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Abstract 
In this paper, the transient dynamics of a rotor-foundation-structure-soil system is studied, aiming to obtain 
unbalance response of the rotor considering the effect of the structure and the influence of the unbounded 
soil. The transient responses are obtained through iterative coupling between the rotor subsystem and the 
frame-soil subsystem. The non-linear rotor subsystem uses the model of a Laval rotor supported by rigid 
bearings and presenting external and internal damping mechanisms.  These equations of motion are 
integrated using the fourth-order Runge-Kutta method. In the frame-soil subsystem, the frame is modeled 
using the Finite Element Method (FEM), and the homogeneous half-space is modeled using 3D version of the 
Direct Boundary Element Method (DBEM) in the frequency domain. To obtain time domain equations of 
motion of this second system a methodology is developed, which is based on the extraction of modal 
quantities from the Frequency Response Functions of the coupled soil-foundation system. The modal 
parameters are obtained using the Rational Fraction Polynomial Method (RFPM). The equivalent time domain 
equations of motion for the soil-structure subsystem may be integrated by standard techniques. The 
methodology renders transient response for the rotor and structure with very small time steps, allowing an 
accurate simulation of the rotor runup phase and the analysis of the dynamics of the system going through 
resonance frequencies. 
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1 INTRODUCTION 

Rotors play a significant role in the generation or transformation of energy, as exemplified by gas turbines, 
airplane jet engines and more recently as part of wind turbines. Understanding the dynamics of turbines has been 
very important for the development of energy systems. This is still valid today with the increasing importance of 
wind turbines (onshore or offshore) on the generation of a more sustainable energy matrix. 

Systems composed of rotors, structures, foundations and the soil are complex and difficult to model 
numerically, mainly due to radiation or geometric damping presented by the soil dynamics. Kellezi and Hansen 
(2002) conducted a study on the dynamics of windmills in the time domain, employing a three-dimensional 
axisymmetric transient finite element model (FEM) to analyze an offshore windmill on mono-pile foundation. Their 
approach included radiation damping via absorbing boundary conditions and considered the nonlinear behavior of 
the soil to determine deformations, velocities, and accelerations at the pile's top. Liu et al. (2019) developed a 
mixed frequency/time domain methodology to estimate the transient response of offshore wind turbines (OWT), 
utilizing initial conditions other than zero by discretizing external loads by their eigenvalues and corresponding 
complex coefficients. A recent review by Jahani et al. (2022) reveals the enormous amount of research that has 
been undertaken to analyze the dynamics of offshore wind turbines (OWT). The article by Filho et al. (2021) presents 
a transient dynamic analysis of two eolic systems composed of structure, rotor and blades under seismic and wind 
excitation. In-plane and out-of-plane vibrations are considered. The influence of the soil has also been incorporated 
into the analysis by modelling the soil behavior as a rotational spring. The results presented by the authors point to 
significant influence of the soil response on the dynamics of the coupled system. 

Dynamic coupled-field problems in mechanics have traditionally been solved by partitioning the governing 
equations into subsystems, which are handled by subsystem analyzers. Subsystems are selected based on 
considerations such as weak-coupling or differing time response characteristics. Various methods exist for iterative 
coupling between subsystems, as described in Fellipa and Park (1980). The partitioned method performs temporal 
integration separately on each component of the system, using either sequential or parallel execution of single-
field analyzers. A specific type of partitioned solution, the staggered coupling solution, which is the focus of the 
work of Fellipa and Park (1980), organizes the procedure through sequential execution of single-field analyzers. This 
latter approach offers two potentially important advantages, being an improvement in program modularity and 
greater computational efficiency. 

The Boundary Element Method (BEM) has been extensively used to describe dynamic soil-structure interaction 
(DSSI) problems, especially in the frequency domain. The BEM can consider in a natural way the geometric damping 
that results from outgoing waves generated at the soil-foundation interface and that are not reflected and, 
consequently, withdraw energy from the system (Manolis and Beskos, 1988; Dominguez, 1992, Carrion, 2007). A 
methodology to describe the transient behavior of soil-foundation-structures systems was presented by Ferraz et 
al. (2023). The present article extends the work of Ferraz et al. (2023) to include the transient analysis of a soil-
foundation-structure-rotor systems. The interaction between rotor and soil has previously been investigated in the 
frequency domain by Gasch et al. (1984), who demonstrated that soil–foundation coupling can substantially reduce 
rotor vibration amplitudes and improve system stability. 

