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Abstract 
The main goal of the present paper is to develop a mathematical framework for modeling the field equations 
arising in the problem of an elastic, isotropic, non-saturated porous media (pores filled with air and water) 
within the context of Eshelbian mechanics. The global balance of pseudomomentum is performed in a fully 
material manifold to account for the configurational forces due to material inhomogeneities, involving the 
Maxwell stress tensor. Biot’s momentum conservation equations in a dilute scheme for a micromechanical 
environment, combined with the Mori–Tanaka homogenization theory, are employed for the geomechanical 
solution. In the mathematical description, pores are treated as Eshelby inhomogeneous inclusions within a 
solid skeleton, making them the source of configurational forces. The resulting field equations show that these 
configurational forces evolve in a strongly nonlinear manner due to their dependence on the nature of the 
pores as well as the soil's mechanical properties. This behavior was numerically observed through the 
implementation of the boundary value problem using the Finite Element Method 
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1 INTRODUCTION 

Eshelbian mechanics or configurational mechanics may be regarded as a subset of the theory of material 
inhomogeneities, namely, when certain material properties such as density and elasticity coefficient, undergo continuum 
variations even without external loadings. It is a discipline that mainly addresses with a special type of force, called 
configurational force (in contrast to physical forces that are the structural response to an actual displacement of a 
material particle), that allows these inhomogeneities to be handled as defects such as inclusions, dislocations, fractures 
or more generally, a sudden change at a certain material point without, as mentioned, external actions (surface tractions, 
mass force, etc.). Any material inhomogeneity may be ensued by a translation of the physical system, i.e. a pullback of 
the ordinary balance equation, on the material manifold (Steinmann, 2015). The resulting system of equations is called 
the balance of pseudomomentum or simply the unbalanced equation (Maugin, 1993) because it is in fact a balance 
equation in the absence of an external load but is unbalanced by inhomogeneity. These equations, along with the 
fundamental Noether’s theorem have become one of the most versatile branches of mechanics feasible for extension to 
the general theory of fields (Maugin, 2017).  

The birth of a true configurational mechanic (Eshelbian mechanics) stems from Eshelby’s fundamental work 
(Eshelby, 1951) as well as Kröner´s work (Kröner & Datta 1966). The Eshelbian mechanics tenet hinges on two concepts, 
the abovementioned configurational forces along with the Eshelby/Maxwell stress tensor (Eshelby, 1951). Initially 
connected to the field of material uniformity, Maugin (Maugin, 1993) revisited the fundamental connections between 
the Maxwell stress tensor and the variational principles thereby fostering the mathematical formulation of different 
fields namely electromagnetic materials and fracture, geometrical aspects of elasticity (Steinmann, 2015), material 
growth (Gurtin 1999; Maugin, 2010), finite element solutions (Maugin, 2010), or, in short, the formulation of a 
considerable portion of classical and nonclassical mechanics in terms of Eshelby stress (Maugin, 2017) 

From the pioneering work by Biot in poroelastic bodies (Biot, 1941) to complex and robust approaches, a broad 
range of mechanical situations, thermal conditions, fluid transport, boundary conditions and load types were considered. 
Biot himself extended his work to wave propagation (Biot, 1596). Two-phase and three-phase non-saturated cases were 
investigated in a continuous porous media theory and by Lewis and Schrefler (1998). Mroginski et al. (2010) described 
an odd relationship between the vertical displacement and the degree of pollutant saturation. The environmental geo-
mechanics problem was addressed by Schrefler (2001). Beneyto et al. (2015) presented a different approach for this issue 
based on the stress state decomposition technique (SSDT), and in Di Rado et al. (2020), this same technique was extended 
to biological fields. 

