)
βsf [βsf

4 −α pi
4 ]
[βsf

2 −α pi
2 ][Cpi{ βsf (coshα pit − cosβsf t)

+ Bpi (βsf sinhα pit −α pi sinβsf t)]+ [βsf
2 +α pi

2 ][Apiβsf (cosα pit − cosβsf t)

− (α pi sinβsf t − βsf sinα pit)] }[sinΩnix
LX

+ Ani cos
Ωnix
LX

+ Bni sinh
Ωnix
LX

+Cni cosh
Ωnix
LX

][sin
Ωnj y
LY

+ Anj cos
Ωnj y
LY

+ Bnj sinh
Ωnj y
LY

+Cnj cosh
Ωnj y
LY

]

 (63) 

 
Equation (63) is the transverse displacement response to a moving mass of a rectangular plate 

resting on variable Winkler elastic foundation. The constants Ani, Api, Anj, Apj, Bni, Bpi, Bnj, Bpj, 
Cni, Cpi, Cnj and Cpj are to be determined from the choice of the end support condition. 
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4 ANALYSIS OF THE SOLUTION 

Next, the phenomenon of resonance is examined. Equation (57) clearly shows that the rectangular 
plate on a variable Winkler elastic foundation and traversed by a moving force reaches a state of 
resonance whenever 
 

=sfγ
X

pi

L
cΩ

 (64) 

 
while equation (63) shows that the same plate under the action of a moving mass experiences 
resonance effect whenever 
 

=sfβ
X

pi

L
cΩ

 (65) 

 
where 
 

βsf = γ sf 1−
µ0
2

R1 −
R3
γ sf
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (66) 

 
Equations (65) and (66) imply that 
 

βsf = γ sf 1−
µ0
2

R1 −
R3
γ sf
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
Ω pic
LX

 (67) 

 
Consequently from equations (64) and (67), for the same natural frequency, the critical speed 

(and the natural frequency) for the system traversed by a moving mass is smaller than that of the 
same system traversed by a moving force. Thus, for the same natural frequency of the plate, the 
resonance is reached earlier when we consider the moving mass system than when we consider the 
moving force system. 
 
5 ILLUSTRATIVE EXAMPLES 

a. Rectangular plate elastically supported at edges y = 0, y = LY with simple support at ed-

ges x = 0, x = LX . 

At x = 0 and x = LX, the plate is taken to be simply supported and at the edges y = 0 and y = 
LY, it is taken to be elastically supported.  

Using the conditions (4-11) in equations (34) and (35), the following values of the constants 
and the frequency equation are obtained for the elastic edges. 
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Cnj =

Ωnj

LY
− k1r2

⎡

⎣
⎢

⎤

⎦
⎥sinΩnj + k1 +

r2Ωnj

LY
⎡

⎣
⎢

⎤

⎦
⎥cosΩnj −

r1Ωnj

LY
sinhΩnj + k1r1 coshΩnj

k1r1 sinΩnj −
r1Ωnj

LY
cosΩnj +

r3Ωnj

LY
− k1

⎡

⎣
⎢

⎤

⎦
⎥sinhΩnj +

Ωnj

LY
− k1r3

⎡

⎣
⎢

⎤

⎦
⎥coshΩnj

=
−
r2Ωnj

3

LY
3 + k2

⎡

⎣
⎢

⎤

⎦
⎥sinΩnj +

Ωnj
3

LY
3 − k2r2

⎡

⎣
⎢

⎤

⎦
⎥cosΩnj − k2r1 sinhΩnj −

r1Ωnj
3

LY
3 coshΩnj

r1Ωnj
3

LY
3 sinΩnj + k2r1 cosΩnj +

Ωnj
3

LY
3 + k2r3

⎡

⎣
⎢

⎤

⎦
⎥sinhΩnj +

r3Ωnj
3

LY
3 + k2

⎡

⎣
⎢

⎤

⎦
⎥coshΩnj

,

 (68) 

 
Anj = r1Cnj + r2 and Bnj = r3Cnj + r1  (69) 

 
where 
 

r1 =

Ωnj
4

LY
4 + k1k2

Ωnj
4

LY
4 − k1k2

; r2 =
−
2k1Ωnj

3

LY
3

Ωnj
4

LY
4 − k1k2

and r3 =

−2k2Ωnj

LY
Ωnj
4

LY
4 − k1k2

.  

