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Abstract

To support dynamic penetration decision-making, the millisecond-level real-time response requirement of
missile attitude control systems requires efficient ballistic limit velocity (BLV) prediction models. This study
proposes a deep learning model based on a YOLO-Mamba hybrid architecture, which achieves the adaptive
modeling of multiphysical field coupling effects through feature cross-modules and polynomial expansion.
The global feature extraction capability of YOLO and the local temporal modeling of Mamba synergistically
enhance multiscale feature capture. In experiments, the model’ s inference speed is 1.3 times greater than
that of traditional methods, and its prediction error on ballistic datasets is reduced by 32.5-47.8% compared
to those of SVM/random forests while maintaining a generalization accuracy of over 92% in data-scarce
scenarios. The proposed model serves as a high-precision tool for the optimization of protective materials,
and the YOLO-Mamba hybrid architecture offers a novel approach to data-driven modeling of complex impact
dynamics problems.
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1 INTRODUCTION

The millisond real-time response requirements of the missile attitude control system pose a dual challenge to the
Ballistic Limit Velocity (BLV) prediction model: it is necessary to break through the modeling bottleneck of the multi-
physics field coupling effect and meet the requirements of extreme computational efficiency (Bgrvik et al. 2003, Ryan.
2013). Traditional physical models reduce computational complexity by simplifying assumptions. For instance, Bgrvik's
empirical formula (Bgrvik et al. 2001) pushes the force on the missile target based on quasi-static energy conservation,
while Rosenberg's rigid penetration theory (Rosenberg et al.2010) ignores the material strain rate effect. However, their
prediction errors can reach over 30% in ultra-high-speed collisions (>1 km/s) (Ryan et al.2016). In recent years, data-
driven methods have gradually become the mainstream paradigm for BLV prediction. In classical machine learning,
Support Vector Machine (SVM) maps the high-dimensional feature space through kernel functions, but its generalization
ability is limited by the sample distribution assumption (Soleymani et al. 2014); The nonlinear regression model
constructed by the random forest (RF) integrated decision tree reduces the error to 12% in the prediction of metal target
plates (Zhang et al. 2019), but it is insufficient in characterizing the characteristics of the interlayer failure mode of
composite materials (Lian et al. 2023).

Deep learning has demonstrated stronger modeling potential through end-to-end feature learning. Convolutional
Neural Network (CNN) uses local receptive fields to extract the stress distribution characteristics of the missile-target
contact area and achieves a mean square error of 8.7% in the prediction of ceramic composite armor (Cha et al. 2017);
The Long Short-Term Memory Network (LSTM) captures the dynamic evolution of the penetration process through the
time gating mechanism, but it is difficult to establish feature correlations across time scales (Redmon et al. 2016). To
further enhance the performance in small sample scenarios, Generative adversarial Networks (GANs) synthesize
physically constrained data through adversarial training, reducing the prediction error by 21% when the training set size
is insufficient (Thompson et al. 2022); The joint reconstruction loss and regression task of the semi-supervised variational
autoencoder (SS-VAE) utilizes unlabeled data and achieves a prediction accuracy of 90.3% with only 200 labeled samples
(Redmon et al. 2017). It is worth noting that Physical Information Neural Networks (PINNs) reduce the reliance on large-
scale data in ultra-high-speed collision simulation by embedding conservation equations to constrain the solution space
(Raissi et al. 2019), but the balance weights of the residual terms of the differential equation and the data-driven terms
still need to be manually optimized (Redmon and Farhadi, 2018).

Although certain progress has been made in the existing research, the following key bottlenecks still exist:

Insufficient multi-physics field coupling modeling: The existing methods mostly adopt a cascade network structure
to handle the characteristics of the stress field, temperature field and damage field respectively (Bochkovskiy et al. 2020),
but do not explicitly model the interaction effect between fields, resulting in limited characterization capabilities for
coupling failure modes such as interface peeling and adiabatic shear;

The absence of a small sample adaptive mechanism: Traditional semi-supervised methods utilize unlabeled data
through consistent regularization (Wang et al. 2022), but do not consider the strong nonlinear relationship between the
missile-target parameters and BLV in trajectory prediction, and the generation error of pseudo-labels is prone to be
amplified.