The solid phase constituent was regarded as elastic for the present scope; however, straightforward generalization 
to nonlineal models is possible considering the micromechanical strategy. Regarding to the former for partially saturated 
porous media, many authors have proposed approaches to predict macroscopic behavior based on the knowledge of 
some variables of the microstructure, such as the size of the Representative Volume Element (RVE), characteristic 
internal length, pore pressure, pore shape and distribution, among others. Generally, those solutions are mostly based 
on numerical homogenization techniques such as Squared Finite Element Method (FEM2), Variational Asymptotic 
Method of Homogenization, or incremental techniques with different stages of homogenization. However, there still 
exists a theoretical gap in modeling the behavior of partially saturated heterogeneous porous media with inclusions in 
the solid matrix. The aim in obtaining a theoretical formulation for materials with these physical characteristics goes 
beyond the conceptual level of addressing the issue of occluded pores observed in the theory of continuous porous 
media (see the idealization assumed in Figure 1) but also in providing an accurate tool to predict the behavior of 
multiporosity materials such as bones, fractured rocks, or multiphase soils. 

2 ESHELBIAN MECHANICS.  

2.1 Configurational forces in infinitesimal strain theory 

The configurational problem is usually formulated using finite strain theory (Maugin, 2010). However, it can be 
straightforwardly extended to infinitesimal strain theory. Following Eischen and Herrmann (1987), the pseudo 
momentum equation would be written as 
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Where SS  is the external (or macro, distant from the inclusion) stress state and u  the kinematic field of 

displacement, b  is the elastic energy momentum tensor (Maxwell tensor or  quasiestatic Eshelby tensor), 0 fr  body  

force, W is the potential energy, IR  is the unitary second order tensor, and conf   are the configurational forces.  

 

 
Figure 1 Material description, classical micro hypothesis (left) and Continuous Porous Media Theory (right) 

2.2 Equivalent strain for inhomogeneous inclusion. Configurational forces and interaction energy 

In poroelastic continuous soils, it is possible to treat voids in the same fashion as in the case of ellipsoidal 
inhomogeneity inclusions, i.e., voids filled with materials with elastic properties different from those of the soil grains or 
matrix. Eshelby (1957) coped with the general ellipsoidal inclusion problem and classified it as homogeneous (misfitting 
geometry) or inhomogeneous (misfitting properties), being the situation here considered, belonging to the second group. 

Succinctly, the Eshelby proposal was that an ellipsoidal geometrical misfit in the matrix may be accounted for, 

through the interaction of two strain fields: a transformation strain (eigenstrain), e* , and a cancelation strain field, Ce

Both strain fields are uniform in the inclusion (the stress inside the inclusion is also uniform), and they are related via a 
fourth-order tensor called the Eshelby fourth-order tensor, S  (Eshelby, 1957; Mura, 1982) 

S :Ce e*=  (5) 

Eshelby proposed treating the strains that arise due to misfitting properties as equivalent strains, where the term 
'equivalent' refers to a comparison with the strains in the geometrical misfit problem—that is, an inhomogeneous 
inclusion treated as a homogeneous equivalent. For this purpose, in Figure 2, E  denotes the elasticity tensor of the 

matrix and E  that of the inclusion. 

S :C
Te e*=  (6) 

In Alhasadi & Federico (2017), a detailed description of both cases was carried out, and for the sake of brevity, only 
the strain state that arises in the inhomogeneous case is presented.  

It can be inferred from Figure 2 that the cancelling strain Ce  is a consequence of the elastic relaxation of the matrix 

when the surface tractions are released, and Te
*  is a fictitious or equivalent transformation strain that, for the case in 

point, plays the role of a hypothetical real transformation strain in the case of inclusions with geometrical misfit. 
Since the misfit is not geometrical, in the absence of an external stress state, no perturbation will be observed. 

However, with an external imposed stress field, the misfit will perturb it clamming for a correction.  
Alhasadi & Salvatore (2017) derived a set of relationships of crucial importance for the scope of the present work. 

First, the cancelling strain is related to the external strain field or macro strain field (this concept will be thoroughly 
described hereinafter) through 
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Where A  is the strain concentration tensor in the inclusion (Hill, 1963) [41], II  is the unitary fourth-order tensor, 
and X  is the strain field caused by the external or macro stress state. Using the previous in equation (6), leads to 
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Where S  is the aforementioned Eshelby fourth-order tensor. In the following sections, simple expressions for both 

A  and S  are presented. 