 
Equation (68) when simplified yields 
 

tanΩnj = tanhΩnj  (70) 
 

which is termed the frequency equation for the elastic edge, such that 
 

Ω1 = 3.927, Ω2 = 7.069, Ω3 = 10.210, ...  (71) 
 

For the simple edges, it can be shown that 
 

Ani = 0, Bni = 0, Cni = 0, and Ωni = niπ (72) 
 
Similarly,  
 

Api = 0, Bpi = 0, Cpi = 0, and Ωpi = piπ (73) 
 
Using (68), (69), (71), (72) and (73) in equations (57) and (63) one obtains the displacement 

response respectively to a moving force and a moving mass of a simple-elastic rectangular plate 
resting on a variable Winkler elastic foundation. 
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b. Elast ic support at al l  edges. 

Using the conditions (12-19) in equations (34) and (35), one obtains 
 

Cni =

Ωni

LX
− k1r2 (i)

⎡

⎣
⎢

⎤

⎦
⎥sinΩni + k1 +

r2 (i)Ωni

LX
⎡

⎣
⎢

⎤

⎦
⎥cosΩni −

r1(i)Ωni

LX
sinhΩni + k1r1(i)coshΩni

k1r1(i)sinΩni −
r1(i)Ωni

LX
cosΩni +

r3(i)Ωni

LX
− k1

⎡

⎣
⎢

⎤

⎦
⎥sinhΩni +

Ωni

LX
− k1r3(i)

⎡

⎣
⎢

⎤

⎦
⎥coshΩni

=
− r2 (i)Ωni

3

LX
3 + k2

⎡

⎣
⎢

⎤

⎦
⎥sinΩni +

Ωni
3

LX
3 − k2r2 (i)

⎡

⎣
⎢

⎤

⎦
⎥cosΩni − k2r1(i)sinhΩni −

r1(i)Ωni
3

LX
3 coshΩni

r1(i)Ωni
3

LX
3 sinΩni + k2r1(i)cosΩni +

Ωni
3

LX
3 + k2r3(i)

⎡

⎣
⎢

⎤

⎦
⎥sinhΩni +

r3(i)Ωni
3

LX
3 + k2

⎡

⎣
⎢

⎤

⎦
⎥coshΩni

,

 (74) 

 
Ani = r1(i)Cni + r2 (i) and Bni = r3(i)Cni + r1(i)  (75) 

   
where 
 

r1(i) =

Ωni
4

LX
4 + k1k2

Ωni
4

LX
4 − k1k2

; r2 (i) =
− 2k1Ωni

3

LX
3

Ωni
4

LX
4 − k1k2

and r3(i) =

−2k2Ωni

LX
Ωni
4

LX
4 − k1k2

. 

 
and 
 

Cnj =

Ωnj

LY
− k1r2 ( j)

⎡

⎣
⎢

⎤

⎦
⎥sinΩnj + k1 +

r2 ( j)Ωnj

LY
⎡

⎣
⎢

⎤

⎦
⎥cosΩnj −

r1( j)Ωnj

LY
sinhΩnj + k1r1( j)coshΩnj

k1r1( j)sinΩnj −
r1( j)Ωnj

LY
cosΩnj +

r3( j)Ωnj

LY
− k1

⎡

⎣
⎢

⎤

⎦
⎥sinhΩnj +

Ωnj

LY
− k1r3( j)

