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Abstract 
In this study, two novel predictive machine learning (ML) models, developed using Gene Expression 
Programming (GEP) and Multi Expression Programming (MEP) algorithms, are proposed for predicting the 
punching shear capacity of reinforced concrete (RC) slab-column connections with fiber reinforced polymers 
(FRP) as longitudinal bars. The models were derived using a dataset of 136 experimental specimens collected 
via a literature review. The collected dataset was randomly divided into two parts as train (75%) and test 
(25%) to develop the ML models. Using the developed ML models (GEP and MEP), the value of statistical 
indicators such as the coefficient of determination (R2), mean absolute percentage error (MAPE), root mean 
square error (RMSE), and coefficient of variation (COV) obtained in the train dataset were very close to those 
values obtained in the test dataset. In addition, a comparison study was conducted on experimental results 
of all specimens in dataset and the prediction results obtained from the design codes, existing literature from 
researchers and proposed ML models. The comparison study revealed that the two best models with the 
highest R2 values were the GEP model, with 0.947, and the MEP model, with 0.934. Minimum MAPE, RMSE 
and COV values also belong to the prediction results of the proposed GEP and MEP models. The results 
indicate that the proposed GEP and MEP models outperform the other models in terms of prediction accuracy 
and robustness. Finally, sensitivity and parametric analyses were conducted to evaluate the influence of each 
input parameter on the predicted punching shear capacity. 
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1 INTRODUCTION 

The fact that steel bars are weak in terms of corrosion is important trouble for the solidity of RC structures (Truong 
et al., 2022a). Over time, corrosion leads to serious deterioration in RC structures. It disrupts adherence (Fang et al., 
2006; Blomfors et al., 2018). It reduces load-bearing capacity of RC structures because of decrease in cross-sectional area 
of the steel (Almusallam, 2001; Fernandez et al., 2015). Diverse ways are used to eliminate this problem, including the 
use of stainless or coated steel bars, impermeable or slightly impermeable concrete and deep concrete cover or sealants 
(Smith and Virmani, 2000; Patel, 2019). FRP bars have been frequently used as reinforcement to eliminate the corrosion 
risks. FRP bars are preferred not only for their resistance to corrosion, but also for their high strength-to-weight ratio, 
lightweight nature, high tensile strength, without any magnetic belongings, ease of production, and ease of 
transportation. FRP types commonly mentioned in the literature are glass (GFRP), carbon (CFRP), basalt (BFRP) and 
aramid (AFRP) (Almomani et al., 2024; Sengun and Arslan, 2024; Sengun and Arslan, 2022; Keskin et al., 2017; Mahmoud 
et al., 2024; Aydin et al., 2022; Cakir et al., 2021; Cakir et al., 2023; Akkaya et al., 2022a; Akkaya et al., 2022b; Akkaya et 
al., 2024) . 

Structural elements using FRP bars as reinforcement have been the research topic of numerous experimental 
studies to understand the influence of FRP bars to their structural behavior (Tarawneh and Majdalaweyh, 2020; 
Tomlinson and Fam, 2015; Hassan et al., 2013a). One of these research topics is the punching shear behavior at slab-
column connection areas. It is critical to be able to correctly describe the punching shear behavior because shear failure 
does not give warning during failure of the structural integrity and its effects can be chaotic (Kang and Wallace, 2006; 
Kim et al., 2014). Bouguerra et al. (2011) carried out a study to understand the punching shear behavior of FRP-RC bridge 
deck slabs. The parameters of this experimental study are effective slab thickness, concrete compressive strength, FRP 
bars ratio and FRP type. Shear failure was observed in all experimental specimens. It was concluded in the study that 
effective slab thickness and concrete compressive strength had the greatest influence parameters on punching shear 
behavior. It is also observed that the crack widths in the slab increase as the FRP bar ratio decreases. Another conclusion 
is that FRP bars with a similar axial stiffness value have a similar effect on punching shear behavior, regardless of the type 
of FRP. Hassan et al. (2013a) concluded that increasing the GFRP bars ratio in slab enhances the punching shear capacity. 
Additionally, the punching shear behavior of RC slab-interior column connections was researched by Kurtoğlu et al. 
(2013).  According to this research, it was understood that specimens with GFRP bars had a higher deformation capacity, 
but a lower punching shear capacity, than those with steel bars. In another similar experimental research (Junaid et al., 
2024), it was reported that column dimensions and the location of punching shear perimeter have a substantial impact 
on punching shear capacity. Lee et al. (2009, 2010) explained the effect of parameters such as the type of reinforcement 
(FRP or steel) and the reinforcement concentration near the column area on punching shear behavior. Moreover, Dulude 
et al. (2013) mentioned that effective slab thickness and column dimensions are the most determining parameters in 
understanding the punching shear behavior of FRP-RC slab-column connection areas. Similarly, another study (Hassan et 
al. 2013b) reported that concrete compressive strength is also among the key parameters affecting punching shear 
capacity. 

Machine Learning (ML) is a domain of artificial intelligence. ML can discover and enhance the complex relationship 
between the parameters in elaborate datasets by using algorithms. Then, ML makes predictions according to the patterns 
of these algorithms. Today, ML is widely used in many disciplines such as medicine, finance, and civil engineering. In 
recent years, many studies (Badra et al., 2022; Abood et al., 2024; Alkhawaldeh, 2024; Yan et al., 2024; Momani et al., 
2024; Xu and Shi, 2024) have employed ML algorithms to predict punching shear capacity, which is considered a 
theoretically complex design aspect within structural engineering, a subfield of civil engineering. Truong et al. (2022b) 
examined the applicability of machine learning for the prediction of punching shear capacity of FRP-RC slabs. Support 
Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) were applied to a dataset of 104 
specimens collected from the literature to predict punching shear capacity using three machine learning algorithms. The 
study concluded that the XGBoost-based model provided the highest prediction accuracy for punching shear capacity 
among all models evaluated. Doğan and Arslan (2022) conducted a study to evaluate the prediction performance of 
punching shear capacity in slabs reinforced with either FRP or steel bars, using data collected from the literature. The 
collected dataset was analyzed using five ML algorithms such as Multiple Linear Regression (MLR), Bagging-Decision Tree 
Regression (Bagging-DT), RF, SVR and XGBoost. Evaluating the prediction performance of these five ML algorithms, SVR 
yielded the best prediction results, especially for specimens incorporating GFRP bars. Other studies (Derogar et al., 2024; 
Salihi and Hamad, 2024) have also reported that artificial intelligence applications are sufficient for the prediction of 
punching shear capacity. Furthermore, another study in the literature (Yan et al., 2024) found that the Gradient Boosting 
Regression Tree (GBRT) model achieved the best agreement between predicted and actual results. 



Experimental studies (Elgabbas et al., 2016; Gouda, and El-Salakawy, 2016; Hussein and El-Salakawy, 2018; 
AlHamaydeh and Anwar Orabi, 2021; Eladawy et al., 2019) have concluded that specimens with FRP bars exhibit lower 
punching shear capacity compared to their counterparts with steel bars. Furthermore, existing design models for 
predicting the punching shear capacity of FRP-RC slab-column connections are generally adapted from models originally 
developed for connections using steel reinforcement. This approach raises concerns about its adequacy in capturing the 
unique punching shear behavior. Accurately predicting the punching shear capacity of RC slab-column connections is 
critical for structural safety. Therefore, achieving high prediction performance for the punching shear capacity is 
significant. Additionally, most ML algorithms used in the literature for predicting the punching shear capacity of FRP-RC 
slab-column connections provide direct numerical predictions rather than generating explicit equations. Studies that 
employ ML algorithms to produce predictive equations for FRP-RC slab-column connections remain limited. To address 
this gap, the present study proposes predictive equations derived from different ML algorithms for estimating the 
punching shear capacity of FRP-RC slab-column connections. The algorithms used in this study are GEP and MEP. A total 
of 136 specimens of FRP-RC two-way slab–interior column connections without shear reinforcement were collected from 
the literature. The proposed equations are valid for the specimens illustrated in Figure 1. The predictions obtained using 
the proposed equations were statistically compared with those generated by twenty different models available in design 
codes or previous studies. Finally, Sensitivity and parametric analyses are performed on the proposed models. 