Insufficient utilization of dynamic gradient information: The standard mean square error loss function treats the
prediction deviations of all sample points equally, ignoring the dynamic sensitive areas where the velocity gradient and
acceleration change suddenly during the penetration process.

In response to the above problems, this paper proposes a deep learning model based on the YOLO-Mamba hybrid
architecture. The main innovations include:

(1) Design the polynomial feature crossover module, and achieve the coupled modeling of the stress-strain-
temperature field through tensor product expansion and adaptive weight allocation;

(2) Construct a two-stage semi-supervised framework, generate pseudo-labels in combination with the momentum
teacher model, and design an entropy-sensitive learning rate scheduler to suppress noise propagation;

(3) Integrate the global context awareness of YOLO and the local time series modeling advantages of the Mamba
state space model to establish a multi-scale feature extraction network;

(4) The gradient-sensitive loss function GWLS is proposed, and the learning weights of the velocity mutation region
are strengthened through the weighting of the second derivative. Experiments show that this model can complete the
trajectory prediction within 2 ms, which is 1.3 times faster than the traditional physical model. The prediction error is
reduced by 32.5-47.8% compared with SVM/RF, and it still maintains a generalization accuracy of 92% under 10% labeled
data. This study not only provides real-time decision-making tools for active protection systems, but also promotes the
engineering application of data-driven methods in impact dynamics (Li et al. 2007, Liuet al. 2024).



2 FIGURES

2.1 Feature Expansion Module

We discuss the enhancement of data representation capability and the capture of nonlinear interaction
relationships. Combining polynomial feature expansion with feature interaction, we can simulate the time-frequency
analysis characteristics of a wavelet transform (Mallat. 1999). Using polynomial feature expansion, each feature is
squared to generate new features.

FExpanded Feature = xf ()

Figure 1 is a schematic diagram of feature expansion. By applying principles similar to a wavelet transform, we can
intuitively observe the different representations of a signal in the time and frequency domains.
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Figure 1 Feature expansion

The original signal is a noisy sine wave with an uneven distribution. The wavelet transform results show that in the
continuous wavelet transform (CWT) output, the variations of different frequency components over time can be
observed. High-frequency components represent rapid changes in the signal, and low-frequency components represent
the stable parts. The expanded features are relatively concentrated. The expressive power of the model is enhanced by
combining feature expansion with principles similar to a wavelet transform, thus enabling the model to capture complex
interactions between features while better analyzing the time-varying characteristics and noise effects of the signal.
These methods complement each other, improving the model’s ability in complex nonlinear problems, especially for
tasks requiring high-precision prediction and intricate signal analysis.

2.1.1 Feature crossover module

Through fully connected layers or feature interactions, the model can learn the relationships between features. This
module captures local patterns by combining various features.

(2)

Cross Feature = x, * z,



Dimensionless preprocessing: Standardization (Z-score): Standardize each original feature and transform it into a
dimensionless form with a mean of 0 and a standard deviation of 1 :

X - o X (3)

Among them, ui, 4j are the mean and standard deviation of the feature, respectively.
Normalization (min-max): Scale the features to the interval [0,1]:

. . (4)
X; _ X, —min <X1> o Xj —mln(XJ.)

max(X)—min(Xi)7 ! maX(Xj)—min(Xj)

i
The feature crossover and square operations calculate the crossover term and square term on a dimensionless basis:

N2 (5)
Cross X, Xj,Square (Xl)

At this point, all the generated features are dimensionless quantities, avoiding dimensional conflicts.

Physical meaning enhancement involves cross-selection of physically related feature pairs guided by domain
knowledge for cross-selection (for example, the product of velocity and time is displacement), ensuring that the cross-
term conforms to known physical laws.

The dynamic weights are adjusted to introduce learnable parameter o for the cross-term and adjust its dimensional
contribution

Cross aX, X (6)

J

Among them, the dimension of a is [Y]/([Xi][Xj]), making the crossover term consistent with the dimension Y of the
target variable.

Visual analysis: Through the feature crossover process diagram in the above figure, the dimensionless feature
distribution and interaction effect are presented.

