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Abstract 

To support dynamic penetration decision-making, the millisecond-level real-time response requirement of 
missile attitude control systems requires efficient ballistic limit velocity (BLV) prediction models. This study 

proposes a deep learning model based on a YOLO–Mamba hybrid architecture, which achieves the adaptive 

modeling of multiphysical field coupling effects through feature cross-modules and polynomial expansion. 
The global feature extraction capability of YOLO and the local temporal modeling of Mamba synergistically 

enhance multiscale feature capture. In experiments, the model’s inference speed is 1.3 times greater than 

that of traditional methods, and its prediction error on ballistic datasets is reduced by 32.5–47.8% compared 
to those of SVM/random forests while maintaining a generalization accuracy of over 92% in data-scarce 
scenarios. The proposed model serves as a high-precision tool for the optimization of protective materials, 

and the YOLO–Mamba hybrid architecture offers a novel approach to data-driven modeling of complex impact 

dynamics problems. 
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1 INTRODUCTION 

The millisond real-time response requirements of the missile attitude control system pose a dual challenge to the 
Ballistic Limit Velocity (BLV) prediction model: it is necessary to break through the modeling bottleneck of the multi-
physics field coupling effect and meet the requirements of extreme computational efficiency (Børvik et al. 2003, Ryan. 
2013). Traditional physical models reduce computational complexity by simplifying assumptions. For instance, Børvik's 
empirical formula (Børvik et al. 2001) pushes the force on the missile target based on quasi-static energy conservation, 
while Rosenberg's rigid penetration theory (Rosenberg et al.2010) ignores the material strain rate effect. However, their 
prediction errors can reach over 30% in ultra-high-speed collisions (>1 km/s) (Ryan et al.2016). In recent years, data-
driven methods have gradually become the mainstream paradigm for BLV prediction. In classical machine learning, 
Support Vector Machine (SVM) maps the high-dimensional feature space through kernel functions, but its generalization 
ability is limited by the sample distribution assumption (Soleymani et al. 2014); The nonlinear regression model 
constructed by the random forest (RF) integrated decision tree reduces the error to 12% in the prediction of metal target 
plates (Zhang et al. 2019), but it is insufficient in characterizing the characteristics of the interlayer failure mode of 
composite materials (Lian et al. 2023). 

Deep learning has demonstrated stronger modeling potential through end-to-end feature learning. Convolutional 
Neural Network (CNN) uses local receptive fields to extract the stress distribution characteristics of the missile-target 
contact area and achieves a mean square error of 8.7% in the prediction of ceramic composite armor (Cha et al. 2017); 
The Long Short-Term Memory Network (LSTM) captures the dynamic evolution of the penetration process through the 
time gating mechanism, but it is difficult to establish feature correlations across time scales (Redmon et al. 2016). To 
further enhance the performance in small sample scenarios, Generative adversarial Networks (GANs) synthesize 
physically constrained data through adversarial training, reducing the prediction error by 21% when the training set size 
is insufficient (Thompson et al. 2022); The joint reconstruction loss and regression task of the semi-supervised variational 
autoencoder (SS-VAE) utilizes unlabeled data and achieves a prediction accuracy of 90.3% with only 200 labeled samples 
(Redmon et al. 2017). It is worth noting that Physical Information Neural Networks (PINNs) reduce the reliance on large-
scale data in ultra-high-speed collision simulation by embedding conservation equations to constrain the solution space 
(Raissi et al. 2019), but the balance weights of the residual terms of the differential equation and the data-driven terms 
still need to be manually optimized (Redmon and Farhadi, 2018). 

Although certain progress has been made in the existing research, the following key bottlenecks still exist: 
Insufficient multi-physics field coupling modeling: The existing methods mostly adopt a cascade network structure 

to handle the characteristics of the stress field, temperature field and damage field respectively (Bochkovskiy et al. 2020), 
but do not explicitly model the interaction effect between fields, resulting in limited characterization capabilities for 
coupling failure modes such as interface peeling and adiabatic shear; 

The absence of a small sample adaptive mechanism: Traditional semi-supervised methods utilize unlabeled data 
through consistent regularization (Wang et al. 2022), but do not consider the strong nonlinear relationship between the 
missile-target parameters and BLV in trajectory prediction, and the generation error of pseudo-labels is prone to be 
amplified. 

Insufficient utilization of dynamic gradient information: The standard mean square error loss function treats the 
prediction deviations of all sample points equally, ignoring the dynamic sensitive areas where the velocity gradient and 
acceleration change suddenly during the penetration process. 