 
Figure 1 FRP-RC two-way flat slab–interior column connections without shear reinforcement 

2 COLLECTIONS OF DATASET AND PREDICTIVE MODELS  

2.1 Collection of Dataset 

An extensive dataset was compiled by reviewing numerous research papers focused on the experimental 
investigation. The final dataset consists of 136 experimental specimens collected from studies available in the literature 
(Hassan et al., 2013a; Bouguerra et al., 2011; Kurtoğlu et al., 2023; Junaid et al., 2024; Lee et al., 2010; Hassan et al., 
2013b; Elgabbas et al., 2016; Gouda, and El-Salakawy, 2016; Hassan et al., 2014; Abduljaleel et al., 2017; El-Gamal et al., 
2005a; Banthia et al., 1995; El-Ghandour et al., 2003; El-Tom, 2007; El-Gamal et al., 2007; Jacobson et al., 2005; Salama, 
2009; Nguyen-Minh and  Rovňák, 2013; Ju et al., 2018; Hemzah et al., 2019; Dulude et al., 2011; Salihi and Hamad, 2023; 
Ospina et al., 2003; Ahmad et al., 1994; Zhang et al., 2005; Zhang, 2006; Bank and Xi, 1995; Hussein et al., 2004; Zhu et 
al., 2012; Zaghloul  and Razaqpur, 2003; Zaghloul et al., 2007). All columns in the experimental specimens are interior 
columns with either square or rectangular cross-sections. The specimens were subjected to monotonic, concentric 
loading without eccentricity. FRP bars are used as flexural reinforcement in the two-way RC slabs, and no shear 
reinforcement is provided. The primary input parameters influencing the punching shear capacity can be identified as 
the concrete compressive strength used in the slab (𝑓𝑐), effective slab thickness (𝑑), punching perimeter (𝑢), FRP bar ratio 
(𝜌𝑓), and the elastic modulus of FRP (𝐸𝑓). The location of the punching shear perimeter varies across different shear 

models and is determined by offsetting the effective slab thickness (𝑑) from each edge of the column by 0.5, 1, 1.5, and 
2 times, corresponding to 𝑢0.5𝑑, 𝑢1𝑑, 𝑢1.5𝑑 and 𝑢2𝑑, respectively.  

In this study, the input parameters used for developing the ML models were determined based on experimental 
studies, existing design codes, and previous ML-based research. In addition to the experimental studies mentioned in 
the Introduction section, Experimental studies (Ahmad et al., 1994; Banthia et al., 1995; Bank and Xi 1995; Ospina et al., 
2003) shown that concrete compressive strength is an effective parameter on the punching shear capacity of FRP-
reinforced concrete slab-column connections. Furthermore, Louka Thesis (1999) and El-Gendy and El-Salakawy (2014) 
state that the elastic modulus of the FRP bar has a positive relationship with the shear capacity of RC slab-column 



connections. Moreover, Deifalla (2022) mentioned the mechanisms and parameters affecting the punching shear 
capacity. These mechanisms and parameters are described as follows: the crack surface friction mechanism related to 
concrete compressive strength, the dowel effect mechanism related to FRP bar ratio, the FRP type related to elastic 
modulus of FRP, the fracture surface related to the punching perimeter, and the size effect related to the effective slab 
thickness of the RC slab. Alateyat et al. (2024) reported that the primary parameters in the calculation of the punching 
shear capacity are 𝑓𝑐, 𝑑, 𝑢, 𝜌𝑓, and 𝐸𝑓. Based on the examining of design codes, theoretical and analytical studies in the 

literature presented in this study, it was concluded that the primary parameters are 𝑓𝑐, 𝑑, 𝑢, 𝜌𝑓, and 𝐸𝑓. Finally, 

Researchers have used 𝑓𝑐, 𝑑, 𝑢, 𝜌𝑓, and 𝐸𝑓 as the primary input parameters to develop ML models on predicting the 

punching shear capacity of FRP-RC slabs through several ML studies in the existing literature (Momani et al., 2024; Salihi 
and Hamad, 2024). 

 

 
Figure 2 Calculation of the punching perimeter; (a) square column section, (b) rectangular column section 

The properties of the 136 specimens, along with the experimentally obtained punching shear capacity values, are 
presented in Table 1. Histograms showing the distributions of the design parameters and punching shear capacity are 
provided in Figure 3. Moreover, the applicability range of the equations derived in this study, as well as the analysis 
results and evaluations, are valid within the limits specified in Table 1. The dataset includes three types of FRP bars, 
where GFRP is the most common with 89 specimens, followed by CFRP with 31 and BFRP with 16 specimens.  

As evident from Table 1 and Figure 3, the minimum and maximum values of the design parameters cover a 
sufficiently wide range. The effective slab thickness (𝑑) ranges from 55 mm to 300 mm, the reinforcement ratio (𝜌𝑓) 

from 0.0015 to 0.0300, the elastic modulus of FRP (𝐸𝑓) from 28400 MPa to 156000 MPa, the concrete compressive 

strength (𝑓𝑐) from 21.10 MPa to 98.30 MPa, and the punching perimeter at 𝑢0.5𝑑  from 544 mm to 3000 mm. The 
application ranges of the two proposed equations in Equations (21) and (22), which were generated using the GEP and 
MEP algorithms respectively, cover the above-given limits. 

The punching shear capacity (𝑉𝑒𝑥𝑝.) also exhibits a wide range, varying from 57200 N to 1600000 N. In addition, the 

dataset contains a high proportion of specimens made with normal-strength concrete. Approximately 80% of the 
specimens fall within the normal-strength concrete range (25 ≤ 𝑓𝑐 < 50 MPa), 15% are made with high-strength 
concrete (𝑓𝑐 ≥ 50 MPa), and 5% with low-strength concrete (𝑓𝑐 < 25 MPa). All specimens examined in the experimental 
studies exhibited shear failure, and rupture of the FRP bars was also observed. Moreover, Figure 4 illustrates the 



relationship between the input parameters and the output parameter, as quantified by the Pearson correlation 
coefficient. This coefficient ranges from -1 to 1, where values close to zero indicate a weak correlation, and values close 
to one indicate a strong correlation. As shown in Figure 4, the parameter with the weakest correlation with the punching 
shear capacity is 𝜌𝑓. In addition, the fact that the Pearson coefficients between the punching shear capacity and 

parameters 𝑑  and 𝑢0.5𝑑  are over 0.8 indicates that these parameters have a strong correlation with the punching shear 
capacity. 

Table 1 Collected dataset 

Reference Number Specimen 𝒅 (𝐦𝐦) 𝝆𝒇 𝑬𝒇 (𝐌𝐏𝐚) 𝒇𝒄 (𝐌𝐏𝐚) 𝒖𝟎.𝟓𝒅 (𝐦𝐦) 𝑽𝒆𝒙𝒑. (𝐍) 

Bouguerra et al. 
(2011) 

1 G-200-N 165 0.0120 44500 49.10 2360 732000 

2 G-175-N 143 0.0120 41600 35.20 2272 484000 

3 G-150-N 118 0.0120 41600 35.20 2172 362000 

4 G-175-H 143 0.0120 41600 64.80 2272 704000 

5 G-175-N-0.7 143 0.0070 41000 53.10 2272 549000 

6 G-175-N-0.35 143 0.0035 41000 53.10 2272 506000 

7 C-175-N 145 0.0040 122000 40.30 2280 530000 

Hassan et al. (2014) 

8 G(1.2)200 131 0.0121 64900 37.50 1724 438000 

9 G(0.3)350 284 0.0034 48200 34.30 2336 825000 

10 G(1.6)350 280 0.0161 56700 38.20 2320 1492000 

Abduljaleel et al. 
(2017) 

11 SG1 62 0.0220 45000 29.80 848 136200 

El-Gamal et al. 
(2005a) 