In this paper, the rotor is a Laval rotor resting of a base supported by a frame structure. The frame structure 
interacts with the soil profile. The soil is treated as a 3D visco-elastic half space. The complete system is subdivided 
into two subsystems. The first subsystem is the structural frame and the soil. The solution of this coupled soil-
structure system is obtained in the frequency domain. The dynamics of this subsystem is characterized by a series 
of Frequency Response Functions (FRFs). From these FRFs, the modal parameters of an equivalent time-domain 
dynamic system, containing the dynamics of the couple soil-structure system, is obtained. This set of orthogonal 
time-domain equations may be integrated by standard numerical methods to render the transient behavior of the 
soil-structure system. The second sub-system is the rotor and its rigid base. The rotor presents elastic stiffness as 
well as internal and external damping mechanism and is excited by an external torque. The equations of motion of 
this sub-system are non-linear and their integration will render the transient response of the rotor and the rigid 
base. The coupling of the two sub-systems follows the staggered coupling procedure as presented by Felippa and 
Park (1980). 

This strategy is applied to obtain the transient behavior of the coupled soil-structure-foundation-rotor system 
and used to analyze the rotor response in the runup phase. During the runup phase of the rotor, the system passes 



  

through various resonances, in which all displacement amplitudes are amplified and, consequently, the damping 
mechanisms dissipate an increased amount of energy. If the energy being dissipated at a given resonance is larger 
than the energy the input torque is adding to the system, the rotor will not be able to pass through the resonances 
creating potential damage to the system. The analysis performed in this article results in the transient responses of 
this complex system with very short time steps. To highlight the influence of the soil on the rotor response, three 
models are considered. The first model is a rotor on rigid bearings. The second model consists of a rotor with a base 
supported by a frame structure. The structure is supported by a rigid soil. In the third model the frame structure is 
supported by a flexible soil. The analysis performed in this article helps to understand the influence of the frame 
structure stiffness and damping mechanisms on the unbalance rotor response. The inclusion of the soil helps to 
understand the role of geometric damping on the rotor response. Emphasis is placed on the torque requirements 
for the rotor to overcome the distinct resonances during the runup phase. 

3 METHODOLOGY 

Figure 1 presents the rotor-foundation-frame-soil system analyzed in the proposed methodology. The system 
comprises a Laval rotor mounted on a rigid foundation, which is in turn supported by a frame resting on a soil 
medium. For modeling purposes, the system is partitioned at the interface between the rotor foundation and the 
frame. The equations of motion for each subsystem are formulated and solved directly in the time domain. Coupling 
between the subsystems is achieved through an iterative coupling approach. System excitation is introduced via an 
external torque applied to the rotor. 

 
Figure 1: Coupling of rotor-foundation and soil-structure systems. 

The rotor subsystem is characterized by three degrees of freedom, namely the vertical (urz) and horizontal (ury) 
lateral displacements of the rotor shaft, and the angular position of the rotor’s center of mass (D) relative to its 
geometric center (θD): {ur}={{urz, ury, θD}T. Similarly, the rigid foundation supporting the rotor exhibits three degrees 
of freedom, denoted as {uf}={ufz, ufy, θf}T. The frame structure presents three degrees of freedom for the i-th node 
{uti}={utzi, utyi, θtxi}T. 

3.1 Subsystem I: rotor-rigid foundation 

Figure 2 illustrates the rotor subsystem, modeled as a Laval (Jeffcott) rotor with rigid bearings. The system includes 
a disk with an unbalanced mass mD positioned at the center of the elastic shaft (cgr), with both internal cIy, cIz and external 
damping cEy, cEz coefficients, respectively, in the y and z directions, considered. The displacement of the rotor’s center of 



  

mass (cmr)=(D), denoted as urz and ury, is expressed as the superposition of the displacement of the rotor’s geometric 
center (cgr), represented by uz and uy, and the relative displacement between the (cgr) and (cmr) denoted by vz and vy, or 
urz= uz+ vz and ury= uy+ vy. The elastic stiffness of the rotor shaft in the y and z directions is represented by kry and krz. The 
rotor is excited by an external torque T. 

     
Figure 2: Scheme of Laval rotor. 

The kinematic scheme of the rotor-foundation subsystem is depicted in Figure 3. The model accounts for lateral 
vertical ufz and horizontal ufy displacements, as well as rotational motion θf of the foundation. The inertial coordinate 
system is defined at point (F), which corresponds to the foundation center of mass (cm)=(F). The parameter ho denotes 
the vertical distance between the bearing location (O) and the point (F), while hF represents the distance from the botton 
of the foundation (Q) to its mass center (F). The eccentricity of the rotor, denoted by e, is defined as the distance between 
the geometric center of the rotor (cgr) its mass center designated as point (cmr)=(D). 

 
Figure 3: Rotor and foundation kinematics. 