 

Figure 2 Actual stress state (left) and the equivalent state (right) 

The most appropriate form for relating the concept of configurational force to the equivalent strain is based on the 
interaction energy. This concept was introduced in (Balluffi, 2012) and describes the interaction between the strain field 
due to the external load, namely the macro stress field (as well as macro strain, this concept will be described 
hereinafter), and the stress field around the inclusion. Alhasadi and Salvatore (2017), making use of the interaction 
energy concept, present the following expression for this energy 
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Where intW  is the interaction energy. Hence, the latter in Eq. (4) along with Eq. (8), and replacing the explicit 
derivative of the interaction energy (around the fictitious transformation strain) by the limit around a vanishing quantity 
specially chosen, a very useful expression for the integral form of the configurational forces was obtained 
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3 NONSATURATED MICROPOROMECHANICS.  

3.1 Biot’s Problem 

The well-known solution to soil consolidation developed by M. Biot (Biot, 1941) may be briefly described by means 
of a system of coupled equations, namely, one equation of momentum conservation, one (or more) equation of fluid 
transport, one equation of mass conservation (occasionally through volume balance) and constitutive equations for a 
poroelastic-type solid and for fluids. In the present paper, no reference whatsoever will be pointed out to any transport 
equation restricting our scope to momentum conservation. As mentioned, the media is a poroelastic domain consisting 
of a group of pores (taking the place of inclusions), filled with water and air under pressure (a prestress state in the 
inclusion) and with stress interactions between these pores. One important purpose of the present paper is to cope with 
the isolated pores that arise in the Biot’s problem and regarding these pores as stressed inclusions filled with water 
(liquid) or air (gas). For the sake of brevity, no further details of the Biot theory are given herein (see Lewis and Schrefler, 
1998; Beneyto et al., 2015; Mroginski et al., 2011) 



  

3.2 The dilute scheme for spherical pores. The Eshelby fourth-order and the strain concentration tensors. 

Dormieux et al. (2006) noted that the dilute scheme is correct when the inclusions (pores) are small and sporadic, 
i.e., when developing a set of noninteracting units and a uniform microscopic strain tensor throughout the inclusion 
(pore) is satisfied; in line with the material hypothesis assumed in Figure 1. The general relationship between the local 
microscopic strain tensor and macroscopic strain tensor is generally formulated in the following manner (Hill, 1963) 

:= AMe X  (11) 

Where Me  is the micro strain in the inclusion. The dilute scheme allows one to rephrase local general relationships 
using average quantities in the same way as local quantities. Furthermore, this possibility is especially valuable when a 

further extension to Biot’s problem is proposed. Basically, the average inclusion strain Pe  for the inclusion space (pore 

space) may be deemed from a single spherical inclusion SPe . Although it is not the final scope of this paper, it is a 

convenient starting point for introducing the main variables and concepts 

A :  SP P Pe e  (12) 

Where AP  is the mean strain concentration tensor for the pore space, Pe  is the average micropore strain (dropping 

inclusion reference). One main concern within the dilute scheme framework is determining the mean strain 
concentration tensor. In the precedent definition, the idea of the “mean” may be lawn down considering a medium with 
multiple pore domains. In this case, the average strain concentration tensor is defined by 

0 0
P i ij j=A A  (13) 

where 0 /Pj = W W  is the porosity in the volume fraction (as abovementioned, the volume fraction must be at 

most 0 1j << ), PW  is the pore space, W  is the whole space and 0
ij  is the porosity of each different pore domain 

0 0
i
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The average strain concentration tensor is a cornerstone concept for the assessment of many of the poroelastic 

constants. For example, the following expression for the homogenized stiffness tensor Ehom  (Mura, 1982) 

: (E = E II Ahom
0 )s Pj-  (14) 

Where Es   constitutive tensor for the solid matrix, is based on the mean value of the strain concentration tensor, 

AP . From the previous, a concise form for AP  may be derived. According to Dormieux et al. (2006), for an empty porous 
medium, the average strain in an elliptic/spheric pore (SP) can be estimated as 

II + G E 1( : ) :SP Pe e d -@ = X  (15) 

Where G  is the fourth order Hill polarization tensor (Barnett & Cai, 2018) relating pore stress and microstrain 
(without discerning between pore or solid structure provided that the microstrain is uniform throughout the domain) 