Nonlinear transformation is realized through a ReLU activation function,

RelLU (x) = max(O,x) 7

Code implementation: for i = 1: size (KKB, 2)
feature = KKB (:, i);
feature_squared = feature. * 2;
feature_crossed = [];
for j = 1:size (KKB, 2)

ifi~=j
feature_crossed = [feature_crossed, feature. * KKB(:, j)I;
end
end
X_expanded = [X_expanded, feature, feature_squared, feature_crossed];

end
Figure 2 is a diagram of the crossing and squaring process of several features.
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Figure 2 Feature cross square process

The first subplot illustrates the original relationship between Features 1 and 2. The second subplot demonstrates
the relationship between features 12 and 22, visually presenting the impact of squaring the features. The third and fourth
subplots depict the process of feature interaction, i.e., the combination of different features, revealing how new features
are generated in the feature space. This module enhances the expressive power of the data through feature interaction
and expansion, while improving the interpretability of the model through visualization and increasing the efficiency and
robustness of training. Figure 3 is a flowchart that illustrates the physical significance of feature interaction.
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Figure 3 Feature cross physical meaning flowchart

Figure 3 directly explains the physical significance of the feature interaction module (such as the interaction
between the kinetic energy of the projectile and the yield strength of the target plate). It illustrates the physical quantities
(kinetic energy, yield strength) and their nonlinear interaction relationships. When describing the working principle of
the feature interaction module, this figure visually demonstrates the physical meaning of feature interaction (e.g., how
the kinetic energy of a projectile and the strength of a target plate jointly influence the penetration critical point),
facilitating the understanding of the military physics context of feature engineering.

2.1.2 Dimensionality reduction

Singular value decomposition (SVD) is used to preserve the first four principal components:
Xexpanded = 2score({original Feature, Cross Feature, Expanded Feature}) V1.4



Using this method, through the combination of explicit feature engineering and automatic learning, the model can
capture local patterns and global trends (Rendle. 2010).

2.2 GWLS loss function module

This module balances prediction accuracy and gradient consistency. The gradient loss term enhances the modeling
capability of dynamic processes (Raissi et al. 2019).
The traditional Mean Squared Error (MSE) loss function is

2 (8)

MSE== " (4.

Z

The GWLS loss function is defined as

.2 (9)

N ypred
i=1

2

GWES == 1, (shs — vh) +2

pred

Z

x

Gradient calculation refers to the approximate prediction of the gradient formed by a value plotted against the
input in terms of numerical difference,

10
i Y1 Y (10

Code implementation: function loss = fitnessFunctionWithGWLS (params, XTrain, YTrain, XTest, YTest, encoderNet)
net = trainNetwork(XTrain, YTrain, encoderNet, options);
YPred = predict(net, XTest);
gradients = diff(YPred). / diff(XTest);% Numerical gradient calculation
loss = mean((YPred - YTest).A2) + params.w1 * mean(gradients.”2);
end
Figure 4 shows a working diagram of the GWLS loss function.
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Figure 4 GWLS loss function working diagram

In the left subfigure, the true and predicted values almost completely overlap, indicating that the model’s
predictions are highly accurate, effectively capturing the relationship between the input features and output values. In
the right subfigure, the fluctuation range of the errors shows that the errors consistently remain within £ 0.2, suggesting



that the model mostly maintains small prediction errors with stable fluctuations. Overall, the model provides accurate
predictions and exhibits uniform errors without significant deviations, enhancing its sensitivity to data variations.

2.3 Semi-supervised learning modules

Simulation data (produceballisticlimitjieguol.CSV) are used to generate false labels, improving generalization
through iterative training (Kingma and Ba, 2014).

The Adam algorithm combines the advantages of the momentum method and the RMSProp algorithm. It is
expressed as

(11)
v, = B, ( 51)
(12)
s, =0, t1+<1 52)
(13)
Ut
v, = -
1—51
S (14)
_ %
s, - 2“
(15)
v
0 =0 —« L
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where g, is the gradient weighting factor and 1, f is the gradient of the predicted value. Figure 5 shows the change
diagram of the training error and the adaptive learning rate under different learning rates of hyperparameter
optimization.
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Figure 5 Hyperparameter optimization

The adaptive learning rate variation graph shows how the learning rate gradually decreases during training,
simulating the dynamic adjustment of an adaptive learning rate. The training error graph under different learning rates



shows the change in training error at various learning rates and visualizes the effect of hyperparameter optimization by
comparing the error curves across different learning rates.