To derive the equations of motion for the rotor and foundation, it is necessary to define the forces acting on each 
component, as illustrated in the diagram of Figure 4. Following the approach of Mesquita et al. (2006), the governing 
equations are defined. For the rotor, the forces acting at the geometric center of the disk (cgr) include the elastic force 
FEr, the external damping force FAr, the internal damping force FIr, and the weight PD, which acts at the rotor’s center of 
mass (D)=(cmr). The rotor weight causes a static displacement uest. The reaction forces from the rotor, {RR}={FEr+ FAr + FIr 
+ PD }T are transmitted to the rotor bearing at point O′. The rigid foundation mass is mf and the weight (PF) acts at mass 
center (F)=(cm) The forces, acting at the bottom of the rotor rigid base, point (Q), that is, at the interface between the 
rigid foundation base and the frame structure, are: {Fq}={Fqz, Fqy ,Mqx}T.  

 
Figure 4: Scheme of rotor subsystem. 



  

Considering g as the acceleration due to gravity and the unit vectors in the y and z directions represented as ny and 
nz, the forces acting on the rotor {RR} can be expressed as: 
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D Dm g= zP n  (4) 

The forces acting on the foundation are the weight PF, the reaction forces or the rotor {RR}={FEr+FAr+FIr+PD}T, acting 
on point (O) and the forces acting at point (Q) at the bottom of the foundation: {Fq}={Fqz, Fqy, Mqx}T: 

F Fm g= zP n  (5) 

R Er Ar Ir DR F F F P= + + +  (6) 

The moments produced by the equations (1) through (4) with respect to the rotor center of mass (D) will lead to the 
equations of motion (7) through (9):  
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with 

x
T nR T=  (10) 

The moments produced by the equations (5) and (6) and the vector {Fq} with respect to the foundation center of 
mass (F) will lead to the equations of motion (11) and (12):  

xM n
2 2

'
2

( ) ( ) ( )

( ) ( ) ( )

RR
Iy O Ey O ry Iy O Ey O fy Iy O Ey O fF

Iy D O rz ry O ry Iy D O fz ry O fy ry O f

c h c h u c h c h u c h c h

c h u k h u c h u k h u k h

q

q q q

+ - + - + +
=

+ + - - -

&& &

& &  (11) 

xM n' ( )
qF
F

qz F f qy F qxF h F h Mq= - - -  (12) 



  

Denoting the acceleration of the rotor center of mass (D) with respect to the inertial frame I as IaD’/O and/or the 
foundation center of mass (F) by IaF’/F the conservation of linear momentum will lead to: 

'
C

I C
C cm =a F

 (13) 

Representing the resultant of the moments applied to the rotor center of mass (D) and the foundation center of 
mass (F) as MC/C’’ and the quantity of angular momentum of the rotor or foundation as IHC/C’, the conservation of angular 
momentum will lead to: 
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Where the for the rotor the indexes are given by c=D and c’=O. Analogously for the foundation c=F and c’=F’. Where 
(IḢC/C’) represents the time derivative of the angular momentum of the rotor (C=D) or foundation (C=F). By substituting 
equations (1) to (4) and (7) to (10) into equations (13) and (14), respectively, the equations of motion for the rotor are 
obtained. Similarly, substituting equations (5) and (6), along with (11) and (12), into equations (13) and (14), respectively, 
yields the equations of motion for the foundation. 

Since the coupling between the foundation and the frame occurs at the base of the foundation, point (Q), it is 
necessary to transform the degrees of freedom originally defined at the foundation's geometric center (F), designated 
by {uf}={ufy, ufz, θf}T to the degrees of freedom at the base (Q), {uq}={uqz, uqY, θq}T. This transformation is carried out using 
the relationships provided in equations (15). 
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The resulting equations relating the complete vector of rotor and foundation displacements {u}={ury, urz, θD, uqy, uqz, 
θq}T to the torque excitation T applied at the rotor and the excitation vector {Fq}={Fqz, Fqy, Mqx}T acting at the foundation 
base point (Q) are given in equation (16): 

{ ( )} ( ) { ( )} ( , ) { ( )} { ( , , , )}I I I IM u t A u u t B u u u t F t u u u+ + =&& & & & &&  (16) 

For the case in which the shaft elastic stiffness and the external and internal damping are isotropic or, kr=kry=krz, cE=cEy=cEz 
and cI=cIy=cIz, the detailed expressions for equation (16) are given in the Appendix. These time-domain equations are 
non-linear and describe the dynamics of the rotor-foundation subsystem I. These are the equations that will be coupled 
to the soil-structure equations of subsystem II by the staggered coupling procedure. 