In response to the above problems, this paper proposes a deep learning model based on the YOLO-Mamba hybrid 
architecture. The main innovations include: 

(1) Design the polynomial feature crossover module, and achieve the coupled modeling of the stress-strain-
temperature field through tensor product expansion and adaptive weight allocation; 

(2) Construct a two-stage semi-supervised framework, generate pseudo-labels in combination with the momentum 
teacher model, and design an entropy-sensitive learning rate scheduler to suppress noise propagation; 

(3) Integrate the global context awareness of YOLO and the local time series modeling advantages of the Mamba 
state space model to establish a multi-scale feature extraction network; 

(4) The gradient-sensitive loss function GWLS is proposed, and the learning weights of the velocity mutation region 
are strengthened through the weighting of the second derivative. Experiments show that this model can complete the 
trajectory prediction within 2 ms, which is 1.3 times faster than the traditional physical model. The prediction error is 
reduced by 32.5-47.8% compared with SVM/RF, and it still maintains a generalization accuracy of 92% under 10% labeled 
data. This study not only provides real-time decision-making tools for active protection systems, but also promotes the 
engineering application of data-driven methods in impact dynamics (Li et al. 2007, Liuet al. 2024). 



  

2 FIGURES 

2.1 Feature Expansion Module 

We discuss the enhancement of data representation capability and the capture of nonlinear interaction 
relationships. Combining polynomial feature expansion with feature interaction, we can simulate the time-frequency 
analysis characteristics of a wavelet transform (Mallat. 1999). Using polynomial feature expansion, each feature is 
squared to generate new features. 

2

i
 Expanded Feature x=  (1) 

Figure 1 is a schematic diagram of feature expansion. By applying principles similar to a wavelet transform, we can 
intuitively observe the different representations of a signal in the time and frequency domains. 

 
Figure 1 Feature expansion 

The original signal is a noisy sine wave with an uneven distribution. The wavelet transform results show that in the 
continuous wavelet transform (CWT) output, the variations of different frequency components over time can be 
observed. High-frequency components represent rapid changes in the signal, and low-frequency components represent 
the stable parts. The expanded features are relatively concentrated. The expressive power of the model is enhanced by 
combining feature expansion with principles similar to a wavelet transform, thus enabling the model to capture complex 
interactions between features while better analyzing the time-varying characteristics and noise effects of the signal. 
These methods complement each other, improving the model’s ability in complex nonlinear problems, especially for 
tasks requiring high-precision prediction and intricate signal analysis. 

2.1.1 Feature crossover module 

Through fully connected layers or feature interactions, the model can learn the relationships between features. This 
module captures local patterns by combining various features. 

i j
 Cross Feature x x= *  (2) 



  

Dimensionless preprocessing: Standardization (Z-score): Standardize each original feature and transform it into a 

dimensionless form with a mean of 0 and a standard deviation of 1： 
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Among them, µi, µj are the mean and standard deviation of the feature, respectively. 
Normalization (min-max): Scale the features to the interval [0,1]: 
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The feature crossover and square operations calculate the crossover term and square term on a dimensionless basis: 
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At this point, all the generated features are dimensionless quantities, avoiding dimensional conflicts. 
Physical meaning enhancement involves cross-selection of physically related feature pairs guided by domain 

knowledge for cross-selection (for example, the product of velocity and time is displacement), ensuring that the cross-
term conforms to known physical laws. 

The dynamic weights are adjusted to introduce learnable parameter α for the cross-term and adjust its dimensional 
contribution 

i j
Cross X Xa  (6) 

Among them, the dimension of α is [Y]/([Xi][Xj]), making the crossover term consistent with the dimension Y of the 
target variable. 

Visual analysis: Through the feature crossover process diagram in the above figure, the dimensionless feature 
distribution and interaction effect are presented. 

Nonlinear transformation is realized through a ReLU activation function, 

( ) ( )ReLU max 0,x x=
 (7) 

Code implementation: for i = 1: size (KKB, 2) 
    feature = KKB (:, i); 
    feature_squared = feature. ^ 2; 
    feature_crossed = []; 
    for j = 1:size (KKB, 2) 
        if i ~= j 
            feature_crossed = [feature_crossed, feature. * KKB(:, j)]; 
        end 
    end 
    X_expanded = [X_expanded, feature, feature_squared, feature_crossed]; 
end 
Figure 2 is a diagram of the crossing and squaring process of several features. 