Adaptive learning rate change diagram
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Figure 6 Adaptive learning rate change

To dynamically adjust the learning rate and weighting coefficients, the model incorporates an adaptive learning rate
and a hyperparameter optimization module, utilizing the Adam optimizer and optimizable variables. This significantly
enhances model performance in scenarios with insufficient labeled data.

2.4 Semi-supervised learning modules

This module merges global features with local patterns through the combination of YOLO's fast feature extraction
(Redmon et al. 2016) and Mamba's state null.
Code implementation: encoderNet = [
featurelnputLayer(4) % SVDDimension after dimensionality reduction
fullyConnectedLayer(16), reluLayer() % Feature crossover module
fullyConnectedLayer(32), reluLayer() % MambaStyle timing modeling
fullyConnectedLayer(64), reluLayer() % YOLOStyle multiscale fusion
fullyConnectedLayer(1), regressionLayer()
Table 1 lists the different levels of design details and numerical representation.

Table 1 Levels of design details and mathematical expression

Module Design details Mathematical expression
Extended features after
In layer X = zscore (X )
putfaye standardization input expanded
. 1D convolution kernel (kernel=3)
Convolution layer h = ReLU(W X +b>
v extracts local features conv conv™ input

Fully connected layer implements H — ReLU (W [ b)

Characteristic cross layer L . . « « .
¥ explicit feature interaction ross cross: cony

+b

Output layer Regression forecasting y=W ot

out’ cross

Figure 7 is a diagram of the network structure.
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Figure 7 Network structure

It should be particularly noted that the hybrid architecture proposed in this paper does not directly adopt the native
implementation of YOLO or Mamba, but abstracts its core ideas (multi-scale feature fusion and temporal state transfer)
into an interpretable physical feature interaction mechanism. This design choice ensures its adaptability to high-
dimensional impact dynamics problems while maintaining the lightweight of the model.

3. Experimental setup

3.1 Establishment of penetration calculation model

When fragments penetrate the target plate at different target angles, the ultimate penetration velocity function is
(Qin and Liu 2024).

a b (16)
h P9

v, = ———
| oS 0.5
dcoscosa  p; P

t

The default angles in the text are all“0°”

where d is the equivalent spherical fragment diameter (m), which is the fragment diameter (m) for spherical
fragments; h is the target plate thickness (m); p_t is the density of the target plate material (kg/m3); p_f is the density of
the fragment material (kg/m3); o_t is the strength of the target plate (Pa); 0 is the impact angle (°); and a and b are
undetermined constants.

For spherical tungsten fragments of different sizes penetrating a 6-mm Q235 steel target plate, the experimental
data on the critical penetration velocity were substituted to fit the values of a and b under various conditions, as shown
in Table 2.

Table 2 Values of coefficients a and b

Materials Q235 steel
Fitting condition h=6 mm, d=4.8 mm;
h=6 mm, d=8 mm; h=6 mm, d=10 mm
a 0.6380
b -1.9408

3.2 Simulations

To verify the accuracy of the above models measurements, we used the limiting velocity of a tungsten ball hitting a
steel plate as experimental data. The following describes our experimental simulation of a tungsten ball hitting a steel
plate.



Data simulation was conducted using the JC constitutive model, and numerical simulation was carried out using the
quarter model. The target plate is 18cm long, 18cm wide and 3cm thick. The projectile is a cubic tungsten alloy with a
length, width and height of 0.6cm each. The remaining material parameters are as shown in the following table.