3.2 Soil-structure subsystem 

Figures 5 show the subsystem II. It is composed of a frame structure, Figure 5b (index t) attached to a soil (index s) 
through a rigid and massless foundation shown in Figure 5c. The structure in this subsystem is modeled using the finite 
element method (FEM), discretized as frame elements. Each node of the frame presents three degrees of freedom, 
{uti}={utzi, utyi, θtxi}T. The bottom node of the frame structure {ut1} is attached to the displacement degrees of freedom of 
the rigid and massless foundation resting on the surface of the half-space, {us}={usz, usy, θsx}T. The displacement of the 
massless rigid foundation at the soil-frame interface is obtained via the Direct version of the Boundary Element Method 
(DBEM) in the frequency domain (Carrion et al, 2007). The vector {Ftn}={Ftzn, Ftyn, Mtxn}T describes the excitation acting on 
the top of the frame structure (node n, point Q). The vector of forces acting at the botton and first node of the structure 
is {Ft1}={Ftz1, Fty1, Mtx1}T. The vector {Fs}={Fsz, Fsy, Msx}T represents the forces acting on the degrees of freedom of the rigid 
and massless foundation, {us}={usz, usy, θsx}T, (point S). The coupling between the structure and the soil is established by 
prescribing cinematic continuity {ut1}={us} and equilibrium conditions {Ft1}+{Fs}=0 at the interface, point S (Pacheco et al., 
2024).  



  

 
Figure 5: Scheme of soil-structure subsystem. 

The frame structure. The mass and stiffness matrices associated with the frame elements are defined in Equation 
(17), where, ρ denotes the density of the structure material, E is Young’s modulus, A is the cross-sectional area of the 
frame, L is the length of the frame element, Ixx represents its moment of inertia and α is the rotational inertia coefficient 
(Cook et al., 2005).  
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To define the damping matrix [Ct], Rayleigh damping is adopted in this study, which assumes damping proportional 
to both the mass and stiffness matrices of the system, as defined in equation (18). The coefficients μ and β correspond 
to the mass and stiffness proportional damping factors, respectively (Caughey, 1960; Chopra, 2012). 

t t tC M Km b= +  (18) 

The complete equations of motion for the frame structure are: 
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The soil dynamic response. The soil dymanic response at the surface of the rigid and massless foundation is 
described by equation (20), where a denotes half the width of the foundation, G is the shear modulus of the soil and 
[NS(ω)] denotes the frequency-dependent matrix containing the flexibility functions of the rigid and massless surface 
foundation, relating the vector of the displacement at point S, {Us}={Usz, Usy, θsx}T and the forces action on the foundation 
{Fs}={Fsz, Fsy, Msx}T: 
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In this study, the cross-coupling terms NSxy(ω) and NSyx(ω) are assumed to be zero. Figure 6 illustrates the frequency-
dependent behavior of the main diagonal components of the flexibility matrix, [NS(ω)]. 

 
Figure 6: Flexibilities of rigid massless foundation on the surface of the half space: (a) vertical; (b) horizontal; (c) rocking 

Coupling of frame structure and soil dynamic response. To enable the couplin of equations (19) and (20), the former 
one must be transformed into the frequency domain as shown in equation (21) (Cheng, 1972): 
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In equation (21) the frequency dependent variables are written in capital letters. This equation can be partitioned 
into submatrices by isolating the first node {Ut1}={Utz1i, Uty1, θtx1i}T, which will be coupled with the rigid foundation node 
S, {Us}={Usz, Usy, θsx}: 
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In equation (22) the index m=n-1. By imposing equilibrium at th interface node S, {Ft1}+{Fs}=0 and rearranging 
equations (20) and (22) will lead to: 
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By reformulating the first expression of Equation (23), the degrees of freedom of the frame structure that are not 
in contact with the soil {Utm} can be expressed as a function of the degrees of freedom at the interface {Ut1}, yielding the 
following relationship: 
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Equation (24) relates the displacement vector at the first structural node {Ut1}={Us} to the displacements of the 
remaining structural notes (m=n-1). But now the influence of the soil is present through the dynamic soil flexibility matrix 
[Ns(ω)]. The original vector {Utm} has been remaned {U*

tm} to account for this new influence of the soil. The link between 
the displacements {Ut1} and {U*

tm} is givem by the matrix [Hmod(ω)]. 
 