12 G-S1 159 0.0100 44600 49.60 2336 740000 

13 G-S2 159 0.0199 39000 44.30 2336 712000 

14 G-S3 156 0.0121 44000 49.10 2324 732000 

15 C-S1 165 0.0035 122000 49.60 2360 674000 

16 C-S2 165 0.0069 122000 44.30 2360 799000 

Banthia et al.  (1995) 
17 1 55 0.0031 100000 41.00 620 64840 

18 2 55 0.0031 100000 52.90 620 61290 

Hassan et al. (2013a) 

19 G(0.7)30/20 130 0.0071 48200 34.00 1720 329000 

20 G(0.7)30/20-B 135 0.0071 48200 39.00 1740 386000 

21 G(1.6)30/20 130 0.0156 48100 39.00 1720 431000 

22 G(1.6)30/20-B 130 0.0156 48100 32.00 1720 451000 

23 G(0.7)45/20 135 0.0071 48200 45.00 2340 400000 

24 G(1.6)45/20 130 0.0156 48100 32.00 2320 504000 

25 G(1.6)45/20-B 130 0.0156 48100 39.00 2320 511000 

26 G(0.3)30/35 285 0.0034 48200 34.00 2340 825000 

27 G(0.3)30/35-B 285 0.0034 48200 39.00 2340 782000 

28 G(0.7)30/35 280 0.0073 48100 39.00 2320 1071000 

29 G(0.7)30/35-B-1 280 0.0073 48100 30.00 2320 1027000 

30 G(0.7)30/35-B-2 280 0.0073 48100 47.00 2320 1195000 

31 G(0.3)45/35 285 0.0034 48200 49.00 2940 911000 

32 G(0.3)45/35-B 285 0.0034 48200 32.00 2940 1020000 

33 G(0.7)45/35 280 0.0073 48100 30.00 2920 1248000 

El-Ghandour et al. 
(2003) 

34 SG1 142 0.0018 45000 32.00 1368 170000 

35 SC1 142 0.0015 110000 32.80 1368 229000 

36 SG2 142 0.0038 45000 46.40 1368 271000 

37 SG3 142 0.0038 45000 30.40 1368 237000 

38 SC2 142 0.0035 110000 29.60 1368 317000 

El-Tom (2007) 

39 1 110 0.0100 41000 66.80 1440 282000 

40 2 110 0.0120 41000 62.00 1440 319000 

41 3 110 0.0150 41000 64.00 1440 384000 

42 4 150 0.0120 41000 64.00 1600 589000 

43 5 145 0.0120 41000 70.10 1580 487000 

44 6 135 0.0120 41000 67.60 1540 437000 

Kurtoğlu et al. (2023) 

45 GF-90-10-10 72 0.0050 40000 25.00 688 71080 

46 GF-90-12-10 92 0.0042 40000 25.00 768 104680 

47 GF-90-12-15 92 0.0042 40000 25.00 968 128650 

48 GF-120-10-15 72 0.0050 40000 25.00 888 74890 

49 GF-120-12-10 92 0.0042 40000 25.00 768 93540 



Table 1 Collected dataset (continue) 

Reference Number Specimen 𝒅 (𝐦𝐦) 𝝆𝒇 𝑬𝒇 (𝐌𝐏𝐚) 𝒇𝒄 (𝐌𝐏𝐚) 𝒖𝟎.𝟓𝒅 (𝐦𝐦) 𝑽𝒆𝒙𝒑. (𝐍) 

Elgabbas et al. (2016) 

50 S2-B 167 0.0080 64800 48.80 2368 548000 

51 S3-B 167 0.0079 69300 42.20 2368 665000 

52 S4-B 167 0.0080 64800 42.20 2368 566000 

53 S5-B 167 0.0120 64800 47.90 2368 716000 

54 S6-B 167 0.0040 64800 47.90 2368 575800 

55 S7-B 167 0.0040 64800 47.90 2368 436400 

Hassan et al. (2013b) 

56 G(1.6)30/20-H 131 0.0156 57400 75.80 1724 547000 

57 G(1.2)30/20 131 0.0121 64900 37.50 1724 438000 

58 G(1.6)30/35 275 0.0161 56700 38.20 2300 1492000 

59 G(1.6)30/35-H 275 0.0161 56700 75.80 2300 1600000 

El-Gamal et al. (2007) 
60 G-S4 175 0.0120 44600 44.10 2400 707000 

61 G-S5 175 0.0120 43400 44.10 2400 735000 

Jacobson et al. 
(2005) 

62 1 161 0.0098 33000 38.00 2414 537000 

63 2 161 0.0098 33000 37.00 2414 536000 

64 3 161 0.0095 33000 37.00 2414 531000 

65 7 161 0.0098 33000 34.00 2414 721000 

66 8 161 0.0098 33000 51.00 2414 897000 

Lee et al. (2010) 

67 GFU1 127 0.0118 48200 36.30 1408 222000 

68 GFB2 131 0.0215 48200 36.30 1424 246000 

69 GFB3 129 0.0300 48200 36.30 1416 248000 

Salama (2009) 

70 F1 82 0.0110 46000 37.40 1128 165000 

71 F2 112 0.0081 46000 33.00 1248 170000 

72 F3 82 0.0129 46000 38.20 1128 210000 

73 F4 82 0.0154 46000 39.70 1128 230000 

74 F5 82 0.0110 46000 30.30 1328 168000 

75 F6 82 0.0110 46000 29.40 1528 185000 

Nguyen-Minh and  
Rovňák (2013) 

76 GSL-PUNC-0.4 129 0.0048 48000 39.00 1316 180000 

77 GSL-PUNC-0.6 129 0.0068 48000 39.00 1316 212000 

78 GSL-PUNC-0.8 129 0.0092 48000 39.00 1316 248000 

Ju et al. (2018) 

79 GFS1 172 0.0157 46700 36.70 2288 410000 

80 GFS2 172 0.0120 46700 36.70 2288 360000 

81 GFS3 172 0.0079 46700 36.70 2288 370000 

Hemzah et al. (2019) 

82 S-F-D-10-4 75 0.0060 144000 46.00 700 111540 

83 S-F-D-10-6 75 0.0090 144000 60.00 700 128700 

84 S-F-S-10-4 75 0.0030 144000 52.00 700 78650 

85 S-F-S-10-6 75 0.0045 144000 48.00 700 107250 

86 S-F-S-7.5-4 55 0.0041 144000 49.00 620 57200 

87 S-F-S-7.5-6 55 0.0061 144000 49.00 620 78650 

Dulude et al. (2011) 

88 G450-12#15T 300 0.0032 48200 48.60 3000 911000 

89 G450-12#15 150 0.0064 48200 44.90 2400 400000 

90 G450-18#20B 150 0.0180 47600 39.40 2400 511000 

91 G300-18#20 150 0.0140 47600 38.70 1800 431000 

Salihi and Hamad 
(2023) 

92 B16(0.88) 134 0.0088 48260 29.80 1536 295500 

93 B16(1.77) 134 0.0177 48260 29.80 1536 405200 

94 B12(0.88) 138 0.0088 48000 29.80 1552 290100 

95 B12(0.88)-C35 138 0.0088 48000 34.60 1552 295800 

96 B12(0.88)-C25 138 0.0088 48000 21.10 1552 238100 

Gouda, and El-
Salakawy (2016) 

97 G-00-XX 160 0.0065 68000 38.00 1840 421000 

Ospina et al. (2003) 

98 GFR-1 120 0.0073 34000 29.50 1480 199000 

99 GFR-2 120 0.0126 34000 28.90 1480 249000 

100 NEF-1 120 0.0087 28400 37.50 1480 203000 

Ahmad et al. (1994) 

101 CFRC-SN1 61 0.0095 113000 42.40 544 92500 

102 CFRC-SN2 61 0.0095 113000 44.60 544 78800 

103 CFRC-SN3 61 0.0095 113000 39.00 644 96000 

104 CFRC-SN4 61 0.0095 113000 36.60 644 96000 

 



Table 1 Collected dataset (continue) 