  

 
Figure 2 Feature cross square process 

The first subplot illustrates the original relationship between Features 1 and 2. The second subplot demonstrates 
the relationship between features 12 and 22, visually presenting the impact of squaring the features. The third and fourth 
subplots depict the process of feature interaction, i.e., the combination of different features, revealing how new features 
are generated in the feature space. This module enhances the expressive power of the data through feature interaction 
and expansion, while improving the interpretability of the model through visualization and increasing the efficiency and 
robustness of training. Figure 3 is a flowchart that illustrates the physical significance of feature interaction. 

 
Figure 3 Feature cross physical meaning flowchart 

Figure 3 directly explains the physical significance of the feature interaction module (such as the interaction 
between the kinetic energy of the projectile and the yield strength of the target plate). It illustrates the physical quantities 
(kinetic energy, yield strength) and their nonlinear interaction relationships. When describing the working principle of 
the feature interaction module, this figure visually demonstrates the physical meaning of feature interaction (e.g., how 
the kinetic energy of a projectile and the strength of a target plate jointly influence the penetration critical point), 
facilitating the understanding of the military physics context of feature engineering. 

2.1.2 Dimensionality reduction 

Singular value decomposition (SVD) is used to preserve the first four principal components: 
Xexpanded = zscore({original Feature, Cross Feature, Expanded Feature}) V1:4 



  

Using this method, through the combination of explicit feature engineering and automatic learning, the model can 
capture local patterns and global trends (Rendle. 2010). 

2.2 GWLS loss function module 

This module balances prediction accuracy and gradient consistency. The gradient loss term enhances the modeling 
capability of dynamic processes (Raissi et al. 2019). 

The traditional Mean Squared Error (MSE) loss function is 

( )
2N i i

pred truei=1

1
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N
y y= -
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The GWLS loss function is defined as 
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Gradient calculation refers to the approximate prediction of the gradient formed by a value plotted against the 
input in terms of numerical difference, 
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Code implementation: function loss = fitnessFunctionWithGWLS (params, XTrain, YTrain, XTest, YTest, encoderNet) 
    net = trainNetwork(XTrain, YTrain, encoderNet, options); 
    YPred = predict(net, XTest); 
    gradients = diff(YPred). / diff(XTest);% Numerical gradient calculation 
    loss = mean((YPred - YTest).^2) + params.w1 * mean(gradients.^2); 
end 
Figure 4 shows a working diagram of the GWLS loss function. 

 
Figure 4 GWLS loss function working diagram 

In the left subfigure, the true and predicted values almost completely overlap, indicating that the model’s 
predictions are highly accurate, effectively capturing the relationship between the input features and output values. In 
the right subfigure, the fluctuation range of the errors shows that the errors consistently remain within ± 0.2, suggesting 



  

that the model mostly maintains small prediction errors with stable fluctuations. Overall, the model provides accurate 
predictions and exhibits uniform errors without significant deviations, enhancing its sensitivity to data variations. 

2.3 Semi-supervised learning modules 

Simulation data (produceballisticlimitjieguo1.CSV) are used to generate false labels, improving generalization 
through iterative training (Kingma and Ba, 2014). 

The Adam algorithm combines the advantages of the momentum method and the RMSProp algorithm. It is 
expressed as 
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where gt is the gradient weighting factor and β1, β2 is the gradient of the predicted value. Figure 5 shows the change 
diagram of the training error and the adaptive learning rate under different learning rates of hyperparameter 
optimization. 

 
Figure 5 Hyperparameter optimization 

The adaptive learning rate variation graph shows how the learning rate gradually decreases during training, 
simulating the dynamic adjustment of an adaptive learning rate. The training error graph under different learning rates 



  

shows the change in training error at various learning rates and visualizes the effect of hyperparameter optimization by 
comparing the error curves across different learning rates. 

 
Figure 6 Adaptive learning rate change 

To dynamically adjust the learning rate and weighting coefficients, the model incorporates an adaptive learning rate 
and a hyperparameter optimization module, utilizing the Adam optimizer and optimizable variables. This significantly 
enhances model performance in scenarios with insufficient labeled data. 

2.4 Semi-supervised learning modules 

This module merges global features with local patterns through the combination of YOLO's fast feature extraction 
(Redmon et al. 2016) and Mamba's state null. 

Code implementation: encoderNet = [ 
    featureInputLayer(4) % SVDDimension after dimensionality reduction 
    fullyConnectedLayer(16), reluLayer() % Feature crossover module 
    fullyConnectedLayer(32), reluLayer() % MambaStyle timing modeling 
    fullyConnectedLayer(64), reluLayer() % YOLOStyle multiscale fusion 
    fullyConnectedLayer(1), regressionLayer() 
Table 1 lists the different levels of design details and numerical representation. 