⎡

⎣
⎢

⎤

⎦
⎥coshΩnj

=
−
r2 ( j)Ωnj

3

LY
3 + k2

⎡

⎣
⎢

⎤

⎦
⎥sinΩnj +

Ωnj
3

LY
3 − k2r2 ( j)

⎡

⎣
⎢

⎤

⎦
⎥cosΩnj − k2r1( j)sinhΩnj −

r1( j)Ωnj
3

LY
3 coshΩnj

r1( j)Ωnj
3

LY
3 sinΩnj + k2r1( j)cosΩnj +

Ωnj
3

LY
3 + k2r3( j)

⎡

⎣
⎢

⎤

⎦
⎥sinhΩnj +

r3( j)Ωnj
3

LY
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⎡

⎣
⎢

⎤

⎦
⎥coshΩnj

,

 (76) 

 
Anj = r1( j)Cnj + r2 ( j) and Bnj = r3( j)Cnj + r1( j)  (77) 

 
where 
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r1( j) =

Ωnj
4

LY
4 + k1k2

Ωnj
4

LY
4 − k1k2

; r2 ( j) =
−
2k1Ωnj

3

LY
3

Ωnj
4

LY
4 − k1k2

and r3( j) =

−2k2Ωnj

LY
Ωnj
4

LY
4 − k1k2

. 

 
Equations (74) and (76) when simplified yield 
 

tanΩni = tanhΩni  (78) 
 

and 
 

tanΩnj = tanhΩnj  (79) 
 

Using (74), (75), (76), (77), (78) and (79) in equations (57) and (63) one obtains the transver-
se-displacement response respectively to a moving force and a moving mass of an elastically sup-
ported rectangular plate resting on a variable Winkler elastic foundation. 
 
6 NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS 

In order to carry out the calculations of practical interests in dynamics of structures and engi-
neering design for the elastically supported plate resting on variable Winkler elastic foundation, a 
rectangular plate of length LY = 0.914m and breadth LX = 0.457m is considered. It is assumed 
that the mass travels at the constant velocity 0.8123m/s. Furthermore, values for E, S and Γ are 
chosen to be 2.109x109kg/m2, 0.4m and 0.2 respectively. For various values of the foundation 
modulus F0 and the rotatory inertia correction factor R0, the deflections W(x,y,t) of the elasti-

cally supported plate are calculated in meters at x =
LX
2

 and y = LY
2

 and plotted against time t 

in seconds. 
 
a. Simple – elast ic rectangular plate on var iable Winkler foundation. 

Figures 6.1 – 6.3 present the responses of the plate simply supported at the edges x = 0 and x = 
LX and elastically supported at the edges y = 0 and y = LY. Figure 6.1 displays the effect of 
foundation modulus F0 on the transverse deflection of moving force for simple–elastic rectangular 
plate, while figure 6.2 displays the effect of rotatory inertia correction factor R0 on the transverse 
displacement of moving mass for the simple–elastic plate at a fixed value of F0 = 1000N/m3. It is 
shown that as both F0 and R0 increase the amplitude of the deflection decreases respectively for 
the simple-elastic rectangular plate resting on variable Winkler elastic foundation. 
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Figure 6.1   Displacement of moving force for simple-elalastic rectangular plate on variable Winkler foundation for various values of 
foundation modulus Fo. 

 

 
 

Figure 6.2   Displacement of moving mass for simple-elalastic rectangular plate on variable Winkler foundation for various values of 
rotatory inertia correction factor Ro. 

 
 

 

 
 

Fig. 6.1: Displacement of moving force for simple-elastic rectangular plate on variable 
Winkler foundation for various values of foundation modulus Fo.
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Fig. 6.2: Displacement of moving mass for simple-elastic rectangular plate on variable 
Winkler foundation for various values of rotatory inertia correction factor Ro.
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For the purpose of comparison, Figure 6.3 compares the displacement curves of moving force 
and moving mass for the simple – elastic plate for fixed F0 and R0. It is evident from the graph 
that the response amplitude of a moving mass is greater than that of a moving force problem. 