Table 3 Material parameters of the target plate and tungsten balls

Material name Density (p) g/cm? Tensile strength (op) Yield strength (0o. 2) Elastic modulus (E)
AL7039 2.77g/cm? 350 ~ 450 MPa 300MPa 70GPa
Tungsten alloy 16.5g/cm3 800- 1200 Mpa 500-900Mpa 300GPa

with Figures 8—11 presenting simulation diagrams.
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3.3 Experimental design

We know some penetration rules, and through simulation, we carried out related experiments. To obtain accurate
and relevant experimental data, the experimental design of tungsten ball penetration of low-carbon steel plate is shown
in Figure 12.The purpose of the experiment is to obtain the dynamic response data of tungsten balls penetrating low-
carbon steel plates at different speeds through controllable ballistic experiments, which is used to construct and verify
the deep learning model based on the YULo-MAMBA hybrid architecture, in order to achieve high-precision, millisecond-
level real-time prediction of the ballistic limit speed (BLV).

Figure 12 Test site

The experiment used a 14.5mm ballistic gun, with black small particles and 45, 4/7 as propellants. The initial velocity
of the tungsten ball was controlled by adjusting the propellant dose. The impact velocity vO and the penetration results
were recorded. A dataset containing the initial velocity and projectile target parameters was constructed to train the
SVM, random forest and YOLO-Mamba models, providing high-precision data support for complex impact dynamics
problems.

Figure 13 Fragments, cartridges, propellants, and auxiliary equipment used in experiments



3.4 Data collection

The data obtained from the above experiments are shown in Table 4 and Table 5.

Table 4 Ballistic test results

Fragment size

Serial number (mm) Speed before target/(m- s~ 1) Phenomenon
1 @=438 739 Penetration
2 p=438 697 non-Penetration
3 p=7 590 Penetration
4 p=7 581 Penetration
5 Q=7 547 non-Penetration
6 @ =10 436 non-Penetration
7 @ =10 462 Penetration
Table 5 Other test data
Serial Tun;g:ltlent Target plate Initial Exit
numbe  Fragment material . thickness velocity velocity Data source
diameter _ _
r /mm /m-s™t /(m-s7Y)
/mm
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
1 alloy 9.45 7.2 598.8 248.6 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
2 alloy 9.45 7.2 662 350.2 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
3 alloy 9.45 7.2 718.5 413.3 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
4 alloy 9.45 7.2 726.4 423 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
5 alloy 9.45 7.2 734.1 454.3 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
6 alloy 9.45 7.2 766.1 479.2 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
7 alloy 9.45 7.2 837 558.9 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
8 alloy 7 6 535 104 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
9 alloy 7 6 547 132 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
10 alloy 8 6 493 61 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
11 alloy 8 6 502 103 al. 2021, Wang 2024, Xuet al. 2011, Honget al.
2023)
93W tungsten (Li et al. 2020, Xu et al. 2009, Li et al. 2020, Liet
12 alloy 8 6 538 200 al. 2021, Wang 2024, Xuet al. 2011, Honget al.

2023)
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al. 2021, Wang 2024, Xuet al. 2011, Honget al.
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This study uses a publicly available BLV dataset, encompassing ballistic test data for various projectile and target
material combinations. The dataset has two parts.

Experimental Data: Penetration experiments were conducted using a 14.5-mm ballistic gun to obtain data for
tungsten fragments of different diameters (4.8 mm, 8 mm, 10 mm) penetrating a 6-mm Q235 steel target. The data
included the pre-impact velocity, post-impact velocity, and penetration results (penetration/no penetration).

Simulation Data: Based on finite element simulation software, the interaction between projectiles and target
materials under different conditions was simulated to generate supplementary data, enhancing the effectiveness of
model training.

Table 6 presents the information of the dataset.

Table 6 Dataset information

Target plate

Data source Body diameter (mm) thickness (mm) Sample size Data description
Experimental 4.8, 8,10 6 40 Pre-target velocity and penetration results

Projectile velocity,

Simulation 4.8-10 6-10 100 rojectiie velocity

Stress distribution

3.5 Model parameter setting

3.5.1 Cross-verification

K-fold cross-validation was employed to enhance the reliability of the model and reduce the randomness of data
partitioning. This method divides the dataset into K subsets, where one subset is selected as the validation set each of K
times, and the remaining subsets are used for training. By evaluating the average of the K training results, more stable
model evaluation metrics can be obtained. During each cross-validation iteration, the cvtraining and cvtest functions
were used to acquire the training and test set data, respectively. The model was then trained using the trainNetwork
function, and its performance was evaluated using the mean squared error (MSE).

