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Abstract 
This study proposes a multi-scale model formulation for saturated porous media, centered on the concept of 
the Representative Volume Element (RVE). The linkage between scales is established by enforcing the 
equivalence of the total virtual power per unit volume at the larger scale with its corresponding volume-
averaged counterpart at the smaller length scale, both derived from the general theory of poromechanics. By 
employing the Principle of Multiscale Virtual Power (PMVP) along with appropriate constraints on micro-scale 
displacements and pore pressures, a robust variational theory is established. This variational framework 
allows us to derive the micro-scale balance equations and obtain homogenization relations between the 
relevant macro-and micro-scale quantities. The formulation can be implemented using the finite element 
squared (FE2) strategy through spatial discretization and standard time integration methods for time 
evolution. The theoretical evidence presented in this work reveal a pathological inconsistency in the 
objectivity of the macro scale response with respect to the RVE size, also observed in existing literature. This 
incongruity is often addressed by assuming infinitely small micro-scale dimensions or by neglecting dynamic 
terms causing the size effect. The primary contribution of this work is to offer an alternative solution to the 
aforementioned issue, aiming to restore the fundamental concept of RVE. To achieve this, a conveniently fine-
scale constitutive approach is proposed, introducing usefull adjustments in the micro-scale pore pressure field 
expansion. 
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1 INTRODUCTION 

The mechanics of porous materials is a highly relevant discipline in various fields of knowledge, such as 
geomechanics, biomechanics, and materials science, among others. This area has undergone significant development 
since the pioneering work of Biot (1941) and Biot (1955). Defining constitutive relations at the macro-scale level is crucial 
for accurately capturing the complex interactions between material constituents and phases. From a modeling 
perspective, these equations can be: (i) explicitly assumed based on phenomenological considerations, or (ii) implicitly 
derived using consistent homogenization techniques Dormieux et al. (2006). The latter approach has proven to be highly 
effective in predicting complex material behaviors. This methodology derives the homogenized constitutive response by 
averaging quantities from fine-scale fields. The existence of a minimum micro-structural domain, known as the 
Representative Volume Element (RVE), from which the macro-scale response becomes size-insensitive, is a fundamental 
cornerstone for these homogenization techniques Hill (1963). 

Many RVE-based multiscale strategies are founded on the Hill-Mandel lemma, which ensures equivalence in terms 
of internal strain energy between the macro and micro scales, Hill (1963), Hill (1965a) and Hill (1965b). Alongside the 
conceptual improvements, there have also been significant developments in the computational homogenization of these 
theoretical models, primarily based on the multilevel finite element strategy (FE2) Feyel and Chaboche (2000).  

Concerning saturated porous media, Larsson et al. (2010a) introduced a variational homogenization method for 
analyzing transient uncoupled whereas Su et al. (2011) studied the coupled consolidation phenomena. They demonstrate 
that the linear multiscale approximation introduces a micro-scale size effect, manifested by the emergence of a second-



  

order term that impacts the objectivity of the macro-scale response, implying that conventional homogenization models 
cannot be straightforwardly applied to saturated porous media without careful reconsideration. To address this issue, 
those authors indicated that the second-order effect diminishes as the size of the Representative Volume Element (RVE) 
approaches infinitesimally small dimensions. 

In contrast, Khoei and Hajiabadi (2018) and Khoei and Saeedmonir (2021) put forward computational 
homogenization models for saturated and multiphase porous media, where the macro-scale response is decomposed 
into two terms: one stationary and the other dynamic, with the size effect encapsulated in the latter. This effect 
diminishes as the micro-scale domain approaches infinitesimal dimensions. However, as the fine-scale dimensions 
increase, these authors observe disparities in the homogenized results when compared to Direct Numerical Simulation 
(DNS) results. 

Klahr et al. (2023) developed a variational RVE-based multiscale formulation for analyzing a saturated porous 
medium under large strains. In this context, they discovered a dependence on the size of the micro-cell domain, which 
manifests in the homogenized flow velocity. 

All the advancements mentioned in the preceding paragraphs demonstrate a significant interest in understanding 
the size effect inherent in multiscale modeling of saturated porous media. Currently, this remains a challenging topic and 
an open line of research. The concept of preserving transient effects, aimed at avoiding limitations on predictive 
capabilities, underlies all of these previous contributions. The micro-scale size dependence appears to contradict the 
intuitive concept of Representative Volume Element (RVE) existence, which is a fundamental pillar upon which the entire 
homogenization theory was established Hill (1963). The primary motivation of this work is to contribute to clarifying 
ideas concerning this critical theoretical issue and to introduce a new modeling alternative. 

In summary, the present work proposes a consistent homogenization model based on the Principle of Multiscale 
Virtual Power (PMVP) Blanco et al. (2014), along with its corresponding numerical implementation, designed to address 
the consolidation phenomenon in saturated soils, Lewis and Schrefler (1998), Mroginski et al. (2010), Beneyto et al. 
(2015). For the mechanical description of the porous medium, we employ the general theory of poromechanics 
developed by Coussy (2003). To define the internal and external power functionals at both macro and micro-scale levels, 
two additional pairs of power-conjugate variables are required compared to the classical case of a non-porous medium. 

2 PRINCIPLE OF MULTISCALE VIRTUAL POWER 

In this section, the coupling of the physical behavior between macro and micro length scales is established by 
appealing to the so-called Principle of Multiscale Virtual Power (PMVP) proposed by Blanco et al. (2014). This variational 
statement offers a formal framework to derive all basic ingredients of the multiscale formulation, but firstly some 
fundamental concepts should be introduced. 