Reference Number Specimen 𝒅 (𝐦𝐦) 𝝆𝒇 𝑬𝒇 (𝐌𝐏𝐚) 𝒇𝒄 (𝐌𝐏𝐚) 𝒖𝟎.𝟓𝒅 (𝐦𝐦) 𝑽𝒆𝒙𝒑. (𝐍) 

Zhang et al. (2005) 
105 GS2 100 0.0105 42000 35.00 218000 218000 

106 GSHS 100 0.0118 42000 71.00 275000 275000 

Zhang  (2006) 

107 CS1 100 0.0041 120000 31.00 251000 251000 

108 CS2 100 0.0054 120000 33.00 293000 293000 

109 CS3 100 0.0075 120000 25.70 285000 285000 

110 CSHS1 150 0.0036 120000 85.60 399000 399000 

111 CHSHS2 150 0.0050 120000 98.30 446000 446000 

Bank L. and Xi Z. 
(1995) 

112 1 76 0.0205 143000 30.00 186000 186000 

113 2 76 0.0205 143000 30.00 179000 179000 

114 3 76 0.0181 143000 30.00 199000 199000 

115 4 76 0.0205 156000 30.00 198000 198000 

116 5 76 0.0181 156000 30.00 201000 201000 

117 6 76 0.0149 156000 30.00 190000 190000 

A.Hussein et al. 
(2004) 

118 G-S1 100 0.0118 42000 45.00 249000 249000 

119 G-S2 100 0.0105 42000 35.00 218000 218000 

120 G-S3 100 0.0167 42000 29.00 240000 240000 

121 G-S4 100 0.0095 42000 26.00 210000 210000 

H.Zhu et al. (2012) 

122 A 130 0.0042 45600 22.20 176000 176000 

123 B-2 130 0.0042 45600 23.50 209000 209000 

124 B-3 130 0.0055 45600 23.40 245000 245000 

125 B-4 130 0.0029 45600 23.80 167000 167000 

126 C 130 0.0042 45600 44.40 252000 252000 

Zaghloul and 
Razaqpur (2003) 

127 ZJF5 75 0.0100 100000 45.00 234000 234000 

Zaghloul et al. (2008) 

128 ZJEF1 120 0.0137 100000 25.00 188000 188000 

129 ZJEF2 120 0.0094 100000 27.00 156000 156000 

130 ZJEF3 120 0.0137 100000 55.00 211000 211000 

131 ZJEF5 81 0.0137 100000 28.00 97000 97000 

132 ZJEF7 120 0.0137 100000 26.00 196000 196000 

133 ZJF8 101 0.0148 100000 28.00 178000 178000 

134 ZJF9 100 0.0148 100000 57.60 272000 272000 

Junaid et al. (2024) 
135 S1 80 0.0180 40000 24.00 100100 100100 

136 S2 80 0.0180 40000 24.00 123740 123740 

Minimum 
Maximum 

Mean 
Standard Deviation 

Range 

55.00 0.0015 28400.00 21.10 544.00 57200.0 

300.00 0.0300 156000.00 98.30 3000.00 1600000.0 

135.52 0.0099 66464.12 40.25 1654.22 400854.0 

57.99 0.0052 35637.41 13.33 608.77 309301.7 

245.00 0.0285 127600.00 77.20 2456.00 1542800.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 
Figure 3 Statistical distributions of input parameters and punching shear capacity 

 
Figure 4 Pearson correlation between design parameters and punching shear capacity 

2.2 Predictive Models in Literature 

In this study, twenty models were employed to predict the punching shear capacity. Among these, three models 
(ACI 440. 1R-15, 2015; JSCE, 1997; CAN/CSA S806, 2012) were obtained from widely adopted design codes in the 
literature, while the remaining seventeen models (Jacobson et al., 2005; Dulude et al., 2011; Ospina et al., 2003; Zhang, 
2006; Zaghloul  and Razaqpur, 2003; Alateyat et al., 2024; El-Ghandour et al., 1999; El-Ghandour et al., 2000; Matthys 
and Taerwe,  2000; El-Gamal et al., 2005b; Metwally, 2013; Kara and Sinani, 2016; Hassan et al., 2017; El-Gendy and El-



Salakawy, 2020; Ju et al., 2021; Salama et al., 2021; Alrudaini, 2022) were sourced from previous research studies. These 
FRP-based models were generally developed using various approaches, including modifications of models originally 
created for steel reinforcement, empirical formulations, and fracture mechanics principles. In developing these models, 
the mechanical advantages of FRP bars were also taken into consideration. One of the referenced models was derived 
empirically using experimental data and incorporates the axial stiffness of FRP bars, expressed as the ratio of neutral axis 
depth to the depth of FRP reinforcement. The model proposed by JSCE (1997) is also based on empirical methodology, 
similar to ACI 440.1R (2015), but additionally considers axial stiffness through the modulus ratio between FRP and steel, 
along with the FRP reinforcement ratio. The model proposed in the CAN/CSA S806-12 code (2012) distinguishes itself by 
incorporating the cube root of the concrete compressive strength when calculating punching shear capacity. It 
recommends three different equations, advising the selection of the one that yields the minimum value. Like the JSCE 
code, this model also accounts for axial stiffness effects. Table 2 presents the equations used by the twenty models to 
estimate punching shear capacity. As illustrated, the most used parameters across all models include effective slab 
thickness (𝑑), FRP reinforcement ratio (𝜌𝑓), modulus of elasticity of FRP (𝐸𝑓), concrete compressive strength (𝑓𝑐), and 

the punching perimeter (𝑢). Although these parameters are consistent, the coefficients and root expressions within the 
equations vary due to differences in experimental data and theoretical approaches used during model development.  

As shown in Table 2, the influence of concrete compressive strength is typically accounted for using square or cubic 
root formulations. Similarly, slab dowel action is considered in many models through square or cubic roots of the FRP 
reinforcement ratio. The modulus of elasticity of FRP is included either directly or as a ratio relative to the modulus of 
elasticity of concrete or steel. Regarding punching perimeter, all design codes and nearly half of the other models adopt 
𝑢0.5𝑑. When alternative values are used, 𝑢1.5𝑑 is the most common, followed by 𝑢2𝑑, which appears in only a few models. 
Finally, the size effect is incorporated in many models by applying an exponent to the effective slab thickness, with the 
exponent values varying across different equations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 2 Prediction models in the literature 

Design Model Punching Shear Capacity (𝑽) Eq. No. 

ACI 440. 1R-15 (2015) 𝑉 = 
4

5
𝑘√𝑓𝑐𝑢0.5𝑑𝑑 ; 𝑘 = √2𝜌𝑓

𝐸𝑓

𝐸𝑐
+ (𝜌𝑓

𝐸𝑓

𝐸𝑐
)2 − 𝜌𝑓

𝐸𝑓

𝐸𝑐
 1 

JSCE (1997) 

𝑉 = 𝛽𝑑𝛽𝑝𝛽𝑟𝑓𝑝𝑐𝑑𝑢0.5𝑑𝑑 ; 𝛽𝑑 = √
1

𝑑

4

≤ 1.5; 𝛽𝑝 = √100𝜌𝑓
𝐸𝑓

𝐸𝑠

3

≤ 1.5; 

𝛽𝑟 = 1 +
1

1 + 0.25
𝑢0.5𝑑
𝑑

; 𝑓𝑝𝑐𝑑 = 0.2√𝑓𝑐 ≤ 1.2 

2 

CAN/CSA S806 (2012) 
𝑉 = 𝑚𝑖𝑛

{
  
 

  
 0.028 (1 +

2

𝛽𝑐
) (𝐸𝑓𝜌𝑓𝑓𝑐)

1
3𝑢0.5𝑑𝑑

0.147 (0.19 +
𝛼𝑠𝑑

𝑢0.5𝑑
) (𝐸𝑓𝜌𝑓𝑓𝑐)

1
3𝑢0.5𝑑𝑑

0.056(𝐸𝑓𝜌𝑓𝑓𝑐)
1
3𝑢0.5𝑑𝑑 }

  
 

  
 

 