G :SP SPe = - S + X ; E = E ESP Sd -  is the difference between the pore and the solid elastic stiffness, and 

E :SP SPd eS = . For the point case, i.e., empty pores, the elastic stiffness is zero leading to E ESd = -  (it is worthwhile 

assuming that ESP  is, in general, negligible). Furthermore, a simple version of the fourth-order Eshelby tensor is 
introduced (Dormieux et al, 2006)  



  

S G E: S=  (16) 

the former expression for pore strain may be rewritten as 

II S 1( ) :SP Pe e -@ = - X  (17) 

With these and accepting the aforesaid inference of Eq (12), the expression for the average strain concentration 
tensor for empty pores in the dilute scheme reads: 

A II + G E II S1 1( : ) ( )P d - -= = -  (18) 

With the average strain concentration tensor evaluated, the abovementioned Ehom  of Eq. (14) can be obtained 

: (E = E II II Shom 1
0( ) )S j -- -  (19) 

The Biot tensor arises when anisotropy in porous media is considered and may be obtained by (Dormieux et al., 
2006) 

I II S 1
0 : ( )BT j -= -  (20) 

On the other hand, if the inhomogeneity is embedded in an isotropic medium and the expression Eq. (16) is valid, a 
very compact form of fourth-order Eshelby tensor is given as follows  
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Where J = ; K I J1
3

 I I , sk  and sm  are the elastic bulk modulus and the shear modulus of solid phase, 

respectively. 

3.3 The dilute scheme for not interacting prestressed pores. 

For a further step pointing to the Biot’s problem, a more comprehensive version of the Eshelby’s inhomogeneity 
problem is needed for. It is well known that inclusions in Biot framework are subjected to internal pressure. This fact may 
be treated as an updated initial condition to the case for empty pores. Dormieux et al. (2006) introduce two new 
boundary conditions. 

E :SP SP SPd e pS = +  (23) 

G :SP SPe = - S + X  (24) 

In fact, both equations indicate that the inclusion SP embedded in a solid matrix is subjected to a macro strain X  ad 

infinity and also subjected to a constant inner prestress SPp  that equals the pore pressure tensor Ip-  . Solving the 

previous for SPe  



  

II + G E G1( : ) : ( : )SP P SPe e d p-@ = X -  (25) 

This last expression encompasses the average conditions allowed by the dilute scheme and the possibility of a 

certain amount of pore pressure SP Ipp = - . However, and so far, only an isolated inclusion is considered (not 

interacting). This means a considerable drawback for modelling Biot’s problem with multiple interactive inclusions 

3.4 The Mori-Tanaka model for different pores condition:  re-assessment of the average inclusion strain. 

A straightforward extension of the dilute scheme regarding mechanically interacting pores (and volume fraction up 
to 0.3), may be carried out by means of the Mori-Tanaka average theory (Mori-Tanaka, 1973). Dormieux et al. (2006) 
provided a bypass by a simple reformulation of the boundary conditions, i.e., fixing the uniform macrostrain boundary 

condition at infinity in the original Eshelby inhomogeneity problem, to a value 0X  along with a micromacro strain 

compatibility condition e = X . Additionally, the average strain of the solid phase se  of the Representative Volume 

Element (REV) (Lewis and Schrefler, 1998; Anonis et al.) must equals the homogenous environment in which the pore is 

embedded, “telling” the pore that it is not by itself ( se shares the environment with average pore strain Pe  ). The 

inclusion of the magnitude 0X , induce a revision of expression Eq. (25) to meet the updated conditions 

II + G E 1
0( : ) :pSPe e d -@ = X  (26) 

0
se = X  (27) 

Along with the average microstrain compatibility conditions e = X  and 0 0(1 ) s Pj e j eX = - +  (Dormieux et al., 

2006), the direct relationship between  X  and 0X  can be written out as follows 

( )II + G E II + II + G E1 1
0 0 0 0 0 0 0 0 0 0(1 ) (1 ) ( : ) : (1 ) ( : ) :Pj j e j j d j j d- -X = - X + = - X + X = - X  (28) 

Solving the previous for 0X   and using E ESd = -   and S G E: S=  

( )II + II S
11

0 0 0(1 ) ( ) :j j
--X = - - X  (29) 