2.1 Internal and External power functionals at macro-scale 

For the fully saturated case and under the hypothesis of infinitesimal transformations, the internal power 𝒫𝒾𝓃𝓉  was 
written by Coussy (2003) as follows 

𝒫𝒾𝓃𝓉 = ∫ [𝛔 :  𝛆̇ − 𝛁  ⋅ (
p

ρf
𝐰)]

Ω
 dΩ, (1) 

where  𝜺̇ = 𝛁𝐬𝐲𝐦𝐮̇ is the rate of infinitesimal strain tensor of the solid skeleton,  𝐮̇  is the rate of macro-displacement 

field, 𝛔 is the Cauchy stress tensor, p the (scalar) pore pressure field of the fluid,  ρ𝑓 intrinsic mass density of the fluid, 

𝐰 = ρf 𝐕 is the relative mass flow vector of the fluid, 𝐕 is the flux or the relative seepage velocity vector between the 
fluid and solid velocity vectors. Finally, Ω denote the porous media macro-scale domain.  

After some algebraical manipulation and taking into account the mass balance equation ṁf + 𝛁  ⋅  𝐰 = 0, being ṁf 
the mass content of the fluid phase, assuming infinitesimal transformations, expression (1) can be rewritten as  

 𝒫𝒾𝓃𝓉 = ∫ [𝛔 :  𝛆̇ + χ̇ p − 𝐕   ⋅ 𝛗]
Ω

 dΩ, (2) 

where the following nomenclature is adopted hereafter: χ̇ =
mḟ

ρf
 and 𝛗 = 𝛁p.  

It can be seen that the second term in the r.h.s. of (2) represents the work rate done, in the pore space, by the fluid 
phase. The third duality product in (2) takes into account the viscous dissipation effect due to the relative motion of the 



  

fluid phase concerning the solid skeleton. Therefore, two additional pairs of power-conjugate variables, {χ̇; p} and {𝐕;𝛗}, 
are necessary to introduce with respect to the classical solid mechanical problem. 

The external power, 𝒫ℯ𝓍𝓉, exerted by the set of external agencies {𝐟; 𝐭; q} has also been presented by Coussy (2003) 

𝒫ℯ𝓍𝓉 = ∫ 𝐟  ⋅   𝐮̇
Ω

 dΩ + ∫ [𝐭  ⋅   𝐮̇  −  p 
q

ρf
]

Γ
 dΩ, (3) 

where 𝐟 is the body force of the porous media, while 𝐭 and q represent the systems of total external traction and normal 
fluid flux, respectively. 

The well-known concepts of internal and external virtual powers can be easily established from the above 
expressions, considering the corresponding admissible virtual actions of their primal quantities, i.e., {δ𝐮̇; δ𝛆̇; δp; δ𝛗}. 
Then, the total virtual power, δ𝒫𝓉ℴ𝓉, can be expressed as 

δ𝒫𝓉ℴ𝓉 = δ𝒫𝒾𝓃𝓉 − δ𝒫ℯ𝓍𝓉 = ∫ (𝛔 :  δ𝛆̇ + χ̇ δp − 𝐕   ⋅ δ𝛗 − 𝐟  ⋅  δ𝐮̇) dΩ
Ω

− ∫ 𝐭  ⋅  δ𝐮̇ dΓ
Γ
N
u + ∫ δp 

q

ρf
dΓ

Γ
N

p  . (4) 

2.2 Weak form of the macro-scale balance equations 

The balance equations in a weak form postulate that the external virtual power must be equal to the internal virtual 
power, for all admissible variations of primal descriptors. Thus, (4) can be rewritten as 

∫ (𝛔 :  δ𝛆̇ + χ̇ δp − 𝐕   ⋅  δ𝛗)
Ω

 dΩ = ∫ 𝐟 ⋅  𝛅𝐮̇
Ω

  dΩ + ∫ 𝐭 ⋅  δ𝐮̇
Γ
N

u   dΓ − ∫
q

ρfΓ
N

p  δp dΓ,  ∀ δ𝐮̇ and δp admissible. (5) 

The underlying admissibility requirements invoked in (5), for virtual variations δ𝐮̇ and δp, take into account proper 
regularity demands such that all the integral terms can be formally evaluated as well as homogeneous prescribed values 

for both continuous fields on ΓN
u and ΓN

p
 (i.e., where Dirichlet boundary conditions should be specified for 𝐮̇ and p), 

respectively. Since δ𝐮̇ and δp are independent from each other, the variational form of equilibrium is finally described 
as a system of two coupled scalar equations, Lewis and Schrefler (1998) Di Rado et al. (2009). 

G ≡ ∫ 𝛔 :  δ𝛆̇
Ω

 dΩ − ∫ 𝐟
Ω
  ⋅  δ𝐮̇ dΩ − ∫ 𝐭

Γ
N
u   ⋅  δ𝐮̇ dΓ,  ∀ δ𝐮̇ admissible,

H ≡ ∫ (χ̇ δp − 𝐕   ⋅  δ𝛗)
Ω

 dΩ + ∫
q

ρfΓ
N

p  δp dΓ ,   ∀ δp admissible.
 (6) 

2.3 Principle of Multiscale Virtual Power 

Before discussing the PMVP, it is required to postulate an adequate mechanism for transferring information and 
define the concept of admissibility that makes compatible the primitive descriptors (displacements, pore pressures and 
their corresponding gradients) between the two involved scales. 