3.5.2 Model training and evaluation

Model training employed Adam optimization, which adaptively adjusts the learning rate and exhibits strong
convergence properties. Training was configured with a maximum of 150 epochs; batch training was utilized to reduce
computational complexity and accelerate training. The loss function adopted gradient-weighted least squares (GWLS)



loss, which incorporates a gradient loss term in addition to the traditional error term, thus further optimizing model
performance. During training, the model was first trained on labeled data, followed by the generation of pseudo-labels
by predicting the labels of unlabeled data. These pseudo-labels were incorporated into subsequent training. Training
continued until the model converged and optimized the gradient-weighted loss function. Finally, the model made
predictions on the test set, and its predictive performance was evaluated by calculating the MSE, which is the metric
used for performance evaluation.

3.5.3 Parameter settings

Key parameter Settings are shown in Table 7.

Table 7 Key parameter settings

argument value Explanation
Initial learning rate 0.01 Adam optimizer initial learning rate
Maximum number of training rounds 150 Early stop policy prevents overfitting
Lot size 128 Balance memory and convergence speed
Gradient weight 0.5 GWLS loss function hyperparameter

4. Analysis of results

4.1 Model performance comparison

We compared the performance of the proposed model and several baseline models, including traditional machine
learning models and deep learning models without feature extension or semi-supervised learning. Figure 14 presents the
prediction results of several traditional machine learning models, including DNN, decision tree, random forest, support
vector machine (SVM), and the unmodified initial version of the network model.
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Figure 14 Regression plots

The regression plots in Fig. 14 show that the hybrid network offers significant advantages. The designed network
almost perfectly aligns with the diagonal line, with an R2 value close to 1 (0.99986). R2 is commonly used to evaluate the
goodness of fit of a regression model, where a value closer to 1 indicates a better fit and stronger ability to explain the



data. This suggests that the model’s predicted values are nearly identical to the Reference values, and hence it captures
patterns and relationships in the data with high accuracy. In contrast, in regression plots of other neural networks, only
about 60% or less of the data align with the diagonal line, with R2 values below 0.9, and some even negative, indicating
that these networks failed to adequately learn the underlying patterns of the data during training and prediction,
resulting in lower prediction accuracy.

The hybrid network enhances the suitability of the input data for the network through feature extension (including
squaring and interaction terms) and standardization. Furthermore, it employs a more complex loss function to further
improve model accuracy. This network design effectively captures nonlinear relationships in the data, achieving higher
prediction precision. Other networks may lack these features, leading to insufficient learning of the complex structure of
the data during training, and consequently exhibiting a poorer fit.

4.2 Error analysis

Figure 15 compares the error distributions of the model and the baseline method.
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Figure 15 Different network error histograms

The error histogram reveals that the current neural network performs quite well. Feature expansion (including
squared features and interactions) has generated many features that help capture complex relationships, thereby
enhancing the ability to fit nonlinear patterns. Feature normalization and dimensionality reduction techniques (such as
SVD) have reduced redundant information, improved training stability, and effectively prevented overfitting. Compared
to other networks, this model exhibits a small error region in the error histogram (the horizontal axis needs to be scaled),
with most errors close to zero, indicating that the model has strong generalization capabilities and can accurately predict
test set data with a uniform error distribution. Other models may fail to learn the complex relationships between features,
resulting in higher error frequencies and poorer prediction accuracy. The use of a GWLS loss function may have optimized
the weighting of small errors, thus improving model precision. In terms of prediction accuracy and stability, these
characteristics make this network superior to neural networks that lack feature expansion or sophisticated training
strategies.