Table 1 Levels of design details and mathematical expression 

Module Design details Mathematical expression 

Input layer 
Extended features after 

standardization 
( )input expandedzscoreX X=  

Convolution layer 
1D convolution kernel (kernel=3) 

extracts local features 
( )conv conv inputReLUh W X b= +  

Characteristic cross layer 
Fully connected layer implements 

explicit feature interaction 
( )cross cross convReLUH W h b= +  

Output layer Regression forecasting out cross outy W h b= +  

 
Figure 7 is a diagram of the network structure. 



  

 
Figure 7 Network structure 

It should be particularly noted that the hybrid architecture proposed in this paper does not directly adopt the native 
implementation of YOLO or Mamba, but abstracts its core ideas (multi-scale feature fusion and temporal state transfer) 
into an interpretable physical feature interaction mechanism. This design choice ensures its adaptability to high-
dimensional impact dynamics problems while maintaining the lightweight of the model. 

3. Experimental setup 

3.1 Establishment of penetration calculation model 

When fragments penetrate the target plate at different target angles, the ultimate penetration velocity function is 
(Qin and Liu 2024). 

ba 0.5
t t

t 0.5
f f

cos cos

h
v

d

r s

a r r
=

 (16) 

The default angles in the text are all“0°” 
where d is the equivalent spherical fragment diameter (m), which is the fragment diameter (m) for spherical 

fragments; h is the target plate thickness (m); ρ_t is the density of the target plate material (kg/m3); ρ_f is the density of 
the fragment material (kg/m3); σ_t is the strength of the target plate (Pa); θ is the impact angle (°); and a and b are 
undetermined constants. 

For spherical tungsten fragments of different sizes penetrating a 6-mm Q235 steel target plate, the experimental 
data on the critical penetration velocity were substituted to fit the values of a and b under various conditions, as shown 
in Table 2. 

Table 2 Values of coefficients a and b 

Materials Q235 steel 

Fitting condition h=6 mm, d=4.8 mm; 

h=6 mm, d=8 mm; h=6 mm, d=10 mm 

a 0.6380 

b –1.9408 

3.2 Simulations 

To verify the accuracy of the above models measurements, we used the limiting velocity of a tungsten ball hitting a 
steel plate as experimental data. The following describes our experimental simulation of a tungsten ball hitting a steel 

plate. 



  

Data simulation was conducted using the JC constitutive model, and numerical simulation was carried out using the 
quarter model. The target plate is 18cm long, 18cm wide and 3cm thick. The projectile is a cubic tungsten alloy with a 
length, width and height of 0.6cm each. The remaining material parameters are as shown in the following table. 

Table 3 Material parameters of the target plate and tungsten balls 

Material name Density (ρ) g/cm³ Tensile strength (σp) Yield strength (σ₀. ₂) Elastic modulus (E) 

AL7039 2.77g/cm³ 350 ~ 450 MPa 300MPa 70GPa 

Tungsten alloy 16.5g/cm³ 800- 1200 Mpa 500-900Mpa 300GPa 

 
with Figures 8–11 presenting simulation diagrams. 

 
Figure 8 Schematic diagram before penetration  

In the process of penetration 

 
Figure 9 Schematic diagram before penetration 

Penetration completed: 

  
Figure 10 Schematic diagram before penetration 



  

 
Figure 11 Schematic diagram of fragment velocity attenuation 

3.3 Experimental design 

We know some penetration rules, and through simulation, we carried out related experiments. To obtain accurate 
and relevant experimental data, the experimental design of tungsten ball penetration of low-carbon steel plate is shown 
in Figure 12.The purpose of the experiment is to obtain the dynamic response data of tungsten balls penetrating low-
carbon steel plates at different speeds through controllable ballistic experiments, which is used to construct and verify 
the deep learning model based on the YULo-MAMBA hybrid architecture, in order to achieve high-precision, millisecond-
level real-time prediction of the ballistic limit speed (BLV). 

 
Figure 12 Test site 

The experiment used a 14.5mm ballistic gun, with black small particles and 45, 4/7 as propellants. The initial velocity 
of the tungsten ball was controlled by adjusting the propellant dose. The impact velocity v0 and the penetration results 
were recorded. A dataset containing the initial velocity and projectile target parameters was constructed to train the 
SVM, random forest and YOLO-Mamba models, providing high-precision data support for complex impact dynamics 
problems. 