Henceforth, any object related to the micro-scale will be endowed with the subscript μ, preserving the same physical 

meaning. The micro-scale domain is denoted Ωμ (also called Micro-Cell or simply MC), with volume |Ωμ| boundary Γμ, 

while 𝐧𝛍 is the unit (outward) vector normal to Γμ. In addition, the vector 𝐲 is used to describe material points in a 

Cartesian system at the sub-scale. Without loss of generality, the origin of coordinates is located at the geometric center 
of Ωμ, implying that 

∫ 𝐲
Ωμ

 dΩμ = 𝟎. (7) 

2.4 Primal descriptors at the micro-scale level 

As in the macro-scale problem, the Micro-Cell is constituted by a continuum saturated porous medium. Thus, the 
same primal descriptors of the poromechanics theory of the macro-scale are adopted. A fundamental assumption in the 
present modelling context is that the micro-scale displacement, 𝐮𝛍, can be expanded in terms of macro-scale quantities 

(𝐮μ and 𝛆) as follows (de Souza Neto and Feijóo (2006), Sánchez et al. (2013) and de Souza Neto et al. (2015)) 

𝐮μ(𝐲, t) = 𝐮(𝐱, t) + 𝛆(𝐱, t) ⋅ 𝐲 + 𝐮̃μ(𝐲, t), (8) 



  

being 𝐮̃μ(𝐲, t) the fluctuation displacement field of the MC, therefore, the micro-scale infinitesimal strain tensor yields 

𝛆𝛍(𝐲, t) = 𝛁𝐲
𝐬𝐲𝐦
𝐮𝛍(y, t) = 𝛆(𝐱, t) + 𝛁𝐲

𝐬𝐲𝐦
𝐮̃μ(𝐲, t) = 𝛆(𝐱, t) + 𝛆̃𝛍(𝐲, t), (9) 

where operator 𝛁𝐲
𝐬𝐲𝐦(∎) represents the symmetric gradient concerning 𝐲-coordinates. The strain field in (9) is composed 

as the addition of the macro-scale strain, 𝛆(𝐱, t), which is assumed to be uniformly distributed over the entire domain 
Ωμ, and the micro-scale strain fluctuation 𝛆̃𝛍(𝐲, t). 

On the other hand, the micro-pore pressure, and its spatial gradient, can also be decomposed in an additive manner 
analogous to the displacement (Khoei and Hajiabadi (2018), Rivarola et al. (2019) and Anonis et al. (2024a)) 

pμ(𝐲, t) = p(x, t) + 𝛗(𝐱, t) ⋅ 𝐲 + p̃μ(𝐲, t), (10) 

𝛗𝛍(𝐲, t) = 𝛁𝐲 pμ(𝐲, t) = 𝛗(𝐱, t) + ∇y p̃μ(𝐲, t) = 𝛗(𝐱, t) + 𝛗̃𝛍(𝐲, t), (11) 

being p̃μ(𝐲, t) the pore pressure fluctuation field on the MC and 𝛗̃𝛍(𝐲, t) its corresponding gradient vector which is 

obtained from the 𝛁𝐲(∎) operator, related to the micro-scale coordinate system. 

2.5 Formulation of the PMVP 

The Principle of Multiscale Virtual Power states that the total virtual power per unit volume, at a point 𝒙 of the 
macro-scale, must be equal to the volumetric average of the total micro-scale virtual power (per unit volume) at the 
corresponding MC, for all admissible virtual actions (Blanco et al. (2014)). 

Thus, recalling the definition of macro-scale total virtual power per unit volume (given by the first integrand term 
of the r.h.s. in (4) and assuming the same mathematical structure for its micro-scale counterpart, the PMVP gives us the 
following variational sentence 

𝛔:δ𝛆̇ + χ̇ δp − 𝐕  ⋅  δ𝛗  −  𝐟  ⋅  δ𝐮̇ =
1

|Ωμ|
 ∫ (𝛔𝛍:δ𝛆̇𝛍 + χ̇μ δpμ − 𝐕𝛍   ⋅  δ𝛗𝛍  −  𝐟𝛍   ⋅  δ𝐮̇μ )Ωμ

 dΩμ,

∀δ𝐮̇, and δp 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐛𝐥𝐞 𝐚𝐧𝐝 ∀ δ𝐮̇μ, and  δpμ 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐛𝐥𝐞.   (12) 

Expression (12) can be viewed as a particular instance of the PMVP for the case of saturated porous media, at both 
scales of analysis.  

2.6 Homogenized variables and variational forms of balance at the micro-scale 

The variational identity (12) provides the natural way to obtain the homogenization formulae for the macro-scale 
stress-like entities{𝛔; χ̇; 𝐕} and body force 𝐟, as well as the variational equilibrium equation at micro-scale. To attain this 
goal, descriptors in Eqs. (8)-(11) must be replaced in expression (12) for virtual actions in the MC domain, and then, the 
consequences are shown below.  

a) Homogenized stress tensor: 

𝛔 =
1

|Ωμ|
∫ (𝛔𝛍 − 𝐟𝛍  ⊗  𝐲)

Ωμ
 dΩμ,  ∀ t. (13) 

Obtained from (12), taking δ𝐮̇̃μ = 𝟎,  δp = 0,  δp̃μ = 0,  δ𝛗 = 𝟎,  δ𝐮̇ = 𝟎 and allowing arbitrary 

variations of δ𝛆̇. 
b) Homogenized mass content rate of fluid (per unit fluid density): 

χ̇ =
ṁf

ρf
=

1

|Ωμ|
 ∫ χ̇μΩμ

dΩμ,  ∀ t . (14) 

Obtained from (12), taking δε̇ = 𝟎, δ𝐮̇̃μ = 𝟎,  δp̃μ = 0,  δ𝐮̇ = 𝟎,  δ𝛗 = 𝟎 and allowing arbitrary 

variations of δp. 
c) Homogenized flux velocity vector: 



  

𝐕 =
1

|Ωμ|
∫ (𝐕𝛍 − χ̇μ 𝐲)Ωμ

 dΩμ,  ∀ t . (15) 

Which is achieved from (12), adopting δ𝛆̇ = 𝟎,  δ𝐮̇̃μ = 𝟎,  δp = 0, δp̃μ = 0,  δ𝐮̇ = 𝟎 with arbitrary 

variations of δ𝛗. 
From (15) it is possible to decompose the homogenized flux velocity vector into a stationary part 
(𝐕𝐬𝐭𝐚) and a dynamic or transient part (𝐕𝐭𝐫𝐚) as Janicke et al. (2020), Khoei and Hajiabadi (2018), Khoei 
and Saeedmonir (2021), Saeedmonir and Khoei (2022) (this decomposition is useful to discuss the MC 
size effect problem):  