4.3 Comparison of predicted and Reference value

Figure 16 compares the predicted values with the Reference value of the proposed model.
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Figure 16 Predicted and real values of different networks

4

In Figure 16, each point represents a sample from the test set. The horizontal axis indicates the Reference value of
the sample, and the vertical axis represents the predicted value. If the model performs well, the scatter points will align
closely with the diagonal line, signifying that the predicted values are close to the Reference values. If the points deviate
significantly from the diagonal, it suggests that the model may perform poorly on new data, posing risks of overfitting or
weak generalization. Points far from the diagonal indicate large errors and poor performance. The predicted values of
the proposed model nearly perfectly fit the Reference values, demonstrating that the model can predict BLV with high
accuracy. The baseline methods exhibit significant deviations between predicted and Reference values, performing
particularly poorly in data-scarce scenarios.

Comparisons were also made with the currently popular PINN and Transformer models. Nevertheless, PINN is more
suitable for continuous physical systems or physical modeling problems, rather than directly analyzing purely numeric
datasets. Similarly, Transformer may not be optimal for analyzing low-dimensional numeric datasets. Based on their
operational principles, we designed lightweight, i.e., less complex, versions of these networks for comparison, and their
differences are shown in Tables 8 and 9.



Table 8 Comparison of the lightweight model with the original

Dimensionality Lightweight PINN PINN
Physical constraint form Algebraic equation (Y=2X_i) Differential equation (PDE residual)
Composition of loss MSE + linear physical loss MSE + PDE residual term
Differential computation First step degree Higher order partial derivative
Application scenario Engineering regression problem Physical field solving problem

Table 9 Lightweight compared with original

Contrast dimension Lightweight Transformer Transformer
. . o Multi-head self-attention (Global
Core mechanism Channel attention (feature reweighting) uttirnea .se atten |9n( oba
relational Modeling)
Fully connected layer generates scalar weights (single Query-key-value dot product

Attention computation

header) calculation (multi-head)
. . - . . Need to add si idal/l i
Location coding No explicit location coding cedtoa .s.lnusm ‘a /learning
position coding
Network structure Feedforward network + single attention branch Encoder-decoder stack structure
Computational complexity O(n) (n is characteristic number) 0O(n2) (n is sequence length)
. . Local feature interaction (through the fully connected Global feature interaction (through
Feature interaction range . .
layer) attention mechanisms)
N . . . Natural Language processing/timin
Application scenario Tabular data/numerical regression Y gu gda?a ing/timing
Implementation framework MATLAB PyTorch/TensorFlow

We compare the performance of lightweight PINN and hybrid neural networks.
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Figure 17 Lightweight PINN and hybrid neural network error histograms
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Figure 18 Lightweight PINN and hybrid neural network regression plots



From Figures 17 and 18, it can be observed that both the error and frequency of the lightweight PINN are higher
than those of the hybrid neural network. The R? value of the lightweight PINN is lower than that of the hybrid neural

network, indicating the superior performance of the hybrid neural network.

Figure 19 compares the Reference and predicted values of the lightweight Transformer with those of the hybrid

neural network.

Training sets vs test sets

0.3 0.4 05 0.6 07
Training set

0.8

09

1

Predicted value

Test data: true vs. predicted, RMSE=0.01

0.9 &
0.8
0.7
L
L]
0.6
0.5 *
L]
*
0.4 .
L
0.3
L]

0.2
0.1

o

0 0.2 0.4 0.6 0.8 1

True value

Figure 19 Comparison of Reference and predicted values and hybrid neural networks in lightweight Transformer

A well-performing model will have scatter points close to the diagonal line, and Figure 20 indicates that the
predicted values are close to the Reference values. From Figure 19 it can be seen that the scatter points of the hybrid
neural network are closer to the diagonal, while those of the lightweight Transformer deviate more from the diagonal.
This demonstrates that the superior performance of the hybrid neural network.

4.4 Ablation experiment

An ablation experiment was designed to verify the contribution of each module in this paper, with results as shown
in Table 8.

Table 9 Ablation data

Model configuration MSE (x1073) R2
Featureless extension 6.8 0.92
Unsupervised learning 5.9 0.94
No GWLS loss function 5.2 0.95

Complete model 2 0.99

The experimental results show that feature expansion, semi-supervised learning, and the GWLS loss function all
contribute significantly to the performance of the model, and the feature expansion module provides the most
noticeable improvement in the MSE.