These relationships entail a new form for the average strain concentration tensor in the pore space with mechanical 
interaction, for expression Eq (26) along with Eq (12) leads to 

( )A II + G E II + II + G E
11 1

0 0( : ) : (1 ) ( : )P d j j d
-- -= -  (30) 

Using the previous expression in the homogenized stiffness tensor expression of eq (14), the so-called Mori–Tanaka 

version of the drained stiffness tensor is obtained 

( )(E = E E II II S II + II S
1hom 1 1

0 0 0: ( ) : (1 ) ( )mt s j j j
-- -= - - - -  (31) 

In addition, the Biot tensor with pore interaction is (Dormieux et al., 2006; Mroginski et al., 2011) 
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In the case of sets (families) of different morphologies between pores (i.e. different orientation, form or content), 
the above-described framework must be reformulated, including the respective porosities (Dormieux et al 2006). 
Moreover, one important remark must be made: without loss of generality: it is possible to disregard the dissimilarities 
between the stress concentration tensors of each phase because no meaningful effect on this tensor due to morphology 
differences among pores is generally verified. Then, for liquid (l) and gaseous (g) phases  

A A A A Ai P l g  (33) 

This entails   

S S Sl g@ @ through ( )A II S II + II S
11 1

0 0( ) : (1 ) ( )P j j
-- -= - - -   (34) 

Consistently G G Gl g@ @  through G S E 1: ( )S -= . Also, considering eq (25), bringing back the boundary 

conditions for interacting pores and adding the fact that we are in the presence of two prestressed inclusions, Ilp-   and 

Igp-  , taking the place of SPp  , the following expressions are valid 

II S) G I1
0( : ( : )l

lpe -= - X +  (35) 

II S) G I1
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An important remark must be made: For the goals of the present paper, two kinds of pore pressures are considered 

(liquid and gas), each of which contributes to the mean pressure by the degree of saturation /r lS j j=   through the 

following expression 

(1 )r g r lp S p S p= - +  (38) 

These equations lead to the following relationship g l
g lp p pj j j+ = . With these definitions, the strain average 

micro- and macrostrain compatibility condition for the partially saturated case is 0(1 ) gs l
l ge j e j e j eX = = - + +  . 

Also, the assumed stress concentration condition, S S Sl g@ @  of Eq (34) entails the identity 

II S II S1 1
0 0( ) ( )i

ij j- -- = -  . With all these remarks, the relationship between 0X  and X   may be recalculated for 

partially saturated soils 
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Regarding 0j j;  and solving for 0X   
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Replacing 0X   in both average pore strain equations Eq (35) and Eq (36), in a more succinctly form 

II S G I II S II S) : G I)1 1 1
0 0( ) : : ( (1 ) ) : ( ( :p pa

ae j j- - -= - + - - X - -  (43) 

With ,l ga =  and being ae   the generic average inclusion (pore) strain 

4 ESHELBIAN MECHANICS IN BIOT MICROPOROMECHANICS.  

4.1 Configurational forces in Biot’s environment 

Biot’s theory of soil consolidation furnishes the whole environment in which both previous theories, i.e., Eshelbian 
mechanics and Mori–Tanaka microporomechanics, complement each other, allowing the assessment of a more acute 
stress–strain field. Then, some of the main concepts hitherto depicted must be reconciled in a comprehensive 
framework.  

Bringing into correspondence the field of stresses due to configurational forces with the field of ordinary stresses 
that arise in porous media with inclusions, requires a compatible strain field that accounts for both phenomena. 