𝐕 = 𝐕𝐬𝐭𝐚 + 𝐕𝐭𝐫𝐚 =
1

|Ωμ|
∫ 𝐕𝛍Ωμ

 dΩμ −
1

|Ωμ|
∫ χ̇μΩμ

 𝐲 dΩμ,  ∀ t . (16) 

d) Homogenized body force field: 

𝐟 =
1

|Ωμ|
∫ 𝐟𝛍Ωμ

 dΩμ =
𝐠

|Ωμ|
∫ ρμΩμ

 dΩμ,  ∀ t . (17) 

Obtained from (12), taking δ𝛆̇ = 𝟎,  δ𝐮̇̃μ = 𝟎,  δp = 0,  δp̃μ = 0, δ𝛗 = 𝟎 and arbitrary variations of 𝛿𝐮̇ =

𝟎, being 𝐠 the gravity acceleration field. 
e) Variational forms of balance in the MC (Integral equation of momentum balance): 

∫ (𝛔𝛍: δ𝛆̇̃  −   𝐟μ   ⋅   δ𝐮̇̃μ)Ωμ
dΩμ = ∫ (𝛔𝛍: 𝛁𝐲

𝐬𝐲𝐦
 δ𝐮̇̃μ  −   𝐟𝛍   ⋅  δ𝐮̇̃μ)Ωμ

 dΩμ = 0,   ∀ δ𝐮̇̃μ ∈  𝒰̃μ,  ∀ t . (18) 

Deduced from (12) by allowing for admissible variations of δ𝐮̇̃μ with δ𝛆̇ = 𝟎,  δp = 0,  δp̃μ = 0,  δ𝛗 =

𝟎 and δ𝐮̇ = 𝟎. 

f) Variational forms of balance in the MC (Integral mass balance equation): 

∫ (χ̇μ δp̃μ − 𝐕𝛍   ⋅  δ𝛗̃𝛍 )Ωμ
 dΩμ = ∫ (χ̇μ  δp̃μ − 𝐕𝛍   ⋅  𝛁𝐲  δp̃μ )Ωμ

 dΩμ = 0,   ∀  δp̃μ ∈  𝒫̃μ,  ∀ t . (19) 

Extracterd from (12), by allowing for admissible variations of δp̃μ with δ𝛆̇ = 𝟎,  δ𝐮̇̃μ = 𝟎,  δp = 0,  δ𝐮̇ =

𝟎 and δ𝛗̃𝛍.  

3 CONSTITUTIVE EQUATIONS IN THE MICRO-SCALE 

The only remaining ingredient in the proposed multiscale formulation is the specification of the material behavior 
in the smaller length scale. Each constituent of the micro-scale domain is a two-phase saturated porous medium; 
therefore, constitutive relations for the seepage velocity vector  𝐕𝛍, as well as for the mechanical stress-like quantities 

{𝛔𝛍; χ̇μ}, are required. The way in which constitutive input arguments are considered to evaluate such material responses 

plays an important role for the purposes of this work. The above-mentioned micro-scale size dependence could be one 
of them, which is objectionable in the realm of RVE-based homogenization models because induces a lack of objectivity 
in the macro-scale response. This topic justifies the detailed treatment of the constitutive arguments presented in the 
following sections. 

3.1 Constitutive laws based on Full Order Expansions (FOE) for primal descriptors 

This strategy probably represents the most natural and straightforward choice to describe the micro-scale material 
behaviors. Indeed, it has been adopted in some previous contributions Larsson et al. (2010a), Su et al. (2011), Janicke et 
al. (2022) Khoei and Hajiabadi (2018), Khoei and Saeedmonir (2021), Saeedmonir and Khoei (2022), Wu et al. (2022). In 
this approach, the Full Order Expanded (FOE) version of primal descriptors, see definitions (8)-(11), are part of the list of 
arguments in the constitutive functionals. 

With respect to the seepage phenomenon at the micro-scale level, the generalized Darcy's law is assumed to 
characterize the mean fluid velocity in the saturated porous medium Mroginski et al. (2010), Lewis and Schrefler (1998). 



  

𝐕𝛍 = 𝒱̂μFOE(𝛗μF0E) = −𝐤𝛍   ⋅   [(𝛗 + 𝛗̃𝛍) + ρμ
f  𝐠] = 𝒱̂μFOE(𝛗, 𝛗̃𝛍), (20) 

where 𝐤μ is the symmetric second order permeability tensor and the hat-symbol, ∎̂, denotes a generic constitutive 

functional. In case of isotropic saturated materials, it is 𝐤μ = kμ𝐈; kμ = κμ/(ρμ
f  |𝐠|) being the hydraulic permeability 

which is a function of the hydraulic conductivity κμ and the specific weight of the fluid ρμ
f  |𝐠|, |𝐠| is the modulus of the 

acceleration of gravity and 𝐈 denotes the second order identity tensor. 
The same mathematical structure that describes the mechanical behavior of saturated porous medium due to 

Coussy (2003) is assumed valid for each constituent of the micro-scale domain. Thus, we have for {𝛔̇𝛍; 𝜒̇𝜇} (rate format 

is used) 

𝛔̇μ = σ̂̇μFOE(𝛆̇μFOE, ṗμFOE) = 𝐂𝛍 :  (𝛆̇ + 𝛆̇̃𝛍)  −  𝐛𝛍(ṗ + 𝛗̇   ⋅  𝐲 + ṗ̃μ) = σ̂̇μFOE(𝛆̇, 𝛆̇̃𝛍, ṗ, 𝛗̇, ṗ̃μ), (21) 