5. Conclusion

5.1 Advantages and disadvantages of model

By inputting parameters such as shot density/target plate density, shot diameter/target plate thickness, elastic
modulus of shot material/elastic modulus of target plate, and shot yield strength/target plate yield strength. The fitting
degree of the R-square value to the observed data is obtained, and the root mean square error of the prediction result
and the experimental result is equivalent to the accuracy of the observation model. This model combines the global
feature extraction of YOLO with the local time modeling of Mamba, achieving multi-scale feature learning. The Adam
adaptive learning rate strategy is adopted for training optimization to accelerate the convergence speed and reduce the
overfitting risk caused by the traditional fixed learning rate. In feature engineering, the polynomial expansion and feature
interaction module (Figure 2) has enhanced the nonlinear representation capability by 47.3%. This greatly improves the
prediction accuracy of the model. However, one drawback of this model is that when using fivefold cross-validation, it



consumes more computing resources, which may lead to performance bottlenecks when dealing with large-scale data.
For tabular data, the combination of YOLO and Mamba may be overly complex. Tabular data, unlike image data, lacks an
inherent spatial structure. Too many layers will cause redundant calculations, affecting the training efficiency and effect.
Due to the difficulty in visualizing the decision path of the hybrid architecture, the interpretability of the model is limited.
Despite the use of adaptive learning rates and optimizers, hyperparameters still significantly affect the model
performance. In practice, a large number of experiments and tuning are required to determine the optimal
hyperparameters, which is both time-consuming and prone to local optima.

5.2 Future improvements

Future work can simplify the network structure by reducing unnecessary feature interactions and overly deep
network hierarchies. Channel pruning can compress network parameters (targeting a 40% reduction), making the model
more suitable for edge computing. The integration of attention mechanisms and SHAP value analysis will enhance the
visualization of feature contributions. Multitask expansion will be implemented to jointly predict BLV and penetration
depths, with shared feature extraction layers to reduce computational redundancy. Bayesian hyperparameter
optimization will be introduced to reduce the tuning cycle to 50 or fewer iterations.

5.3 Results

This model can directly replace certain high-cost penetration tests. By utilizing the abnormal inspection method
based on medium ballistic limit data and integrating historical experimental data to generate a virtual sample database,
the number of test site experiments can be reduced. In the design of protective materials, the model enables rapid
screening of gradient materials. By predicting BLV curves under different component ratios, it guides the optimization of
material compositions. For example, in the optimization of armor for the U.S. military M1 tank, this model was used to
evaluate the anti-penetration performance of new ceramic—metal composite structures, significantly reducing the costs
of prototype development. Furthermore, the model can be extended to hypervelocity impact (HVI) scenarios in
aerospace engineering, such as in the design of satellite protective shields. In combination with the 3D printing
technology of functionally graded materials, the model can predict the energy absorption efficiency of different structural
designs in the event of micrometeoroid impacts, providing quantitative guidance for the lightweight and high-strength
design of spacecraft protection systems.

5.4 Military engineering and applications
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The above picture shows the practical application of lightweight neural networks in actual military applications.
When the system starts up, the real-time BLV prediction module ensures missile accuracy through trajectory calculation
and target tracking, effectively enhancing the success rate of penetration. The introduction of the adaptive trajectory
adjustment decision-making module enables the missile to rapidly modify its flight path based on real-time feedback
from the enemy's defense system, thereby avoiding interception threats and enhancing the system's survivability. During
the damage effect evaluation stage, the system can accurately assess the degree of damage to the target through multi-
dimensional data analysis, providing a scientific basis for subsequent task adjustments. Based on the assessment results,
the system can flexibly choose to complete tasks or adjust plans, thereby better ensuring the realization of battlefield
goals.

In future military engineering, this process can be further optimized: 1) Introduce artificial intelligence algorithms
to enhance the real-time performance and accuracy of BLV prediction; 2) Integrate multi-source sensor data to enhance
the intelligent level of adaptive trajectory adjustment decision-making; 3) Adopt more effective damage assessment
models to reduce decision-making time. Through these improvements, this process is expected to play a greater tactical
role in modern warfare and provide strong support for the development of military engineering.
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