𝛽𝑐 = 𝑐𝑜𝑙𝑢𝑚𝑛
′𝑠 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 𝛼𝑠 = 4  

3 

El-Ghandour et al. (1999)  𝑉 =  0.33√𝑓𝑐(
𝐸𝑓

𝐸𝑠
)
1
3𝑢0.5𝑑𝑑 4 

El-Ghandour et al. (2000)  𝑉 =  0.79(100𝜌𝑓1.8 (
𝐸𝑓

𝐸𝑠
))

1
3

(
400

𝑑
)
1
4(
𝑓𝑐
20
)
1
3𝑢1.5𝑑𝑑 5 

Matthys and Taerwe  (2000) 𝑉 =  1.36(100𝜌𝑓𝑓𝑐 (
𝐸𝑓

𝐸𝑠
))

1
3 1

𝑑
1
4

𝑢1.5𝑑𝑑 6 

Ospina et al. (2003)  𝑉 =  2.77(𝜌𝑓𝑓𝑐)
1
3 (
𝐸𝑓

𝐸𝑠
)𝑢1.5𝑑𝑑 7 

Zaghloul and Razagpur (2003)  𝑉 =  0.07(𝐸𝑓𝜌𝑓𝑓𝑐)
1
3(0.44 + 5.16𝛼𝑠

𝑑

𝑢0.5𝑑
)𝑢0.5𝑑𝑑 8 

Jacobson et al. (2005)   𝑉 =  4.5(𝜌𝑓𝑓𝑐)
1
2
1

𝑑
1
4

𝑢1.5𝑑𝑑 9 

El-Gamal et al. (2005b)  𝑉 =  0.33√𝑓𝑐(0.5(𝜌𝑓𝐸𝑓)
1
3 (1 +

8𝑑

𝑢0.5𝑑
))𝑢1.5𝑑𝑑 10 

Zhang (2006)  𝑉 = (0.25 + 1.1 (100
𝜌𝑓𝐸𝑓

𝐸𝑠
)

1
2
)
1

𝑑
1
5

(𝑓𝑐)
1
3𝑢1.5𝑑𝑑 11 

Dulude et al. (2010)  𝑉 = 0.3((𝑓𝑐)
1
3 + 0.184(𝑓𝑐)

1
2(𝐸𝑓𝜌𝑓)

0.42)(
𝑑

𝑢0.5𝑑
)0.55𝑢0.5𝑑𝑑 12 

Metwally (2013)  𝑉 =  0.386(𝜌𝑓𝑓𝑐)
1
2(0.62(𝜌𝑓)

1
3𝐸𝑓 (1 +

8𝑑

𝑢0.5𝑑
))𝑢1.5𝑑𝑑 13 

Kara and Sinani (2016)  𝑉 =  0.46(100𝜌𝑓𝑓𝑐 (
𝐸𝑓

𝐸𝑠
))

1
3

𝑢1.5𝑑𝑑 14 

Hassan et al. (2017)  𝑉 =  0.065(𝐸𝑓𝜌𝑓𝑓𝑐)
1
3(0.65 + 4

𝑑

𝑢0.5𝑑
)𝑢0.5𝑑𝑑 15 

El-Gendy and El-Salakawy (2020)  𝑉 =  0.33√𝑓𝑐 (0.62(𝜌𝑓𝐸𝑓)
1
3 (1 +

8𝑑

𝑢0.5𝑑
))1.2𝑢0.5𝑑𝑑 16 

Ju et al. (2021)  𝑉 =  2.3(𝜌𝑓𝑓𝑐 (
𝐸𝑓

𝐸𝑠
))

1
3

(
𝑑

𝑢0.5𝑑
)
1
2𝑢0.5𝑑𝑑 17 

Salama et al. (2021)  𝑉 =  0.79(100𝜌𝑓)
1
3 (
𝐸𝑓

𝐸𝑠
)

1
2
(
400

𝑑
)
1
4(𝑓𝑐)

1
3𝑢1.5𝑑𝑑 18 

Alrudaini (2022)  𝑉 =  0.41(𝐸𝑓𝜌𝑓𝑓𝑐)
1
3(
𝑑

𝑢1𝑑
)
1
5𝑢1𝑑𝑑 19 

Alateyat et al. (2024)  𝑉 =  0.405√𝑓𝑐(𝜌𝑓
𝐸𝑓

𝐸𝑠
)
1
5𝑢2𝑑𝑑 20 



2.3 ML Models 

Two ML models, GEP and MEP, were developed to estimate the punching shear capacity of FRP-RC slabs. These 
models were chosen for their ability to capture complex, non-linear relationships between input parameters. The 
development process and predictive equations of both models are given in the subsections. 

GEP, presented by Ferreira (Ferreira, 2001), is an ML algorithm that allows solving complex problems even without 
a large database (Cevik and Sonebi, 2008). The GEP model is developed in consequence of a process that selects the most 
appropriate model by trying various combinations of the parameters in the input dataset. The GEP model is an effective 
tool for suggesting equations in cases where the equations in codes or literature are insufficient in terms of reliability. 
Various programming languages are used in the GEP model. VBA, Matlab, C++ are examples of programming languages 
that can be used in the GEP model. Genes and chromosomes are fixed in length. They form an expression tree (ET). This 
is integrated into the GEP model. The ET originates from differences in size and shape of non-linear entities. Each gene 
is characterized by a head and a tail, and the quantity of genes can be one or more in the GEP model.  The head of the 
gene is represented by function and terminal symbols, while the tail of the gene is represented by terminals such as 
constant and variable. The use of functions such as addition, subtraction, multiplication and division is for the connecting 
of genes. The GEP model requires a balance. This is in terms of the number of genes and chromosomes. Increasing the 
number of genes can result in overly long and complex expressions, whereas increasing the number of chromosomes 
can increase computational time and reduce efficiency. The following is a summary of the simplified procedures for 
generating a GEP model; the fitness function is determined, chromosomes are generated according to the selected 
terminals and functions, the number and head length of genes and chromosons are determined, and link functions and 
function sets are selected. Figure 5a illustrates the flowchart of this modeling process. The GEP modeling framework 
consists of five essential components: the function set, terminal set, fitness (or conformance) function, control 
parameters, and termination condition. The function set typically includes a range of mathematical operators, and users 
define the number of constants to be used within each gene (Murad et al., 2021; Jumaa and Yousif, 2018). 

Predictive modelling of structural element capacities has been increasingly enabled by the application of GEP in civil 
engineering. For instance, Alacalı et al. (2024) developed three GEP models to predict the contribution of FRP sheets to 
shear capacity in reinforced concrete beams. Their results demonstrated that the GEP models outperformed both design 
code equations and models proposed in previous studies. Numerous researchers (Alacali and Arslan, 2024; Aydogan et 
al., 2023; Alacali, 2022; Murad et al., 2020; Azim et al., 2020; Murad, 2020; Aval et al., 2017; Alacalı and Arslan, 2025; 
Akkaya and Alacalı, 2025) have identified GEP as a promising and reliable approach for various civil engineering 
applications. GeneXproTools (2025) was employed to develop the GEP model in this study. To ensure model robustness, 
a total of 136 experimental specimens collected from the literature were randomly divided into a training set (75%) and 
a test set (25%). The optimal GEP model was obtained by systematically adjusting key parameters such as the number of 
genes, number of chromosomes, head size, and linking functions. The final model was selected based on its predictive 
performance. The configuration settings of the selected GEP model are provided in Table 3, and its corresponding 
expression tree is illustrated in Figure 6. The mathematical expression derived from the final model is presented in 
Equation 21.  

 
Figure 5 The flowcharts of the GEP and MEP models (a) GEP model (Ferreira, 2001) (b) MEP model (Fallahpour et al., 2021) 



Table 3 GEP model parameter settings 

Definition Values 

Input parameters 𝑑 (mm), 𝜌𝑓 , 𝐸𝑓 (MPa), 𝑓𝑐 (MPa), 𝑢0.5𝑑 (mm) 

Output parameter 𝑉 (N) 

Training records (%75) 102 

Testing records (%25) 34 

Chromosomes 30 

Head Size 8 

Genes 3 

Linking function between ETs Addition 

Function set +,−,∗,/, √. 