χ̇μ = χ̂̇μFOE(𝛆̇μFOE, ṗμFOE) = 𝐛𝛍 :  (𝛆̇ + 𝛆̇̃𝛍)  +  
1

Mμ
 (ṗ + 𝛗̇   ⋅  𝐲 + ṗ̃μ) = χ̂̇μFOE(𝛆̇, 𝛆̇̃𝛍, ṗ, 𝛗̇, ṗ̃μ). (22) 

 The micro-hydromechanical response of the porous medium is mainly defined by the elastic stiffness tensor of 
the skeleton 𝐂𝛍, the Biot tensor 𝐛μ and the coefficient Mμ

−1. For the particular case of isotropic constituents, it is 𝐛μ =

bμ 𝐈, where the Biot coefficient bμ = 1 − Kμ/Kμ
s  is given by the relationship between the bulk modulus of the skeleton 

Kμ and the volumetric modulus of the grain material Kμ
s . Finally, we have Mμ

−1 = Kμ
s/(bμ − nμ) + Kμ

f /nμ, where Kμ
f  is 

the bulk modulus of fluid Biot (1941), Biot (1955) and Lewis and Schrefler (1998). 
In saturated porous media significant mechanical changes undergone by the soil skeleton are attributed to the 

concept of the effective stress field, here denoted as 𝛔μ
′ . According to the poromechanics theory, 𝛔μ

′  depends on the 

strain tensor of the soil grains (𝛆𝛍), then in agreement with the previous constitutive law (21), it can be expressed 

𝛔̇μ
′ = σ′̇̂ μFOE(ε̇μFOE) = 𝐂𝛍 :  (𝛆̇ + 𝛆̇̃𝛍)  = σ′̇̂ μFOE(𝛆̇, 𝛆̇̃𝛍) (23) 

3.2 About the micro-scale size dependence on the macro-scale response 

The transient component, 𝐕𝐭𝐫𝐚, of the homogenized velocity vector (see second integral in the r.h.s. of (16), has 
already been identified as responsible for introducing a size effect in the multiscale modelling of porous saturated solids 
(Larsson at al. (2010a), Su et al. (2011, Khoei and Hajiabadi (2018), Janicke et al. (2020), Saeedmonir and Khoei (2022) 
and Anonis et al. (2024a)). Some possible solutions have been proposed in the current literature. One is to extend the 
applied proposal in the context of heat flow (Larsson et al. (2010b), Özdemir et al. (2008)) and simply ignore the transient 
effect of the sub-scale by neglecting the 𝐕𝐭𝐫𝐚-contribution so that the micro-scale problem can be considered as “quasi-
stationary” at all times. Another one is to adopt an infinitely small micro-scale domain size, which allows the dynamic 
term to be negligible and thus avoids the problem of fine-scale size dependence (Larsson at al. (2010a), Su et al. (2011, 
Khoei and Hajiabadi (2018), Janicke et al. (2020)). The possibility of choosing specific material parameters at the MC level 
in order to make the dynamic fluctuating response negligible compared with the stationary one was also mentioned in 
Janicke et al. (2020). In view of the previous background and the importance assigned to the transient component of the 
multiscale formulation, this term is now examined meticulously. 

If the constitutive law (22) is replaced within the expression for 𝐕𝐭𝐫𝐚 , and reordering conveniently, it yields 

𝐕𝐭𝐫𝐚 = −
1

|Ωμ|
∫ χ̇μΩμ

 𝐲 dΩμ = −
1

|Ωμ|
∫ χ̂̇μFOE(𝛆̇μFOE, ṗμFOE)Ωμ

𝐲 dΩμ 

−
1

|Ωμ|
∫ (bμ :   𝛆̇)Ωμ

 y dΩμ⏟            
𝐓𝟏

−
1

|Ωμ|
∫

ṗ

MμΩμ
 𝐲 dΩμ⏟          

T2

,

−
1

|Ωμ|
∫ [𝐛𝛍 :   𝛆̇̃𝛍(… , 𝛗̇, … )]Ωμ

 𝐲 dΩμ⏟                    
𝐓𝟑→𝒪(𝐲

2)

−
1

|Ωμ|
∫

ṗ̃μ(…,𝛗̇,… )

MμΩμ
 𝐲 dΩμ⏟              

𝐓𝟒→𝒪(𝐲
2)

−
1

|Ωμ|
∫

𝛗̇

MμΩμ
  ⋅   (𝐲⊗ 𝐲) dΩμ⏟              
𝐓𝟓→𝒪(𝐲

2)

  .

 (24) 

Assuming nearly symmetric distributions for 𝐛μ and Mμ properties with respect to the micro-cell barycenter, the 

terms 𝐓𝟏 and 𝐓𝟐 in (24) do not introduce micro-scale size dependence problems. The effect of these contributions tends 



  

to decrease as the micro-cell size enlarges including a major (and representative) number of heterogeneities. So, these 
terms contribute to qualify when a generic micro-cell is (or not) an RVE. 

The last 𝐓𝟓-term of (24) has a quadratic dependence on the 𝐲-coordinate. Clearly, such a term introduces a size 
effect in the homogenized response because it increases monotonically for enlarging micro-cell dimensions and seriously 
compromises the concept of RVE existence. The gradient rate of pore pressures (𝛗̇) in the neighborhood of macro-scale 
external loads can take large values, especially if short-term analysis for low permeability and cohesive soils is considered. 

Although it is not straightforward to see the terms 𝐓𝟑 and 𝐓𝟒 also introduce size effect issues whenever the FOE-

multiscale formulation is employed. This is because the solution of the fluctuating components 𝛆̇̃𝛍 and ṗ̃μ (present in 

𝐓𝟑 and 𝐓𝟒, respectively) depend on the inserted macro-scale quantity 𝛗̇, and such kind of implicit functionality gives rise 
to a second-order dependence on 𝐲-coordinate for 𝐓𝟑 and 𝐓𝟒. The previous sentence can be proved in some academic 
multiscale scenarios by solving analytically the coupled system of differential equations. 