By substituting Equation (24) into the second expression of equation (23), the response of the structural degrees of 

freedom {U*
tm} can be expressed as a function of the force vector {Ftm}: 
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In equation (25) the index m stands for all the structure degrees of freedom that are not in contact with the soil. 
Equation (25) relates the original loading vector acting on the m structural DOFs {Ftm} to the vector of the m structural 
displacements {U*

tm}, modified by the inclusion of the soil response. By substituting equation (25) into equation (24), the 
response at Node 1, {Ut1}={Us}, can be obtained as a function of the load vector {Ftm}: 
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The matrices [Sstr(ω)] and [Ssoil(ω)], presented in equations (25) and (26), respectively, contain the components 
representing the structure's frequency response functions (FRFs) under the influence of soil-structure interaction. If the 
structure is excited by the load vector {Ftm}, the frequency response of all structural DOFs {ut1}+{utm} can be calculated. 
Figure 7 illustrates the typical results obtained in such an analysis. The shown 5-DOF frame is analized. In the first case 
the structure is fixed to a rigid ground. In the second case the structure is supported by a half-space. Typical FRFs for the 
fixed base and the soil supported structure are shown in Figures 7. The main difference induced by the soil in this example 
is an increase in the damping systems. 

 
Figure 7: FRFs for structure on fixed base and supported by the soil. 

Once the modified FRFs for the structures interacting with the soil are obtained, using the Rational Fraction 
Polynomial Method (RFPM) (Ewins, 2000), modal parameters can be extracted to create a modal basis that accounts for 
the influence of the soil. From the extracted set of modal parameters, it is possible to define an equivalent set of 
orthogonal equations of motion in modal coordinates in the time domain (Ferraz et al., 2023):  
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The response in physical coordinates can the retrieved by transforming the nodal coordinates {q} to the physical 
ones {u*

t} by the know relation {u*
t}=[Φ]{qt}. The resulting equations of motion in time domain, represent the solution of 

the subsystem II (Figure 5) and can be integrated yielding the response of the soil-structure system. 
 

3.3 Staggered coupling solution 

Once the equations of motion for the two subsystems are defined, the next step is to couple their transient 
responses. Following the approach proposed by Felippa and Park (1980), and considering that the coupling occurs 
between structural subsystems, the staggered coupling solution is adopted. This method enhances computational 
efficiency by eliminating the need for iterative procedures within each time step to achieve convergence. 

 
Figure 8: Flowchart of coupling procedure. 

Figure 8 presents a step-by-step flowchart of the coupling procedure. The process begins with the definition of a 
predictor term—specifically, the interface forces and bending moment between the two subsystems (Fqz, Fqy and Mqx) as 
defined in equation (16)). At the initial time step, the system's initial conditions of displacement and velocity are used to 
calculate the predictor term. For subsequent steps, the predictor term is calculated using data from the preceding time 
step (n). Once the predictor term is computed, it serves as the excitation input for the equations governing the soil-
structure subsystem (Subsystem II), as defined in equation (28), enabling the calculation of the linear and angular 
displacements of the frame at time step n+1. These displacements at the rotor interface are then used to integrate the 
equations of motion for the rotor system (Subsystem I), also at time step n+1, as described by equation (16). The 
procedure then advances to the next time step by calculating the new predictor term.  

The predictor term is derived from the force balance in Subsystem I, as formulated in Equation (16) and detailed in 
equations (29) to (31). 
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4 NUMERICAL RESULTS 

Cases considered. The above presented methodology will be used to analyze the dynamic behavior of a rotor-
foundation-structure soil system. Three cases will be considered and are illustrated in Figure 9. In the first case (a) 
the rotor is supported by rigid bearings. For the second case (b) the rotor, the foundation and the structure are 
supported by a rigid base. In the third case (c) the soil is included as the supporting medium. In all cases, the system 
is excited by the torque T applied directly to the rotor. In the examples that follow, the frame has only one element 
with 6 DOFs. 

 
Figure 9: Cases for rotor-foundation-frame-soil systems. 

System parameters. The mass, stiffness, and damping matrices of the frame structure, are presented in Table 
1. The value for parameter α =1/50 (Cook et al., 2005). 

Table 1 Frame parameters.  

Young’s Module Density Poisson’s Ratio Length 
Area  

(Cross section) 

Moment of 
inertia 

E = 200 GPa ρS = 7850 kg/m3 υS = 0.3 L = 2.5 m A = 0.005 m2 Izz = 2.5E-5 m4 

 
Similarly to the frame, the parameters of the Laval rotor, summarized in Table 2. These remain constant across 

all 3 cases. For the structural frame steel is assumed. The rotor has a mass of mr = 50 kg, a stiffness of kr = 904,778.7 
N/m, and a damping coefficient of cr = 190.9 N·s/m. The internal damping coefficient ci=0. The natural frequency of 
the rotor on rigid bearings is calculated to be ωr = 134.4 rad/s. 

Table 2 Rotor parameters.  