The Eshelbian mechanics for a single pore offer a suitable starting point for tackling the unified stress–strain field 
problem hinging on the concept of the equivalent strain. It was properly stated in the preceding section that the 

equivalent strain Te
*  , is related to macro strains through the expression of Eq (8). Furthermore, in the dilute scheme for 

microporomechanics, the mean pore strain is expressed in eq (12). Subtracting X   from both members both members 
of the above cited expression follow 

A II( ) :p Pe - X = - X  (44) 

By integrating the concept of cancelling strain, Eq. (7), the single pore model and the dilute scheme, the following 
simple yet insightful equation can be proposed 

 C pe e= - X  (45) 

This, in turn, leads to 

S 1 : ( )p
Te e* -= - X  (46) 

The former rests on the same hypothesis that provides background to the dilute scheme, namely, it is possible to 
derive the mean average strain in the pore RVE from the strain in Eshelby’s inhomogeneity and vice versa. This key 
relationship paves the way for introducing the equivalent strain concept in the framework of the Mori–Tanaka model, 
i.e., a simple and direct shortcut between local and average quantities. However, the Mori-Tanaka model involves more 
than one family of pores, whereas the former involves only one pore family. A direct extension to several families was 
described in the previous sections, and the same machinery will be enforced here. Denoting by a , a generic family of 
pores (fluid or gas pore), the equivalent strain for a generic family would be 

S 1 : ( )T
a ae e* -= - X  (47) 

Dealing with configurational forces or Eshelby stress is indeed to cope with energy balance. The interaction energy 
for an inhomogeneous inclusion expressed in Eq (9) (Eshelby, 1951; Alhasadi and Salvatore, 2017) and for the case of 
several pore families, the additive nature of energy decomposition allows us to consider the energy stored in each family. 



  

More specifically, directing the analysis toward Biot’s microporomechanics and denoting by gW   the gas domain and lW   

the liquid domain, the total interaction energy is 

int 1 1 1
2 2 2

: : :s s s
eq eq Tg l

W ae e e* * *

W W W
= - S - S = - S  (48) 

Provided that the stress concentration tensor is considered the same for all families and, in turn, equal to the 
average concentration tensor along with a single macro strain, the total equivalent strain may be assessed 

S 1 : ( )T
ae e* -= - X  (49) 

In light of these considerations, the configurational force should be modified to encompass the previously pursued 

general case (interactive, prestress, and multifamily of pores) by simply substituting Te
*  from Eq. (49) into Eq. (10) 

S 11
2

( : ( ) :con s

D

F ae-
 (50) 

Moreover, in case of a single family of non-prestressed pores and null porosity, the expression of Eq (43) becomes 

II S )1( ) : (ae -= - X  (51) 

Substituting the previous in expression of Eq (50) and after some algebra, it is obtained 

S A II) :  11
2
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Which is equivalent to the expression of Eq (10). Furthermore, let’s assume the case in which E = E E 0SP Sd  
namely, there are no inclusions (only one substance for both pores and matrix vanishing all inhomogeneity). Then, any 

version of the concentration tensor shows that A II . This situation, in turns, compels the configurational forces to a 
null value 

S A II) :  11
2

0

 ( : ( ) :con s

D

F -
1442443  (53) 

This is an obvious consequence and, at the same time, a consistency proof for no determinant configurational force 
whatsoever should be noted in a homogeneous continuous. 

4.2 Eshelby stress and energy involved in the configurational- micro-geomechanical  

Following the approach proposed by Alhasadi & Salvatore (2017), an alternative strategy for determining the 
configurational forces can be pursued using the Eshelby stress tensor. Furthermore, the calculation of these forces 
necessitates the assessment of the energy involved in the configurational-micro-geomechanical phenomenon. When 
defects are taken into account, and following the central concepts that lead to the formulation of Eq. (50), a suitable 
starting point is provided by the following expression  

) I1 1
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In the previous, B Cb +   stands for the Eshelby tensor, Bb   the Eshelby stress corresponding to an unperturbed stress 

field and Cb  , the Eshelby stress due to configurational effects. The expression in Eq. (54) arises from the solution of the 
integral of the divergence of the Eshelby stress (as represented in Eq. (1) along with Eq. (10)) and the symmetry of the 
stress tensor. Revisiting the analysis within the configurational-micro-geomechanical framework and considering Eq. 
(54), it is evident that the energy associated with the current scenario comprises two components: (1) the portion related 

to the micro-geomechanical aspect, denoted as Bb , and (2) the component associated with the configurational aspect 

of the micro-geomechanical problem, denoted as Cb . 