3.3 Constitutive laws based on Reduced Order Expansions for primal descriptors  

It has been shown that the lack of objectivity in the macro-scale response stems from the type of expansion 
accepted to evaluate input arguments in constitutive laws. This analysis allows us to introduce minimally invasive 
modifications, pointing to the core of the problem, whereas all the remainder features and ingredients of the proposed 
(variationally consistent) multiscale formulation are preserved, in order to not disclaim modelling capabilities. 

For this aim, slight variations are now introduced in the definition of the stress-like functionals σ̂̇μ and χ̂̇μ. Thus, 

different order of expansions for the micro-scale strain rate 𝛆̇̃𝛍 and pore-pressure rate ṗ̃μ are proposed, for evaluating 

σ̂̇μ and χ̂̇μ constitutive functionals. In this way, the following Selective Expansion choices are proposed: a) A Full Order 

Expansion (FOE) for the micro-scale strain rate descriptor, denoted as 𝛆̇μ
FOE identical to expression (9); b) A Reduced 

Order Expansion (ROE) for the micro-scale pore-pressures rate as a result of neglecting the first-order term (𝛗̇   ⋅  𝐲) in 

(10), thus, ṗμ
ROE = ṗ + ṗ̃μ. 

It is worth mentioning at this point that the ROE for ṗμ (ṗμ
ROE) has a very limited local effect in the multiscale 

formulation, since it has only meaningful within the constitutive functions characterizing 𝛔̇𝛍 and χ̇μ. Therefore, our 

proposal can be formally viewed as a simplifying constitutive-like hypothesis for 𝛔̇𝛍 and χ̇μ. Note that the generalized 

Darcy's law remains unchanged as defined in (20), thus the complete field ṗμ
FOE is required at this instance, and the 

constitutive equation for the micro-scale effective stress, 𝛔̇μ
′ , also remains invariable if compared with the FOE multiscale 

scheme. 

4 SOLUTION OF THE VARIATIONAL EQUATIONS AT THE MACRO-SCALE 

The global numerical paradigm consists of two nested, time-evolving, finite element schemes where the connection 
between them is established at each macro-scale Gauss point. In the literature, such an approach is referred to as FE2 
strategy, Feyel and Chaboche (2000).  

The time variable, t, is discretized through a monotonically increasing sequence of time steps 
[t0, t1, t2, … , tn, tn+1, … ]. The θ-generalized rule (Lewis and Schrefler (1998)) is used to account for the problem evolution 
within any time interval. 

To describe the physical domain Ω a finite element mesh Ωh is used. Then it is possible to build global interpolation 
matrices for the displacement, 𝐍𝐮, and pore pressure, 𝐍𝐩, fields as follows 

𝐮 = 𝐍𝐮  𝐮̅    ;    p = 𝐍𝐩 𝐩̅ , (25) 

where 𝐮̅ and 𝐩 are the vectors that collect all nodal displacements and pore pressures values, respectively. In order to 
satisfy the Babuska-Brezzi convergence requirements (Lewis and Schrefler (1998)), it is necessary to adopt different 
orders of interpolation for each primal variable. Following the Galerkin method, the same spatial approximation is used 
for virtual actions. Replacing (25) into the weak forms (6), and after performing standard manipulations specific to the 
finite element method, the discrete (time and spatial) version of balance, at time step tn+θ, can be written (Dirichlet 
degrees of freedom are omitted) 



  

𝐆̇h
n+θ ≡ ∫ 𝐁𝐮

T 𝛔̇n+θdΩ
Ωh

   − ∫ 𝐍𝐮
T

Ωh
 𝐟̇n+θdΩ− ∫ 𝐍𝐮

T
Γ
N, h
u   𝐭̇n+θdΓ = 𝟎,

𝐇h
n+θ ≡ ∫ 𝐍𝐩

T
Ωh

  χ̇n+θ  dΩ− ∫ 𝐁𝐩
T

Ωh
 𝐕n+θdΩ + ∫ 𝐍𝐩

T
Γ
N, h
p  

q n+θ

ρf
 dΓ = 𝟎.

 (26) 

being 𝐁𝐮 = ∇
sym 𝐍𝐮 the deformation-displacement matrix and  𝐁𝐩 = ∇ 𝐍𝐩 is the matrix that relates pore pressures to 

their gradients. The system of equations (26) is solved by using a standard Newton-Raphson algorithm. Thus, the current 
displacement and pore pressure nodal values are updated (at time step t n+1) in terms of the iterative increments Δ𝐮̅ 
and Δ𝐩, respectively. For a given k-iteration in the time interval of the Newton-Raphson scheme, these increments are 
evaluated as (subscript h is omitted hereafter) 

[
Δ𝐮̅
Δ𝐩
] = −(𝐉𝐤

𝐧+𝛉) [
𝐆̇h
n+θ

𝐇h
n+θ
]          with 𝐉𝐧+𝛉  =  [

∂𝐆̇h
n+θ

∂𝐮̅𝐧+𝟏
∂𝐆̇h

n+θ

∂𝐩̅𝐧+𝟏

∂𝐇h
n+θ

∂𝐮̅𝐧+𝟏
∂𝐇h

n+θ

∂𝐩̅𝐧+𝟏

]  (27) 

Each component of the macro-scale Jacobian matrix 𝐉𝐤
𝐧+𝛉 can be found in Khoei and Hajiabadi (2018) and Anonis et al. 

(2024a). 

5 SOLUTION OF THE VARIATIONAL EQUATIONS AT THE MICRO-SCALE 

Macro and micro spatial domains share the same temporal scale. Thus, all definitions concerning to the time 
discretization scheme, described in the section before are still valid at the micro-scale level.  