Young’s Module- 
Shaft 

Density 
Poisson’s Ratio Mass Imbalance 

E = 200 GPa ρS = 7850 kg/m3 υS = 0.3 me = 0.048 kg.m 



  

 

For the homogeneous half-space, material properties approximating those of real soil were adopted, as listed 
in Table 3. The corresponding flexibility profiles for vertical, horizontal, and rocking displacements are shown in 
Figure 6. 

Table 3 Soil properties.  

Young’s Module Density Poisson’s Ratio Shear Modulus Damping 

E = 234 MPa ρS = 2500 kg/m3 υS = 0.3 G = 90 MPa η = 0.01 

 

To nondimensionalize the analyses, mass ratios are defined between the rotor and its foundation (fmRF), 
between the rotor foundation and the frame (fmFP), and between the rotor and the frame (fmRP). Likewise, stiffness 
ratios are defined between the rotor and the frame (fkRP) and between the frame and the soil (fkPS), as shown in 
equation (32). 

; ; ; ;
RF FP RF FP RP RP PS

R R RF P
m m m m m k m

F P P P S

m m km k
f f f f f f f

m m m k k
= = = = = =  (32) 

The parameter values used in the analyses for masses and stiffnesses are summarized in Table 4. 

Table 4 Adimensional factors.  

Mass factor Stiffness factor 

fmRF = 0.05 
fkRP = 0.032 

fkPS = 107 
fmFP = 0.21 

fmRP = 0.01 

 
Dynamics of the structure and soil-structure. The frequency response functions (FRFs) of the frame subsystem 

with a fixed base (case b) and those of the frame subsystem on a homogeneous half-space (case c) are presented 
in Figures 10 and 11, respectively. For the case b, the frame has only 3DOFs, shown in Figure 10 for the vertical, 
horizontal and rocking DOFs. System c has 6DOFs, corresponding to the two nodes of the frame. The resulting FRFs 
are shown in Figures 11. 

 
Figure 10: FRFs of the frame attached to a fixed base (case b). 



  

 

 
Figure 11: FRFs of the frame attached to a half space (case c). 

Extraction of the modal parameters. The modal parameters extracted from the FRFs of the fixed-base frame 
(Figures 10) and those obtained from the FRFs of the frame supported by the half-space (Figure 11) are summarized 
in Table 5. 

Table 5 Modal parameters.  

Frame over fixed base 

Natural frequency (rad/s) ω1 = 15.89 ω2 = 100.10 ω3 = 338.93 

Damping factor ξ1 = 0.0200 ξ2 = 0.0087 ξ3 = 0.0200 

Frame attached to the half space 

Natural frequency (rad/s) ω1 = 11.96 ω2 = 38.54 ω3 = 49.46 ω4 = 91.76 ω5 = 146.20 ω6 = 480.42 

Damping factor ξ1 = 0.0382 ξ2 = 0.1309 ξ3 = 0.1242 ξ4 = 0.0735 ξ5 = 0.1554 ξ6 = 0.0362 

 

The extracted modal forms of frame subsystem of case b, Figure 10, are shown in Figure 12. 

 
Figure 12: Modal forms – Frame attached to rigid base (case b). 



  

The modal forms extracted from the FRFs of the frame over the half-space Figure 11, case c, are shown in 
Figure 13. 

 
Figure 13: Modal forms – Frame attached to the half space (case c). 

The calculations of the natural frequencies of rigid bodies are performed as defined in Gazetas (1983), in which 
the static stiffness for each degree of freedom of the soil is defined in Equation (33). The natural frequencies of 
rigid body are calculated following the methodology proposed by Gazetas (1983) where the static stiffness 
associated with each degree of freedom of the soil is defined by equation (33). 

34 8 8
; ;

(1 ) (2 ) 3(1 )z y
GR GR GR

k k kqn n n
= = =

- - -
 (33) 

where, kz denotes the static stiffness associated with vertical displacement, ky corresponds to horizontal 
displacement stiffness, and kθ represents the stiffness related to rocking motion. Using these static stiffness values 
along with the frame’s mass matrix, the natural frequencies for the frame rigid body were calculated as ωnz = 38.75 
rad/s, ωny = 35.17 rad/s, and ωnθ = 70.34 rad/s. 