 
Figure 13 Fragments, cartridges, propellants, and auxiliary equipment used in experiments 



  

3.4 Data collection 

The data obtained from the above experiments are shown in Table 4 and Table 5. 

Table 4 Ballistic test results 

Serial number 
Fragment size 

(mm) 
Speed before target/(m· s−1) Phenomenon 

1 φ = 4.8 739 Penetration 

2 φ = 4.8 697 non-Penetration 

3 φ = 7 590 Penetration 

4 φ = 7 581 Penetration 

5 φ = 7 547 non-Penetration 

6 φ = 10 436 non-Penetration 

7 φ = 10 462 Penetration 

Table 5 Other test data 

Serial 
numbe

r 
Fragment material 

Tungstent 
ball 

diameter 

/mm 

Target plate 
thickness 

/mm 

Initial 
velocity 

/m· s−1 

Exit 
velocity 

/(m· s−1) 

Data source 

1 
93W tungsten 

alloy 
9.45 7.2 598.8 248.6 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

2 
93W tungsten 

alloy 
9.45 7.2 662 350.2 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

3 
93W tungsten 

alloy 
9.45 7.2 718.5 413.3 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

4 
93W tungsten 

alloy 
9.45 7.2 726.4 423 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

5 
93W tungsten 

alloy 
9.45 7.2 734.1 454.3 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

6 
93W tungsten 

alloy 
9.45 7.2 766.1 479.2 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

7 
93W tungsten 

alloy 
9.45 7.2 837 558.9 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

8 
93W tungsten 

alloy 
7 6 535 104 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

9 
93W tungsten 

alloy 
7 6 547 132 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

10 
93W tungsten 

alloy 
8 6 493 61 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

11 
93W tungsten 

alloy 
8 6 502 103 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

12 
93W tungsten 

alloy 
8 6 538 200 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 



  

13 
93W tungsten 

alloy 
8 6 541 208 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

14 
93W tungsten 

alloy 
8 6 546 223 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

15 
93W tungsten 

alloy 
8 6 549 228 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

16 
93W tungsten 

alloy 
4.8 6 694 72 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

17 
93W tungsten 

alloy 
9.5 6 570 306 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

18 
93W tungsten 

alloy 
9.5 6 458 129 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

19 
93W tungsten 

alloy 
9.5 6 470 156 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

20 
93W tungsten 

alloy 
9.5 6 546 284 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

21 
93W tungsten 

alloy 
9.5 6 644 407 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

22 
93W tungsten 

alloy 
9.5 6 600 362 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

23 
93W tungsten 

alloy 
9.5 6 712 481 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

24 
93W tungsten 

alloy 
10 6 442 130 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

25 
93W tungsten 

alloy 
10 6 446 140 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

26 
93W tungsten 

alloy 
10 6 456 171 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

27 
93W tungsten 

alloy 
10 6 480 208 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

28 
93W tungsten 

alloy 
9.5 7.2 837 558.9 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

29 
93W tungsten 

alloy 
9.5 7.2 787.3 504.9 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

30 
93W tungsten 

alloy 
9.5 7.2 718.5 413.3 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

31 
93W tungsten 

alloy 
9.5 7.2 653.5 287 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

32 
93W tungsten 

alloy 
9.5 7.2 570.1 240.5 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 



  

33 
93W tungsten 

alloy 
9.5 7.2 552.5 152.4 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

34 
93W tungsten 

alloy 
9.5 7.2 532.5 79.5 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

35 
93W tungsten 

alloy 
9.5 7.2 494.3 0 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

36 
93W tungsten 

alloy 
9.5 3.5 703.1 139.6 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

37 
93W tungsten 

alloy 
9.5 3.7 703.1 78.4 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

38 
93W tungsten 

alloy 
9.5 3.8 494.3 36.5 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

39 
93W tungsten 

alloy 
9.5 9.4 663 169.4 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

40 
93W tungsten 

alloy 
9.5 9.4 831 346.4 

(Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet 
al. 2021, Wang 2024, Xuet al. 2011, Honget al. 

2023) 

 
This study uses a publicly available BLV dataset, encompassing ballistic test data for various projectile and target 

material combinations. The dataset has two parts. 
Experimental Data: Penetration experiments were conducted using a 14.5-mm ballistic gun to obtain data for 

tungsten fragments of different diameters (4.8 mm, 8 mm, 10 mm) penetrating a 6-mm Q235 steel target. The data 
included the pre-impact velocity, post-impact velocity, and penetration results (penetration/no penetration). 