The same finite element technology used in the context of the macro-scale problem is used to conform a mesh, 

Ωμ, h, for the micro-scale domain Ωμ. Then, the primal descriptors 𝐮̇̃μ and p̃μ (and their corresponding admissible virtual 

variations δ𝐮̇̃μ and δp̃μ) can be approached through global shape function matrices for micro-displacement fluctuations, 

𝐍𝐮̃𝛍, and micro-pore pressure fluctuations, 𝐍𝐩̃𝛍, as  

𝐮̇̃μ = 𝐍𝐮̃𝛍 𝐮̇̃̅μ,  δ𝐮̃μ = 𝐍𝐮̃𝛍  δ𝐮̇̃̅μ,    with  𝐮̇̃̅μ  and  δ𝐮̇̃̅μ ∈ 𝒰̃μ, h
Per ,

p̃μ = 𝐍𝐩̃𝛍  𝐩̃̅𝛍,  δp̃μ = 𝐍𝐩̃𝛍  δ𝐩𝛍,    with  𝐩̃̅𝛍  and  δ𝐩𝛍 ∈ 𝒫̃μ, hPer.
 (28) 

where 𝐮̃̅μ and  𝐩𝛍 denote the vectors containing all nodal micro-scale displacement fluctuations and pore pressure 

fluctuations, respectively, while 𝒰̃μ, hPer  and 𝒫̃μ, hPer represent the finite-dimensional counterparts of sub-spaces 𝒰̃μPer and 

𝒫̃μPer related to the Periodic multiscale model (see, namely de Souza Neto and Feijoo (2006), Sanchez et al. (2013) and de 

Souza Neto et al. (2015), Peric et al. (2011)). 

After some standard mathematical treatment, the substitution of (28) into the variational forms Eqs. (18)-(19) leads 

to the spatial and time discrete approximation (at time 𝑡𝑛+𝜃) for the balance equations in the micro-scale 

[∫ (𝐁𝐮̃𝛍
𝐓  𝛔̇μ

 n+θ − 𝐍𝐮̃𝛍
𝐓  𝐟μ̇

 n+θ )
Ωμ, h

 dΩμ]⏟                        

𝐆̇μ, h
n+θ

 ⋅  δ𝐮̇̃̅μ = 0,  ∀ δ𝐮̇̃̅μ ∈ 𝒰̃μ, hPer ,   with 𝐮̇̃̅μ ∈ 𝒰̃μ, hPer   and 𝐩𝛍 ∈ 𝒫̃μ, hPer,
 (29) 

[∫ (𝐍𝐩̃𝛍
𝐓  χ̇μ

n+θ − 𝐁𝐩̃𝛍
𝐓  𝐕𝛍

 𝐧+𝛉)dΩμΩμ, h
]

⏟                      

𝐇μ, h
n+θ

 ⋅  δ𝐩𝛍 = 0,  ∀ δ𝐩𝛍 ∈ 𝒫̃μ, hPer,   with 𝐮̇̃̅μ ∈ 𝒰̃μ, hPer   and 𝐩̃̅𝛍 ∈ 𝒫̃μ, hPer,
 (30) 

where 𝐁𝐮̃𝛍
𝐓 = 𝛁𝐲

𝐬𝐲𝐦
 𝐍𝐮̃𝛍 and 𝐁p̃μ

𝐓 = 𝛁𝐲 𝐍p̃μ, are the micro-scale global matrices relating the primal variables with their 

corresponding gradients.  

The numerical solution for nodal values of displacements, 𝐮̃̅μ
n+1, and pore pressure fluctuations, 𝐩𝛍

𝐧+𝟏, at current time 

step tn+1, is obtained in terms of the iterative increments ∆𝐮̃̅μ and ∆𝐩𝛍,  respectively. They are computed by using a 

standard Newton-Raphson procedure applied to the system of Eqs. (29)-(30). In this sense, for a generic k-iteration it can 
be expressed (subscript h is omitted hereafter) 



  

{𝐉𝛍,k
𝐧+𝛉 [

∆𝐮̃̅μ

∆𝐩𝛍
] + [

𝐆̇μ, h
n+θ

𝐇μ, h
n+θ
]} ⋅ [

δ𝐮̇̃̅μ

 δ𝐩𝛍
] = [

0
 0
] , ∀ δ𝐮̇̃̅μ ∈ 𝒰̃μ, hPer , ∀ δ𝐩𝛍 ∈ 𝒫̃μ, hPer  with ∆𝐮̃̅μ ∈ 𝒰̃μ, hPer   and ∆𝐩𝛍 ∈ 𝒫̃μ, hPer , (31) 

𝐉𝛍,k
𝐧+𝛉 being the Jacobian operator in the micro-scale, which has the form (subscript k is removed to simplify the notation) 

𝐉𝛍,k
𝐧+𝛉 =

[
 
 
 
∂𝐆̇μ, h

n+θ

∂𝐮̃̅μ
n+1

∂𝐆̇μ, h
n+θ

∂𝐩̃̅μ
n+1

∂𝐇μ, h
n+θ

∂𝐮̃̅μ
n+1

∂𝐇μ, h
n+θ

∂𝐩̃̅μ
n+1]
 
 
 

= [

1

∆t
𝐊𝛍

1

∆t
𝐐𝛍

1

∆t
(𝐐𝛍)

𝐓
(
1

∆t
𝐒𝛍 + θ𝛋𝛍)

]  (32) 

The matrices 𝐊𝛍, 𝐐𝛍, 𝐒𝛍 and 𝛋𝛍, that conform the Jacobian in (34), can be found in Anonis et al. (2024a) and Anonis et 

al. (2024b). 