Mutation 0.00138 

Inversion rate 0.00546 

One-point recombination 0.00277 

Two-point recombination 0.00277 

Gene recombination 0.00277 

 
Figure 6 Expression tree of the GEP model 

𝑉𝑝𝑟𝑜𝑝.,𝐺𝐸𝑃 = 2.37𝑓𝑐(𝑑 + 𝑢0.5𝑑) − (30 − 𝑑)(𝑢0.5𝑑 − 30) +
𝑑(𝑓𝑐−9.37)(

𝑢0.5𝑑
𝜌𝑓

)

−0.53𝐸𝑓−(293.48−𝑓𝑐)
+ √𝑑𝑢0.5𝑑(𝜌𝑓𝑑)((𝑑 − 49.29) − 𝜌𝑓𝑢0.5𝑑)

   (21)                                                                                                                                                    

MEP, introduced to the literature by Oltean and Dumitrescu (Oltean and Dumitrescu, 2002), is a symbolic regression 
technique used to generate new mathematical expressions for solving complex problems. The most distinguishing 
feature of MEP compared to GEP is that MEP can encode more than one solution in a single chromosome. This is achieved 



through linear chromosomes, where each gene encodes a partial solution, and the most suitable one is selected based 
on the fitness of individuals (Zhang et al., 2016). This capability helps to control the complexity of generated expressions 
and avoid overly complicated models. Another key advantage of MEP is its flexibility in solving complex optimization 
problems without relying on predefined mathematical models or assumptions. This feature positions MEP as a powerful 
and sophisticated optimization technique. The basic steps of the MEP algorithm are illustrated in the flowchart shown in 
Figure 5b. The process begins with the generation of a population of random individuals. Next, two individuals are 
selected for pairwise competition, followed by a crossover operation that produces two offspring. These offspring are 
then subjected to mutation, after which weaker individuals in the population are replaced by stronger ones. This iterative 
cycle continues until an optimal solution is reached (Oltean and Dumitrescu, 2002; Inqiad et al., 2023). The iterative 
nature of the MEP algorithm has been recognized in several studies (Oltean and Dumitrescu, 2002; Chisari and Bedon, 
2016; Gandomi et al., 2015) as an effective approach for developing feasible mathematical expressions for complex 
problems. Recently, MEP has been applied to various civil engineering domains, including materials (Jin et al. 2023), 
geotechnical engineering (Zhang and Xue, 2022), transportation (Awan et al., 2022), and structural engineering 
(Arabshahi et al., 2020). Similar to GEP, MEP constructs predictive equations that mathematically model complex 
relationships between parameters with high accuracy. However, its application in civil engineering remains more limited 
compared to GEP. Inqiad et al. (2023) practiced the MEP algorithm to predict the compressive strength of self-compacting 
concrete, demonstrating its effectiveness for predictive modeling. Chu et al. (2021) compared GEP and MEP algorithms 
for estimating the compressive strength of geopolymer concrete containing fly ash. Their findings revealed that the 
prediction accuracy of the MEP-based model was statistically comparable to that of the GEP-based model. Similarly, a 
recent study (Khan et al. 2024) reported that both GEP and MEP equations predicted the flexural capacity of FRP 
reinforced concrete beams with high accuracy. 

The robustness of the MEP model depends on the suitable selection of the various MEP setup parameters. In this 
study, parameters such as population size, number of generations, and operator sets were determined based on 
literature recommendations and initial trials. An increase in population size generally improves model accuracy, but it 
may also lead to increased complexity and a risk of overfitting (Zhang and Huo, 2024). The specific parameter settings 
used for the MEP model in this study are summarized in Table 4. The mathematical operators used in the model include 
basic functions such as addition, subtraction, multiplication, and division. The number of generations reflects the level 
of refinement expected from the final solution; thus, the algorithm must run over multiple generations to minimize 
prediction error. Various parameter combinations were tested to obtain the most accurate model, and the configuration 
with the lowest error was selected. As with the GEP model, the dataset was divided into training (75%) and testing (25%) 
subsets. The MEP model was developed using the MEPX v1.0 software. The final equation, derived using the MEP 
algorithm, is presented in Equation 22. 

Table 4 MEP model parameter settings 

Definition Values 

Input parameters 𝑑 (mm), 𝜌𝑓 , 𝐸𝑓 (MPa), 𝑓𝑐 (MPa), 𝑢0.5𝑑 (mm) 

Output parameter 𝑉 (N) 

Training records (%75) 102 

Testing records (%25) 34 

Function set +,−,∗,/, √. 

Number of subpopulations 100 

Subpopulation size 2000 

Code length 25 

Crossover probability 0.9 

Mutation probability 0.01 

Tournament size 9 

Functions 0.5 

Variables 0.5 

Number of generations 1000 

 

 𝑉𝑝𝑟𝑜𝑝.,𝑀𝐸𝑃 = 𝜌𝑓(𝑓𝑐 + 2𝑑)[(𝑓𝑐 + 𝑑)
2 − 𝑢0.5𝑑] + 𝑢0.5𝑑(𝑓𝑐 + 𝑑) +

(𝑢0.5𝑑)
2𝑑4

𝑓𝑐
8 − 2𝑑2 +

𝐸𝑓

√𝑓𝑐
                                                           (22) 



3 RESULTS 

Statistical indices were used to measure the accuracy of the predicted values obtained from the proposed equations 
and to compare them with those derived from existing literature. The first index, the mean value (MV), is calculated as 
the ratio of the experimental value to the predicted value. An MV close to 1 indicates strong agreement, while values 
above or below suggest either inefficiency or reliability issues. Other indices used include standard deviation (SD), mean 
absolute percentage error (MAPE), root mean square error (RMSE), coefficient of determination (R²), and coefficient of 
variation (COV). The relevant equations for these indices can be found in the literature (Aydogan et al., 2023; Zhang and 
Huo, 2024). An R² value near 1 and a COV close to 0 indicate high correlation and model consistency. Lower SD, RMSE, 
and MAPE values imply greater model reliability. The statistical values of ML models for the training and test datasets 
are presented in Table 5. The two novel models were developed using the GEP and MEP algorithms with a training dataset 
consisting of 102 specimens. Then, the robustness of the developed models was controlled statistically using a test 
dataset consisting of 34 specimens. According to the values presented in Table 5, for the GEP model, the R², MAPE, and 
RMSE values for the training dataset are 0.947, 16.540, and 69.794, respectively, while for the testing dataset, they are 
0.947, 14.880, and 75.605. These values indicate that the model performs well in both training and testing datasets. 
Furthermore, based on the values obtained in Table 5, for the MEP model, the R², MAPE, and RMSE values for the training 
dataset are 0.941, 16.183, and 74.558, respectively; for the testing dataset, these values are 0.917, 13.984, and 95.407. 
The similarity in the statistical values of the GEP and MEP models for both the training and test datasets indicates that 
the developed models have strong predictive and generalization capabilities, making them reliable for new data. 
Additional statistical indices such as MV, SD, and COV further support the robustness of the proposed GEP and MEP 
models. According to Tables 5, for the GEP model, the training dataset yields an MV of 1.014, SD of 0.198, and COV of 
0.186, while the corresponding values for the test dataset are 1.012, 0.188, and 0.186, respectively. For the MEP model, 
the MV, SD, and COV values are 0.988, 0.189, and 0.191 for the training dataset, and 1.005, 0.187, and 0.186 for the 
testing dataset. These values are close to those obtained from the GEP model, supporting the conclusion that the MEP 
model demonstrates similar performance. As can be seen in Table 5, the statistical values obtained from the train dataset 
using the developed ML models were highly similar values to those obtained from the test dataset. These similar values 
indicate that the complex relationships between the data were accurately identified during the training process. Based 
on the values obtained in Table 5, it was concluded that there was no overfitting problem with the train and test data of 
the developed models and that the models were usable in terms of accuracy and robustness. 