= +B C B Cb b b+  (55) 

(1) (2)B C B CW W W W W+ = + = +  (56) 

The energy from source (1) must be evaluated from the available energy of the porous media solid phase far from 

the inclusion. Namely, (1)W  is the energy in the soil matrix due to the effective stress solely. Then 

E(1) hom1
2

: :W = X X  (57) 

The energy from source (2) derives directly from expression 1
2

:s Te
*S   though using equation (49) and recalling the 

fact that sS   is the stress far from the inclusion, which, in the context of Biot’s theory, is the effective stress 

S E S(2) 1 hom 11 1
2 2

: ( : ( )) : : ( : ( ))sW a ae e- -= S - X = X - X  (58) 

Both, (1) (2)W W+ , represent the total energy available in the whole process. It is a noteworthy feature that, if no 

pore pressure is considered, i.e., single non prestressed pore, Eq. (57) remains inalterable and Eq. (58) becomes 

E(1) hom1
2

: :W = X X  and E S A II) : (2) hom 11
2

: : ( : ( )W -= X - X   (59) 

Clearly, (1)W   stands for the energy stored in an inhomogeneous solid and (2)W  boils down to the integral form of 

Eq. (9) along with Eq (8). Furthermore, if an homogeneous media condition is added, i.e., E = E E 0SP Sd  and 

A II=  ; then (1)W  becomes the standard energy for a solid homogeneous problem and, consequently, (2)W  
approaches zero along with the configurational forces.  

With all the precedent conditions, Eqs. (4), (50) and (51), the divergence of Eq. (57) and the energy equations (57)- 
(58); stand for the general system of Biot’s equations for the unbalanced conservation principle or pseudo momentum 
within the frame of Eshelbian micromechanics. 

5 NUMERICAL SOLUTIONS.  

The boundary value problem for coupled consolidation of porous media was extensively studied. In this work we 
follow the well-known model proposed by Lewis & Schrefler (1998), addressed though the classical Galerkin method. 

In its original formulation at most first order derivatives of the displacement and pore pressure fields appear in the 
governing equations. Therefore, displacement and pressure field discretization require C0-continuous shape functions 

that are indicated as uN  and pN , respectively. Then, the FE approximations can be expressed as 

=;  u pu u p p= N N  (60) 

Considering the previous, the following discrete differential equation system is obtained  
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Being the matrix expressions 
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And the Biot’s coefficients 
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In the present formulation, a 2D problem is addressed using an 8-node isoparametric quadrilateral finite element 
(FE). This element has been extensively tested in various scenarios involving multiphase fluid flow in porous media. The 

Babuska-Brezzi condition is satisfactorily fulfilled by using shape functions for the displacement field, uN   that are of a 

higher order than those used for the pressure field, pN . Once the boundary value problem of Eq. 62 is solved, the values 

of u  and wp  are known and also its gradient in each Gauss point. Therefore, the energy (2)W  as well as the Eshelby 

tensor Cb  can be evaluated. According to Maugin (2010), among others, the nodal configurational force can be obtained 
as follows 

1 1

e e

con con c
e eF f d b d

W W

N N
 (64) 

 

Figure 3 Strip footing of a saturated granular material, coarsest mesh of 10x10 FE 

Then, the contribution from each element at a particular node 𝐼 should be assembled to give the discrete value of 
configurational force at each node. To illustrate the existence, time evolution, and dependency on the adopted spatial 
discretization, a schematic representation of a real-world foundation problem in the northeastern region of Argentina is 
presented (see Fig. 3). The problem involves a strip footing on saturated granular material subjected to a uniform load 
of 100 /q kN m=  , with a width of 5B m=   and a depth of 5H m=   (only a half of the specimen is discretized due 

to geometric symmetry). The material properties are assumed as follows: Young’s modulus E 10.000S kPa= , Poisson’s 

ratio 0.3n = , initial void ratio 0 0.9e = , grain compressibility 610 * 10sK kPa= , and permeability coefficient 

38.64 * 10 /k m day-= . The boundary conditions are also shown in Fig. 3, along with the coarse finite element (FE) 



  

mesh used for the analysis.  To analyze the time dependence of configurational forces in a porous media consolidation 

problem, the evolution of the con
yF -component for nodes A, B, and C (see Fig. 3) is plotted in Fig. 4. Additionally, Fig. 4 

shows that the ratio between the configurational forces and mesh size is preserved only for node C, explained by the 
influence of the free surface and boundary conditions near to nodes A and B 