6 SCOPE OF CONSTITUTIVE FORMULATIONS BASED ON ROE 

We present below a brief discussion on the possible scope or direct extention of our formulation when applied to 
multiscale modeling based on the RVE concept of different physical phenomena such as transient heat conduction 
(Özdemir et al. (2008), Larsson et al. (2010a), Ramos et al. (2017) and Waseem et al. (2020)) or mass conservation of ion 
species (coupled to other phenomena) (Kaessmair et al. (2021) and Saeedmonir et al. (2024), among others. Although 
the present work deals with multiscale modeling of porous media, the resemblance between the mass balance equation 
presented here and the balance of other physical quantities allows us to advance in this analysis.  

Thus, in the author's opinion, whenever one attempts to model by means of multiscale methodologies based on 
RVE physical phenomena that satisfy the conditions mentioned in the preceding section 3.2, there will be a dependence 
on the RVE size and loss of objectivity in the macro-scale response. 

Such conditions are: 
i. That both the macro- and micro-scale are described by strong-form of mass governing equations of the 

type 

 
χ̇ + 𝛁 ⋅  𝐰 = 0,

χ̇μ(ṗμ) + 𝛁𝛍  ⋅  𝐰𝛍 = 0.
 (33) 

ii. there is a constitutive functional dependence of the type χ̇μ(ṗμ
FOE) = χ̇̂μ(ṗ + 𝛗̇  ⋅  𝐲 + ṗ̃μ) (only the 

functional dependence of χ̇̂μ is expressed because it is the relevant for the purpose of this discussion). 

The reason, is that under these circumstances expressions like those given in (15) are reached, which in the presence 
of a full order expansion of ṗμ

FOE will lead to the defect explained at length in the preceding sections. On the other hand, 

if one assumes the constitutive ROE functional χ̇μ(ṗμ
ROE) = χ̇μ(ṗ + ṗ̃μ), one recovers the objectivity of the response. 

However, equations of the type (15) can be employed in the analysis of so many other physical phenomena 
individually or coupled as we mentioned at the beginning, for example the cases of transient heat conduction with 𝐰 
being the heat flux field and χ̇μ the specific internal energy rate dependent on the temperature field or 𝐰 the molar flux 

of species and χ̇μ the ion concentration rate, etc. 

Therefore, we argue that the ROE constitutive concept is applicable to all these cases and its scope goes beyond the 
one proposed here. 

 
 
 

7 CONSOLIDATION EXAMPLES 
The macro-scale domain consists of a soil column with a height of H = 1 m and a width of W = 0.1 m. At this scale, 

the material is treated as a homogenized medium. The boundary conditions are illustrated in Figure 1. At the ground 
surface, a compressive external traction is applied, increasing from 0 kPa to -100 kPa during the first day of analysis, and 
thereafter remaining constant. The macro-scale domain is discretized into 13 finite elements, as shown in Figure 1(b). 
The time discretization employed throughout the analysis follows the sequence: t = [0.001, 0.002, …, 0.009, 0.01, 0.02, 



  

…, 0.09, 0.1, 0.2, …, 0.9, 1, 2, …, 9, 10, 20, …, 70, 80] (in days). At the micro-scale, the periodic multiscale model is adopted. 
The heterogeneous material properties are defined as follows. For the matrix: Young’s modulus E = 100 kPa, Poisson’s 
ratio ν = 0.3, isotropic hydraulic conductivity k = 8.64 × 10−4 m/day, and initial void ratio e0 = 0.6. For the inclusion: 
Young’s modulus E = 1500 kPa, Poisson’s ratio ν = 0.3, isotropic hydraulic conductivity k = 1.296 × 10−3 m/day, and initial 
void ratio e0 = 2.0. Different micro-cells (MCs) of increasing size are considered to obtain homogenized responses using 
both FOE and ROE formulations. Specifically, square MCs of sizes 0.1 m × 0.1 m, 0.5 m × 0.5 m, and 1 m × 1 m are analyzed. 
Each MC is discretized with 36, 144, and 576 finite elements, respectively. For the Direct Numerical Simulation (DNS), 
see Figure 1(a), the spatial discretization required a mesh of approximately 5760 finite elements (mesh not drawing).  

 

 
Figure 1: Schematic representation of the problem to be solved 

 

 
 

Figure 2: Time-evolution curves of the vertical component of the effective stress tensor at the reference area ARef. 

 
Figure 2 presents the time-evolution curves of the vertical component of the effective stress tensor at the reference 

area ARef. The results reveal that micro-scale size sensitivity manifests in the homogenized stress response when the FOE-
based multiscale procedure is employed. The FOE model systematically underestimates the effective stress compared to 
DNS, with discrepancies becoming significant for the two largest micro-cells. In contrast, the SOE-based homogenization 
yields effective stress curves that are in good agreement with the DNS results, independently of the micro-cell size. 



  

The size effect associated with the FOE procedure is even more pronounced for the homogenized seepage velocity. This 
is illustrated in Figure 3, where the temporal evolution of seepage velocity is compared among the different models at 
ARef. As expected, for the two largest micro-cells the FOE scheme produces results that markedly deviate from the DNS 
reference solution, while the SOE formulation provides consistent predictions. 
 

 

 
Figure 31: Time-evolution curves of the vertical component of the seepage velocity at the reference area ARef. 

8 CONCLUSIONS 

A multiscale model of saturated porous media based on RVE has been presented. In the literature, multiscale models 
applied to saturated porous media have revealed some inconsistency with respect to the dependence of the micro-scale 
size. This drawback has been attributed to a second-order term. More specifically, to the seepage or flux velocity. The 
consistent PMVP-based homogenization model adopted in this work has allowed us to identify that the size effect of the 
RVE is caused only by one component of the flux velocity term. This component comes from the use of a full expansion 
of the micro-scale pore pressure at the constitutive level on the fine scale. Thus, a redefinition of the constitutive 
equations at the micro-scale has been proposed. This is based on a reduced-order expansion of the micro-scale pore 
pressure field to overcome the problem of dependence on the size of the RVE. But in addition, it is possible to maintain 
the dynamical term that arises during the homogenization process, and finally, it also preserves the principle of scale 
separation. 
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