4.1 Response of Rotor on Rigid base – case a 

One important issue that will be investigated using the proposed methodology is the dynamics of the rotor during 
the runup phase. In this process an external torque T is applied to the rotor and it starts accelerating. During this 
acceleration process the unbalance excitation frequency increases. In the runup process the rotor passes through the 
resonances present in the system. Close to the resonances the displacement amplitude of the rotor, of the foundation, 
of the structure and soil DOF does increase. The energy dissipated by the vibration of the rotor through the viscous 
dampind mechanism/coefficient cE will increase. If the energy dissipated by the damping mechanisms is equal or larger 
to the energy that the torque I inputs in the system, the rotor cannot pass through the resonances. It ‘hangs’ on one 
resonance frequency with large vibration amplitudes. This is a very undesirable situation. The minimum torque required 
for the rotor to pass through a resonance is called in this article ‘miminun torque’, Tmin. In this article the ‘minimum 
torque’ required for the rotor to pass through the resonances will be studied for the three cases described in the previous 
section. 

Based on the parameters adopted in this study, the torque limit for case a, rotor on rigid bearings, is T = 17.8 Nm. 
This value corresponds to the threshold, below which the system ‘hangs’ at an angular velocity of approximately 132.91 
rad/s. Figure 14, which presents the rotor displacements uzr and uyr as a function of time (blue curve). The angular velocity 

D
&  as functions of time is given by the red curve. As it can be seen after a period of angular acceleration, the rotor hangs 

at a vibrating frequency close to ist natural frequency of 134.4 rad/s. For this case, the maximum displacement rotor 
amplitude is 0.027 m. 



  

 
Figure 14: Case a: Rotor on Rigid Bearings – T = 17.8 Nm. 

When the applied torque is increased to T=18 Nm, the system no longer ‘hangs’ at an angular velocity near the 
natural frequency, as can be seen in Figure 15. The rotor is able to pass through the resonance. It should be noticed, 
however, that there is a considerable reduction in the rotor angular acceleration, when the rotor passes through the 
resonance. It experiences large vibration amplitudes in for many cicles in both directions, urz and ury. 

 
Figure 15: Rotor DOFs urz and ury. Case a: Rotor on Rigid Bearings – T = 18 Nm. 

Figure 16 presents the rotor responses for a higher applied torque of T=28 Nm. In this case, the reduction in rotor 
acceleration near the resonance region becomes nearly imperceptible; however, the response amplitudes in this region 
remain clearly increased. The rotor passes more quickly through the resonance. 

 
Figure 16: Rotor DOFs urz and ury. Case a: Rotor on Rigid Bearings – T = 28 Nm. 



  

4.2 Rotor-foundation-structure on a rigid base – case b 

Rotor response. For case b, rotor-foundation on a frame structure, the limiting torque is found to be T=16.9 Nm. As 
shown in Figure 17, the system stagnates at an angular velocity of approximately 134.06 rad/s, with an average maximum 
displacement amplitude of 0.025 m. The inclusion of the frame mounted on a rigid base under the rotor-foundation 
system results in a reduction of both the response amplitude and the limiting torque. It should be considered that the 
frame structure has in internal damping coefficient ct and thus helps to dissipate the energy in the system. In an initial 
analysis it could be considered that this extra withdrawal of energy through the structural damping ct would require an 
increased torque to overcame the resonance. But it should be reminded that viscous dampers dissipate energy directly 
proportional to the velocity of the displacements. In the case of a more damped system, the vibration amplitudes near 
the resonance are considerably reduced, as is the velocity, reducing considerably the dissipated energy. With less energy 
dissipated, a smaller torque is required to pass the resonance. 

 
Figure 17: Rotor DOFs urz and ury. Case b: rotor-foundation-structure on rigid base – T = 16.9 Nm. 

When the applied torque is increased to T = 19 Nm, the system no longer stagnates at an angular velocity near the 
natural frequency, as shown in Figure 18, similar to the behavior observed in case a. A significant increase in response 
amplitude in both directions is observed in the vicinity of the resonance region, although the reduction in rotor 
acceleration is less pronounced. 

 
Figure 18: Rotor DOFs urz and ury. Case b: rotor-foundation-structure on rigid base – T = 19 Nm. 

Figure 19 presents the vertical utz2 displacement response of the frame at node 2 for the applied torque of T = 19 
Nm. Although the amplitudes are significantly lower than those observed in the rotor, an increase in response amplitude 
is evident in the rotor’s resonance region. Additionally, a second increase in amplitude is observed when the angular 
velocity approaches the natural frequency of the frame over rigid base, approximately 300 rad/s, as indicated in Table 5. 



  

 
Figure 19: Structure vertical DOF utz2. Case b: rotor-foundation-structure on rigid base – T = 19 Nm. 

A similar behavior is observed in the horizontal uty2 and rotation θtx2 displacements of the foundation node 2, as 
shown in Figure 20. However, in this case, the second increase in amplitude occurs prior to the one associated with the 
rotor's resonance region. This earlier amplification is observed near the second natural frequency of the frame over rigid 
base, approximately 110 rad/s, as listed in Table 5. 