 
Figure 4 Time evolution of 𝐹𝑦

𝑐𝑜𝑛-component, corresponding to nodes A, B and C 

Continuing with the same numerical example, in order to provide a qualitative assessment of the magnitude of 
configurational forces, three different FE meshes of bilinear isoparametric quadrilateral elements (10x10, 20x20, and 

40x40) are considered. Snapshots of the conF -vectors at four-time steps are presented in Fig. 5 for each FE mesh 

employed. Finally, the influence of the material properties of the soil on the vertical component of the configurational 
forces is analyzed. To this end, the stiffness modulus of a broad range of soils can be approximated using empirical 
functions proposed by Biarez and Hicher (1994), among others. Those function can be unified in the following form 

. ( ). .( )  (MPa)k m

ref

p
G A f e OCR

p
=  (65) 

Where G  is the shear modulus (for small-strain) in MPa, p   is the mean effective stress in kPa, refp   is the reference 

pressure (atmospheric pressure, 100 kPa),OCR   is the over-consolidation ratio and ,  ( ),A f e k,m  are correlated functions 

and parameters which are given in Table 1 for different types of soils 
 

 
Figure 5 snapshot at 0.1 days, 80 days and 400 days 

 

Figure 6 con
yF -component, for node C, 10x10 mesh, considering three soils typologies  



  

 
Table 1 Parameters for estimation of G  in granular soils using Eq. 65 

Then, according to the approximation Eq. (65) and a given void ratio e  , the initial porosity 0j   it is also known, and 

the mean stiffness modulus ES   can be straightforward obtained. Therefore, the relation between the intrinsic porosity 
and the configurational force, for each characteristic soil, can be established and it is presented in Fig.6. The figure shows 
a wide dispersion among the different soil types, mainly due to the specific nature of each soil. 

Since Eq. (65) is an explicit function of the mean effective stress p  , it may be of interest to study the influence of 

this condition on the evolution of the configurational force. For this purpose, the approximation by Biarez and Hicher 
(1994) is adopted, as it is the equation that best fits the largest number of soils and has the widest range for the void 
ratio. Then, considering the coarse mesh, the vertical component of the configurational force at Node C is presented in 

Fig. 7, adopting different values of the mean effective stress p . This figure enables the determination of the 

configurational force for a characteristic soil type by knowing the porosity and mean effective stress 

 

Figure 7 con
yF -component in node C, 10x10 mesh, assuming Biarez and Hicher (1994) and different values of p  

6 CONCLUSIONS.  

A nonlinear mathematical framework for modeling the field equations for an elastic isotropic non saturated soil 
with pores filled with air and water in the material frame of reference was developed, and the configurational forces 
were assessed via Eshelbian mechanics giving a radically different role to pore phase  

The equivalent strain concept developed for a single pore in references, which is crucial in configurational force 
analysis, has been extended to multiple families of interacting prestressed pores using micromechanical theory. The 
present work generalizes the aforementioned references; specifically, through the convergence analysis presented 
showing that Alhasadi & Salvatore (2017) represent a special case within the framework of the current study 

Based upon the interaction energy concept, a simple expression for the energy involved in pinpointing the 
configurational forces acting in partially saturated soil problems was obtained extending the concept beyond references. 
Furthermore, the conditions in which this energy boils down to that of references was settled down 

Using microporomechanical techniques for strain energy evaluation regarding Bishop’s effective stress concept as 
well as the extended interaction energy concept, a concise expression for the Eshelby/Maxwell second-order stress 
tensor in the context of pseudomomentum balance was obtained. 

Each pore can be considered a defect from the configurational perspective, as it perturbs the overall stress field due 
to its distinct mechanical properties. This perturbation, in turn, gives rise to configurational forces. The evolution of these 
forces across different loading stages was analyzed using the Finite Element Method (FEM) along with an in-depth 
discussion about the problem sensitive with the spatial discretization, material properties, soil characteristics and 
confinement effective pressure 

 
Editor: Eduardo Alberto Fancello and Paulo de Tarso Mendonça 
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