 

 
 

Figure 6.3   Comparison of the deflections of moving force and moving mass cases for simple-elastic rectangular plate on variable 
Winkler foundation with Fo=1000 and Ro=4. 

 
b. Elast ical ly supported rectangular plate on var iable Winkler foundation. 

The responses of the plate elastically supported at all its edges are presented in figures 6.4 – 6.6. 
observed in figures 6.4 and 6.5 that as the values of R0 and F0 increase the deflection amplitude of 
the plate decreases for both cases of moving force and moving mass respectively for fixed F0 = 
1000N/m3 in figure 6.4. Figure 6.6 compares the displacement response of the moving force and 
moving mass for an elastically supported rectangular plate for fixed values of F0 and R0. It is 
evident that the displacement response of the moving mass problem is greater than that of the 
moving force problem.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.3: Comparison of the deflections of moving force and moving mass cases for simple-
elastic rectangular plate on variable Winkler foundation with Fo=1000 and Ro=4.
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Figure 6.4   Deflection profile of moving force for elastically supported rectangular plate on variable Winkler foundation for various 
values of rotatory inertia correction factor Ro. 

 

 
 

Figure 6.5   Deflection profile of moving mass for elastically supported rectangular plate on variable Winkler for various values of 
foundation modulus Fo. 

 
 
  
 

 

Fig. 6.4: Deflection profile of moving force for elastically supported rectangular plate on 
variable Winkler foundation for various values of rotatory inertia correction factor Ro.
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Fig. 6.5: Deflection profile of moving mass for elastically supported rectangular plate on 
variable Winkler foundation for various values of foundation modulus Fo.
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Figure 6.6   Comparison of the deflections of moving force and moving mass cases for elastically supported plate on variable Winkler 
foundation with Fo=1000 and Ro=4. 

 

6 CONCLUSION 

The problem of the dynamic behaviour under moving concentrated masses of rectangular plates 
resting on variable Winkler elastic foundation is considered in this work. The governing fourth 
order partial differential equation is a non-homogenous equation with variable and singular coeffi-
cients. The objective of the work has been to study the problem of the dynamic response to mo-
ving concentrated masses of rectangular plates on variable Winkler elastic foundations. In parti-
cular, the closed form solutions of the fourth order partial differential equations with variable and 
singular coefficients of the rectangular plate is obtained for both cases of moving force and mo-
ving mass. The method is based on (i) Separation of variables (ii) The modified Struble’s techni-
que and (iii) The method of integral transformations. 

These solutions are analyzed and resonance conditions are obtained for the problem. The nu-
merical analysis for both moving force and moving mass problems carried out show that the mo-
ving force solution is not an upper bound for the accurate solution of the moving mass problem 
and that as the rotatory inertia correction factor increases, the response amplitudes of the plates 
decrease for both cases of moving force and moving mass problem. When the rotatory inertia 
correction factor is fixed, the displacements of the elastically supported rectangular plates resting 
on variable Winkler elastic foundations decrease as the foundation modulus increases. 

Furthermore, for fixed values of rotatory inertia correction factor and foundation modulus, the 
response amplitude for the moving mass problem is greater than that of the moving force problem 
implying that resonance is reached earlier in moving mass problem than in moving force problem 
of the elastically supported rectangular plate resting on variable Winkler foundation. Hence, it is 
dangerous to rely on the moving force solutions. 

Fig. 6.6: Comparison of the deflections of moving force and moving mass cases for 
elastically supported plate on variable Winkler foundation with Fo=1000 and Ro=4
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Finally, for the elastically supported rectangular plate resting on Winkler elastic foundation 
with stiffness variation, for the same natural frequency, the critical speed for moving mass pro-
blem is smaller than that of the moving force problem, and as rotatory inertia correction factor 
and the foundation modulus increase, the critical speeds increase showing that risk is reduced. 
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