        
Figure 20: Structure DOF uty2 and θtx2. Case b: rotor-foundation-structure on rigid base – T = 19 Nm. 

4.3 Rotor-foundation-structure on soil – case c 

For case c, the rotor, the foundation and the structure supported by the soil, the torque limit is T=16.5 Nm, the 
lowest among the three cases analyzed. As shown in Figure 21, the system ‘hangs’ at an angular velocity of approximately 
134.6 rad/s, with an average maximum displacement amplitude of 0.024 m. The inclusion of the soil beneath the frame 
introduces more damping through the geometric damping mechanism and leads to a reduction in both the response 
amplitude and the limiting torque in comparison with case b. 

 
Figure 21: Rotor DOFs urz and ury. Case c: rotor-foundation-structure on soil – T = 16.5 Nm. 



  

As in the previous cases, increasing the applied torque to T = 19 Nm results in a similar behavior: the rotor exhibits 
nearly constant acceleration, except in the vicinity of its resonance region, where a significant increase in response 
amplitude is observed, Figure 22. 

 
Figure 22: Rotor DOFs urz and ury. Case c: rotor-foundation-structure on soil – T = 19 Nm. 

Figure 23 shows the displacement response utz2 of the frame at node 2 under an applied torque of T=19 Nm. In this 
case, in addition to the amplitude increase near the rotor’s resonance region, two additional peaks of smaller amplitude 
are observed as the angular velocity approaches the second and sixth natural frequencies of the soil-structure subsystem, 
approximately at 47 rad/s and 460 rad/s, respectively, as indicated in Table 5. The rotor passes through three disctinct 
resonances.  

 
Figure 23: Structure DOF utz2. Case c: rotor-foundation-structure on soil – T = 19 Nm. 

A similar behavior is observed for the frame displacements uty2 and θtx2, as illustrated in Figure 24. However, in this 
case, two amplitude peaks appear prior to the rotor’s resonance region. These amplifications occur near the third and 
fourth natural frequencies of the soil–structure subsystem, approximately at 59 rad/s and 98 rad/s, respectively, as listed 
in Table 5. It is worth noting that the peak near 59 rad/s appears only in the uty2 response. 

What should be stressed is not the important and interesting results of the dynamic response of these complex 
systems per se, but the synthesis of a methodology that allows to perform these transient analyses in systems that 
contain non-linearities (rotor) and present geometrid damping (soil).  



  

          
Figure 23: Structure DOFs uty2 and θtx2. Case c: rotor-foundation-structure on soil – T = 19 Nm. 

5 CONCLUSIONS 

The present paper introduced a methodology to analyze the transient behavior of complex systems constituted 
of a rotor, a foundation, a structure and a soil. The system is divided into two subsystems. The time domain non-
linear equations of a Laval rotor supported by a rigid foundation are derived and form the subsystem I. These non-
linear equations of motion are integrated using a 4th order Runge Kutta method. A frame structure resting on a 
viscoelastic half-space constitutes the subsystem II. The soil which is considered an unbounded domain and 
presents geometric damping is modelled by a 3D version of the Boundary Element Method. The BEM can naturally 
describe the dynamics of complex soil profiles and foundation systems. A new methodology to construct the time 
domain equations of a system that is dynamically equivalent to the original soil-structure system is presented. The 
methodology is based on extraction of modal parameters from the Frequency Response Functions of the coupled 
structure-soil problem. This equivalent system in modal coordinates can be numerically integrated by standard 
procedures. The response of the complete system is obtained by a staggered coupling procedure, with the rotor 
and the soil-structure systems being integrated by distinct strategies. 

This methodology enables an accurate solution of a non-linear system coupled with another system presenting 
geometric or radiation damping, related to the dynamics of unbounded domains. The methodology renders 
transient response with very small time steps, allowing it to be applied to problems like the transient response of 
an unbalanced rotor interacting with a foundation-structure-soil system during the runup phase. The examples 
given in the article show that the method is able to capture the transient behavior of the rotor near the resonances. 
The proposed method allows to determine the minimum torque required to be applied to the rotor in order to keep 
it from ‘hanging’ at resonance frequencies. The methodology also is accurate enough to enable the study of the 
influence of the damping mechanisms existing on the rotor, structure and soil on the unbalance response of the 
former. In short, the presented methodology opens the possibility to numerically investigate, with great accuracy, 
the transient behavior of complex coupled systems as exemplified by onshore eolic systems. 
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Appendix 

Time domain non-linear equations of the rotor-foundation system. 
Displacement vector: 
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Mass matrix [MI] equation (16): 
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Matrix [AI] and [BI] equation (16): 
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Vector {FI} equation (16): 
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