Table 5 Statistical results of ML models based on training and test datasets  

ML model Dataset Number MV SD MAPE RMSE R2 COV 

Proposed GEP model 
Train 102 1.014 0.198 16.540 69.794 0.947 0.186 

Test 34 1.012 0.188 14.880 75.605 0.947 0.186 

Proposed MEP model 
Train  102 0.988 0.189 16.183 74.558 0.941 0.191 

Test 34 1.005 0.187 13.984 95.407 0.917 0.186 

 
The accuracy of the proposed GEP and MEP models is evaluated by comparing its predictions of the punching shear 

capacities of RC slab-column connections with those calculated using the ACI 440. 1R-15, 2015; JSCE, 1997; CAN/CSA 
S806, 2012 design codes and  Jacobson et al., 2005; Dulude et al., 2011; Ospina et al., 2003; Zhang, 2006; Zaghloul  and 
Razaqpur, 2003; Alateyat et al., 2024; El-Ghandour et al., 1999; El-Ghandour et al. 2000; Matthys and Taerwe,  2000; El-
Gamal et al., 2005b; Metwally, 2013; Kara and Sinani, 2016; Hassan et al., 2017; El-Gendy and El-Salakawy, 2020; Ju et 
al., 2021; Salama et al., 2021; Alrudaini, 2022 existing equation from researchers. Table 6 provides statistical indicators 
for the prediction results of all equations and ML models used in this study. In addition, the graphical representation of 
statistical results based on all datasets is shown in Figure 7. The evaluation excludes material and strength reduction 
factors to provide a direct comparison with experimental results. As can be seen in Table 6 and Figure 7, the two best 
models with a strong correlation between the predicted and experimental punching shear capacity are the GEP and MEP 
models. Comparing the R2 values of all models, the models with the highest R2 values are GEP and MEP, with values of 
0.947 and 0.934, respectively. Furthermore, the proposed ML models have minimal MAPE, RMSE, and COV values 
compared to the other models in Table 6 and Figure 7. The SD values of the ML models are also low. Considering the MV 
values, it is seen that the prediction results of the GEP model (1.013) and the MEP model (0.992) are very close to the 
experimental results. From all these results, the prediction accuracy of both the GEP and MEP models is superior to the 
equations investigated in this study. Using all value in dataset, the scatter plots that presented the relationship between 
the predicted and experimental values for the punching shear capacity based on the proposed ML models, design codes, 



and existing equations from the researchers are given in Figure 8. Figure 8 shows that the two models with the least 
dispersion belong to the GEP and MEP models. Therefore, it can be said that the proposed GEP and MEP models 
demonstrate high efficiency in predicting punching shear capacity. 

Table 6 Statistical results based on all datasets 

Equations Number MV SD MAPE RMSE R2 COV 

ACI 440. 1R-15 (2015) 136 2.020 0.526 47.591 266.430 0.881 0.260 

JSCE (1997) 136 1.437 0.335 31.803 186.053 0.885 0.233 

CAN/CSA S806 (2012) 136 1.126 0.260 22.020 112.361 0.902 0.231 

El-Ghandour et al. (1999)  136 1.213 0.307 23.802 144.003 0.818 0.253 

El-Ghandour et al. (2000)  136 0.981 0.218 20.466 98.335 0.910 0.222 

Matthys and Taerwe (2000)  136 1.142 0.254 21.848 130.831 0.910 0.222 

Ospina et al. (2003)  136 0.959 0.235 23.330 107.151 0.900 0.245 

Zaghloul and Razagpur (2003)  136 0.412 0.098 158.713 854.513 0.895 0.239 

Jacobson et al. (2005)  136 1.297 0.344 25.117 150.329 0.870 0.265 

El-Gamal et al. (2005b)  136 1.216 0.269 22.765 110.607 0.911 0.221 

Zhang (2006)  136 0.949 0.211 21.296 95.115 0.908 0.223 

Dulude et al. (2010)  136 1.143 0.259 20.874 101.776 0.904 0.227 

Metwally (2013)  136 0.879 0.195 25.356 143.931 0.911 0.221 

Kara and Sinani (2016)  136 1.008 0.215 18.848 89.766 0.920 0.213 

Hassan et al. (2017)  136 0.959 0.205 19.955 91.783 0.914 0.214 

El-Gendy and El-Salakawy (2020)  136 0.810 0.204 36.705 188.568 0.891 0.252 

Ju et al. (2021)  136 1.174 0.254 21.113 103.519 0.916 0.217 

Salama et al. (2021)  136 1.477 0.384 33.095 209.587 0.880 0.260 

Alrudaini (2022)  136 0.531 0.114 99.511 467.483 0.919 0.215 

Alateyat et al. (2024)  136 1.086 0.236 18.969 99.497 0.904 0.217 

Proposed GEP model 136 1.013 0.195 16.125 71.291 0.947 0.192 

Proposed MEP model 136 0.992 0.188 15.633 80.279 0.934 0.189 

 
The CAN/CSA S806 (2012) model has high R2 value with 0.902 and minimal value for MARE, RMSE and COV among 

the design codes. This model shows the best agreement with the experimental data, while ACI 440.1R-15 (2015) 
demonstrates the lowest predictive accuracy among the design codes. As can be seen in Figure 7 that The MV value of 
ACI 440.1R-15 (2015) is 2.020 for all data. This MV is the largest value seen in Table 6 and Figure 7. This value indicates 
that the predictions are overly conservative and highly scattered in Figure 8. This suggests that using ACI 440.1R-15 (2015) 
may lead to uneconomical structural designs. One possible reason for this outcome is that the equation does not 
adequately capture the effect of the axial stiffness of the FRP bar in the cracked section during shear failure (Truong et 
al., 2022b). In contrast, the JSCE (1997) model, which explicitly includes the axial stiffness effect in its formulation, yields 
better results than ACI 440.1R-15 (2015). According to the comparison results in Tables 6, the lowest R² values among 
the existing models from researchers were obtained by El-Ghandour et al.  (1999), with 0.818 for all data. In contrast, 
the highest R² values were achieved by Kara and Sinani (2016), with a value of 0.920 for all data. With respect to the 
coefficient of variation (COV), the lowest values were observed in Kara and Sinani (2016), reporting 0.213 for all data. On 
the other hand, the highest COV values were found in Jacobson et al. (2005), with 0.265 for all data. Despite these 
variations, the range between the minimum and maximum values remains relatively narrow in both R² and COV across 
the models. In Table 6, the MV value closest to 1 belongs to Kara and Sinani (2016) with 1.008 among all models. In 
addition, it can be seen that the dispersion of the model belonging to Kara and Sinani (2016) is low in Figure 8. Taking 
into account all statistical indicators, including SD, MAPE and RMSE, the models proposed by Kara and Sinani (2016) 
demonstrate the highest prediction accuracy among the existing models from researchers. Figure 7 and Table 6 show 
clearly that the lowest MV values, being 0.412 and 0.531, belong to Zaghloul and Razagpur (2003) and Alrudaini (2022) 
models, respectively. Prediction by Zaghloul and Razagpur (2003) and Alrudaini (2022) models exhibit overly 
unconservative and highly scattered in Figure 8. In addition, their MAPE and RMSE values are significantly higher than 
those of the other models as seen in Figure 7. 

 
 
 



 

 
 

 

 
Figure 7 Graphical representation of statistical results based on all datasets 

 



 
Figure 8 Scatter plot diagram of all models 



3.1 Bland–Altman Analysis for Model Validation 

To further evaluate the agreement between the predicted and experimental results, Bland–Altman analyses were 
conducted for both training and testing datasets, as shown in Figure 9. This method, proposed by Bland and Altman 
(1986) graphically represents the differences between predicted and actual values against their mean. For both GEP and 
MEP models, the vast majority of data points lie within the ±1.96 standard deviation limits, with mean differences close 
to zero. This indicates that both models provide consistent predictions without significant bias, supporting the reliability 
of the proposed models alongside the statistical indices.  