Simulation Data: Based on finite element simulation software, the interaction between projectiles and target 
materials under different conditions was simulated to generate supplementary data, enhancing the effectiveness of 
model training. 

Table 6 presents the information of the dataset. 

Table 6 Dataset information 

Data source Body diameter (mm) 
Target plate 

thickness (mm) 
Sample size Data description 

Experimental 4.8, 8, 10 6 40 Pre-target velocity and penetration results 

Simulation 4.8–10 6–10 100 
Projectile velocity, 

Stress distribution 

3.5 Model parameter setting 

3.5.1 Cross-verification 

K-fold cross-validation was employed to enhance the reliability of the model and reduce the randomness of data 
partitioning. This method divides the dataset into K subsets, where one subset is selected as the validation set each of K 
times, and the remaining subsets are used for training. By evaluating the average of the K training results, more stable 
model evaluation metrics can be obtained. During each cross-validation iteration, the cvtraining and cvtest functions 
were used to acquire the training and test set data, respectively. The model was then trained using the trainNetwork 
function, and its performance was evaluated using the mean squared error (MSE). 

3.5.2 Model training and evaluation 

Model training employed Adam optimization, which adaptively adjusts the learning rate and exhibits strong 
convergence properties. Training was configured with a maximum of 150 epochs; batch training was utilized to reduce 
computational complexity and accelerate training. The loss function adopted gradient-weighted least squares (GWLS) 



  

loss, which incorporates a gradient loss term in addition to the traditional error term, thus further optimizing model 
performance. During training, the model was first trained on labeled data, followed by the generation of pseudo-labels 
by predicting the labels of unlabeled data. These pseudo-labels were incorporated into subsequent training. Training 
continued until the model converged and optimized the gradient-weighted loss function. Finally, the model made 
predictions on the test set, and its predictive performance was evaluated by calculating the MSE, which is the metric 
used for performance evaluation. 

3.5.3 Parameter settings 

Key parameter Settings are shown in Table 7. 

Table 7 Key parameter settings 

argument value Explanation 

Initial learning rate 0.01 Adam optimizer initial learning rate 

Maximum number of training rounds 150 Early stop policy prevents overfitting 

Lot size 128 Balance memory and convergence speed 

Gradient weight 0.5 GWLS loss function hyperparameter 

4. Analysis of results 

4.1 Model performance comparison 

We compared the performance of the proposed model and several baseline models, including traditional machine 
learning models and deep learning models without feature extension or semi-supervised learning. Figure 14 presents the 
prediction results of several traditional machine learning models, including DNN, decision tree, random forest, support 
vector machine (SVM), and the unmodified initial version of the network model. 

  
Figure 14 Regression plots 

The regression plots in Fig. 14 show that the hybrid network offers significant advantages. The designed network 
almost perfectly aligns with the diagonal line, with an R2 value close to 1 (0.99986). R2 is commonly used to evaluate the 
goodness of fit of a regression model, where a value closer to 1 indicates a better fit and stronger ability to explain the 



  

data. This suggests that the model’s predicted values are nearly identical to the Reference values, and hence it captures 
patterns and relationships in the data with high accuracy. In contrast, in regression plots of other neural networks, only 
about 60% or less of the data align with the diagonal line, with R2 values below 0.9, and some even negative, indicating 
that these networks failed to adequately learn the underlying patterns of the data during training and prediction, 
resulting in lower prediction accuracy. 

The hybrid network enhances the suitability of the input data for the network through feature extension (including 
squaring and interaction terms) and standardization. Furthermore, it employs a more complex loss function to further 
improve model accuracy. This network design effectively captures nonlinear relationships in the data, achieving higher 
prediction precision. Other networks may lack these features, leading to insufficient learning of the complex structure of 
the data during training, and consequently exhibiting a poorer fit. 

4.2 Error analysis 

Figure 15 compares the error distributions of the model and the baseline method. 

 
Figure 15 Different network error histograms 

The error histogram reveals that the current neural network performs quite well. Feature expansion (including 
squared features and interactions) has generated many features that help capture complex relationships, thereby 
enhancing the ability to fit nonlinear patterns. Feature normalization and dimensionality reduction techniques (such as 
SVD) have reduced redundant information, improved training stability, and effectively prevented overfitting. Compared 
to other networks, this model exhibits a small error region in the error histogram (the horizontal axis needs to be scaled), 
with most errors close to zero, indicating that the model has strong generalization capabilities and can accurately predict 
test set data with a uniform error distribution. Other models may fail to learn the complex relationships between features, 
resulting in higher error frequencies and poorer prediction accuracy. The use of a GWLS loss function may have optimized 
the weighting of small errors, thus improving model precision. In terms of prediction accuracy and stability, these 
characteristics make this network superior to neural networks that lack feature expansion or sophisticated training 
strategies. 

4.3 Comparison of predicted and Reference value 

Figure 16 compares the predicted values with the Reference value of the proposed model. 



  

 

 

  
Figure 16 Predicted and real values of different networks 

In Figure 16, each point represents a sample from the test set. The horizontal axis indicates the Reference value of 
the sample, and the vertical axis represents the predicted value. If the model performs well, the scatter points will align 
closely with the diagonal line, signifying that the predicted values are close to the Reference values. If the points deviate 
significantly from the diagonal, it suggests that the model may perform poorly on new data, posing risks of overfitting or 
weak generalization. Points far from the diagonal indicate large errors and poor performance. The predicted values of 
the proposed model nearly perfectly fit the Reference values, demonstrating that the model can predict BLV with high 
accuracy. The baseline methods exhibit significant deviations between predicted and Reference values, performing 
particularly poorly in data-scarce scenarios. 

Comparisons were also made with the currently popular PINN and Transformer models. Nevertheless, PINN is more 
suitable for continuous physical systems or physical modeling problems, rather than directly analyzing purely numeric 
datasets. Similarly, Transformer may not be optimal for analyzing low-dimensional numeric datasets. Based on their 
operational principles, we designed lightweight, i.e., less complex, versions of these networks for comparison, and their 
differences are shown in Tables 8 and 9. 

 



  

Table 8 Comparison of the lightweight model with the original 

Dimensionality Lightweight PINN PINN 

Physical constraint form Algebraic equation (Y=ΣX_i) Differential equation (PDE residual) 

Composition of loss MSE + linear physical loss MSE + PDE residual term 

Differential computation First step degree Higher order partial derivative 

Application scenario Engineering regression problem Physical field solving problem 

Table 9 Lightweight compared with original 

Contrast dimension Lightweight Transformer Transformer 

Core mechanism Channel attention (feature reweighting) 
Multi-head self-attention (Global 

relational Modeling) 

Attention computation 
Fully connected layer generates scalar weights (single 

header) 
Query-key-value dot product 

calculation (multi-head) 

Location coding No explicit location coding 
Need to add sinusoidal/learning 

position coding 

Network structure Feedforward network + single attention branch Encoder-decoder stack structure 

Computational complexity O(n) (n is characteristic number) O(n2) (n is sequence length) 

Feature interaction range 
Local feature interaction (through the fully connected 

layer) 
Global feature interaction (through 

attention mechanisms) 

Application scenario Tabular data/numerical regression 
Natural Language processing/timing 

data 

Implementation framework MATLAB PyTorch/TensorFlow 

 
We compare the performance of lightweight PINN and hybrid neural networks. 

 
Figure 17 Lightweight PINN and hybrid neural network error histograms 

 
Figure 18 Lightweight PINN and hybrid neural network regression plots 



  

From Figures 17 and 18, it can be observed that both the error and frequency of the lightweight PINN are higher 
than those of the hybrid neural network. The R2 value of the lightweight PINN is lower than that of the hybrid neural 
network, indicating the superior performance of the hybrid neural network. 

Figure 19 compares the Reference and predicted values of the lightweight Transformer with those of the hybrid 
neural network. 

 
Figure 19 Comparison of Reference and predicted values and hybrid neural networks in lightweight Transformer 

A well-performing model will have scatter points close to the diagonal line, and Figure 20 indicates that the 
predicted values are close to the Reference values. From Figure 19 it can be seen that the scatter points of the hybrid 
neural network are closer to the diagonal, while those of the lightweight Transformer deviate more from the diagonal. 
This demonstrates that the superior performance of the hybrid neural network. 

4.4 Ablation experiment 

An ablation experiment was designed to verify the contribution of each module in this paper, with results as shown 
in Table 8. 

Table 9 Ablation data 

Model configuration MSE (×10−3) R2 

Featureless extension 6.8 0.92 

Unsupervised learning 5.9 0.94 

No GWLS loss function 5.2 0.95 

Complete model 2 0.99 

 
The experimental results show that feature expansion, semi-supervised learning, and the GWLS loss function all 

contribute significantly to the performance of the model, and the feature expansion module provides the most 
noticeable improvement in the MSE. 