 
Figure 9 Bland-Altman plots of GEP and MEP models (a) GEP model (b) MEP model 

3.2 Sensitivity and Parametric Analysis 

Sensitivity analysis (SA) examines the influence of input variables on output variation in machine learning models. 
The following equations can be used to represent SA: (Gandomi et al., 2011; Aslam et al., 2022; Iftikhar et al., 2022; Khan 
et al., 2021)  

𝑁𝑖 = 𝑓𝑚𝑎𝑥(𝑥𝑗) − 𝑓𝑚𝑖𝑛(𝑥𝑗)                                                                                                                                                                    (23) 

𝑆𝐴 =
𝑁𝑗

∑ 𝑁𝑗
𝑗=1
𝑛

                                                                                                                                                                                             (24) 

where 𝑓𝑚𝑎𝑥(𝑥𝑗) and 𝑓𝑚𝑖𝑛(𝑥𝑗) represent the maximum and minimum values of the output of the predictive models. 

Furthermore, i represents the input domain, while the rest of the input variables are kept constant their mean values 
(Aslam et al., 2022). Figure 10 shows the SA results, illustrating the relative contributions of the input parameters to the 
punching shear capacity (𝑉) predicted by the GEP and MEP models. 



 
Figure 10 Sensitivity analysis 

As shown in Figure 10, the contribution of the effective slab thickness (𝑑) is the most dominant parameter in both 
models and is determined as 47.12% in the GEP model and 50.29% in the MEP model. This high relative contributions 
compared to other parameters show that the punching shear capacity is significantly dependent on the effective slab 
thickness. The contribution of the percentage of FRP flexural reinforcement (𝜌𝑓) is 10.02% in the GEP model and 13.78% 

in the MEP model.  
The elasticity modulus (𝐸𝑓) was determined as the parameter with the lowest effect in the sensitivity analysis with 

a contribution rate of 2.01% in the GEP model and 1.07% in the MEP model. This result indicates that the 𝐸𝑓  is not a 

dominant factor on the punching capacity compared to other parameters. The contribution of the concrete compressive 
strength (𝑓𝑐) is 14.92% in the GEP model and 12.32% in the MEP model. The contribution of concrete compressive 
strength on punching shear capacity is similar in GEP and MEP models. The punching perimeter (𝑢0.5𝑑) contributes 
25.93% in the GEP model and 22.54% in the MEP model. As the second most influential parameter after effective slab 
thickness, the punching perimeter (𝑢0.5𝑑) enhances the shear capacity of the slab by expanding the load distribution. 

Parameter analysis (PA) helps to determine the effect of input parameters on the output parameter (𝑉). Similar to 
the sensitivity analysis, in the parametric analysis each input variable was varied individually within its experimental 
range, while all other variables were fixed at their mean values to observe the effect of that parameter on the punching 
shear capacity (𝑉) (Aslam et al., 2022). The mean constant values used in the analysis were obtained from the 
experimental dataset and correspond to an effective slab thickness of 135.52 mm, a reinforcement ratio of 0.0099, an 
elasticity modulus of 66464.12 MPa, a concrete compressive strength of 40.25 MPa, and a punching perimeter of 1654.22 
mm. For each parameter, the selected variable was changed between its minimum and maximum experimental limits, 
while the remaining parameters were kept constant at these mean values. This procedure was applied for both the GEP 
and MEP models, ensuring that the influence of each parameter on the predicted punching shear capacity was evaluated 
under identical and consistent conditions The results of the parameter analysis for various input values of both models 
are presented in Figure 11.  

As seen in Figure 11, the effective slab thickness (𝑑) is the most dominant variable in both models, and as 𝑑 
increases, the shear capacity increases nonlinearly. This increase is sharper in the GEP and MEP models than the other 
parameters, and it is observed that the predicted punching shear capacity increases much faster at high effective slab 
thicknesses. In the GEP and MEP model, the punching shear capacity increase is more gradual, as the reinforcement ratio 
(𝜌𝑓) increases and it is observed that the capacity increase slows down after a certain value. At FRP reinforcement 

percentages, the predictions of both models give similar results. As seen in the sensitivity analysis, the effect of the 
increase in the elasticity modulus (𝐸𝑓) on the punching shear capacity is very limited and the GEP and MEP models exhibit 

similar trends in punching shear capacity. In both the GEP and MEP models, shear capacity increases as concrete 
compressive strength (𝑓𝑐) increases. As the punching perimeter (𝑢0.5𝑑) increases, the shear capacity increases 
significantly in both models.  

 



 
Figure 11 Parametric analysis of inputs for GEP and MEP Models 

4 CONCLUSION 

In this study, two different equations are proposed to predict the punching shear capacity using both GEP and MEP 
algorithms. A comprehensive experimental data set is used to derive these equations. The prediction results of the 
proposed equations are compared with the prediction results of existing equations in literature. Finally, sensitivity and 
parametric analyses of the proposed equations are performed. The following is a summary of the conclusions. 

1. The statistical results in using the GEP model for predictions, the R², MAPE, RMSE, MV, SD and COV values for 
the training dataset are 0.947, 16.540, 69.794, 1.014, 0.198 and 0.186, respectively, while for the testing dataset, 
they are 0.947, 14.880, 75.605, 1.012,0.188 and 0.186, respectively. 

2. The statistical results in using the MEP model for predictions, R², MAPE, RMSE, MV, SD and COV values for the 
training dataset are 0.941, 16.183, 74.558, 0.988, 0.189 and 0.191 respectively, while for the testing dataset, 
these values are 0.917, 13.984, 95.407, 1.005, 0.187 and 0.186, respectively. 

3. The statistical results obtained from the training and test datasets are very close in value. This indicates that the 
developed GEP and MEP models possess strong predictive capabilities. Furthermore, it can be stated that the 
models are reliable in terms of accuracy and robustness when applied to new data. 

4. As a result of a comparison study using all experimental results in the data, the statistical results obtained for 
the predictions of the design codes, existing literature from researchers, and the proposed GEP and MEP models 
show that the two best models having the highest R2 are the GEP model with the 0.947 value and the MEP model 
with the 0.934 value. Furthermore, the models having minimal MAPE, RMSE, and COV values are the GEP and 
MEP models. Therefore, the proposed GEP and MEP models outperform the design codes and existing literature 
from researchers investigated in this study.  



5. The comparison study shows that the SDs of the GEP and MEP models are also low. Furthermore, the MV values 
for the GEP and MEP models are 1.013 and 0.992, respectively. The proximity of these values to 1 indicates that 
predictions made using the GEP and MEP models closely align with experimental values. 

6. In the light of the statistical results, it can be said that GEP and MEP models show similar performances in terms 
of accuracy and robustness. 

7. Among the design codes evaluated, the CAN/CSA S806 (2012) code demonstrated the highest agreement with 
experimental results. In contrast, ACI 440.1R-15 (2015) showed the lowest prediction accuracy.  

8. The model with the highest MV value belongs to ACI 440.1R-15 (2015) with 2.020. Therefore, the predictions 
using  ACI 440.1R-15 (2015) may be overly conservative and economically inefficient 

9. In the light of all statistical indicators using in this study, the models proposed by Kara and Sinani (2016) 
demonstrate the highest prediction accuracy among the existing models from researchers.  

10. The lowest MV values, being 0.412 and 0.531, belong to Zaghloul and Razagpur (2003) and Alrudaini (2022) 
models, respectively. Predictions using by Zaghloul and Razagpur (2003) and Alrudaini (2022) models exhibit 
overly unconservative and highly scattered. In addition, their MAPE and RMSE values are significantly higher 
than those of the other models. 

11. Sensitivity analysis revealed that effective slab thickness (𝑑) was the most dominant parameter, contributing 
47.12% in the GEP model and 50.29% in the MEP model. The modulus of elasticity (𝐸𝑓) was found to have the 

least influence, with contribution rates of 2.01% and 1.07% in the GEP and MEP models, respectively. 
12. Parametric analysis indicated that variations in effective slab thickness (𝑑) and punching perimeter (𝑢0.5𝑑) 

significantly affect the predicted punching shear capacity in both models. 
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