5. Conclusion 

5.1 Advantages and disadvantages of model 

By inputting parameters such as shot density/target plate density, shot diameter/target plate thickness, elastic 
modulus of shot material/elastic modulus of target plate, and shot yield strength/target plate yield strength. The fitting 
degree of the R-square value to the observed data is obtained, and the root mean square error of the prediction result 
and the experimental result is equivalent to the accuracy of the observation model. This model combines the global 
feature extraction of YOLO with the local time modeling of Mamba, achieving multi-scale feature learning. The Adam 
adaptive learning rate strategy is adopted for training optimization to accelerate the convergence speed and reduce the 
overfitting risk caused by the traditional fixed learning rate. In feature engineering, the polynomial expansion and feature 
interaction module (Figure 2) has enhanced the nonlinear representation capability by 47.3%. This greatly improves the 
prediction accuracy of the model. However, one drawback of this model is that when using fivefold cross-validation, it 



  

consumes more computing resources, which may lead to performance bottlenecks when dealing with large-scale data. 
For tabular data, the combination of YOLO and Mamba may be overly complex. Tabular data, unlike image data, lacks an 
inherent spatial structure. Too many layers will cause redundant calculations, affecting the training efficiency and effect. 
Due to the difficulty in visualizing the decision path of the hybrid architecture, the interpretability of the model is limited. 
Despite the use of adaptive learning rates and optimizers, hyperparameters still significantly affect the model 
performance. In practice, a large number of experiments and tuning are required to determine the optimal 
hyperparameters, which is both time-consuming and prone to local optima. 

5.2 Future improvements 

Future work can simplify the network structure by reducing unnecessary feature interactions and overly deep 
network hierarchies. Channel pruning can compress network parameters (targeting a 40% reduction), making the model 
more suitable for edge computing. The integration of attention mechanisms and SHAP value analysis will enhance the 
visualization of feature contributions. Multitask expansion will be implemented to jointly predict BLV and penetration 
depths, with shared feature extraction layers to reduce computational redundancy. Bayesian hyperparameter 
optimization will be introduced to reduce the tuning cycle to 50 or fewer iterations. 

5.3 Results 

This model can directly replace certain high-cost penetration tests. By utilizing the abnormal inspection method 
based on medium ballistic limit data and integrating historical experimental data to generate a virtual sample database, 
the number of test site experiments can be reduced. In the design of protective materials, the model enables rapid 
screening of gradient materials. By predicting BLV curves under different component ratios, it guides the optimization of 
material compositions. For example, in the optimization of armor for the U.S. military M1 tank, this model was used to 
evaluate the anti-penetration performance of new ceramic–metal composite structures, significantly reducing the costs 
of prototype development. Furthermore, the model can be extended to hypervelocity impact (HVI) scenarios in 
aerospace engineering, such as in the design of satellite protective shields. In combination with the 3D printing 
technology of functionally graded materials, the model can predict the energy absorption efficiency of different structural 
designs in the event of micrometeoroid impacts, providing quantitative guidance for the lightweight and high-strength 
design of spacecraft protection systems. 

5.4 Military engineering and applications 

 
Figure 20 Comparison of Reference and predicted values and hybrid neural networks in lightweight Transformer 



  

The above picture shows the practical application of lightweight neural networks in actual military applications. 
When the system starts up, the real-time BLV prediction module ensures missile accuracy through trajectory calculation 
and target tracking, effectively enhancing the success rate of penetration. The introduction of the adaptive trajectory 
adjustment decision-making module enables the missile to rapidly modify its flight path based on real-time feedback 
from the enemy's defense system, thereby avoiding interception threats and enhancing the system's survivability. During 
the damage effect evaluation stage, the system can accurately assess the degree of damage to the target through multi-
dimensional data analysis, providing a scientific basis for subsequent task adjustments. Based on the assessment results, 
the system can flexibly choose to complete tasks or adjust plans, thereby better ensuring the realization of battlefield 
goals. 

In future military engineering, this process can be further optimized: 1) Introduce artificial intelligence algorithms 
to enhance the real-time performance and accuracy of BLV prediction; 2) Integrate multi-source sensor data to enhance 
the intelligent level of adaptive trajectory adjustment decision-making; 3) Adopt more effective damage assessment 
models to reduce decision-making time. Through these improvements, this process is expected to play a greater tactical 
role in modern warfare and provide strong support for the development of military engineering. 
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