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Abstract 
This study presents an enhanced finite element method (FEM) integrated with the improved first-order shear 
deformation theory (i-FSDT) for analyzing the natural frequencies of functionally graded sandwich (FGSW) 
plates resting on a variable elastic foundation (VEF) with uncertain input parameters. The FGSW plates are 
composed of two functionally graded (FG) face layers and a homogeneous or FG core layer. The proposed 
method is validated by comparing it with existing benchmark solutions to ensure its accuracy and reliability. 
In addition, the study explores the effects of geometric configurations, material properties, foundation types, 
and boundary conditions (BCs) on the natural frequencies of FGSW plates. To address uncertainty in input 
parameters, Monte Carlo simulation (MCS) is employed to determine the probabilistic range of natural 
frequencies. The numerical and graphical results show that the uncertainties of the input parameters interact 
to greatly affect the natural frequency of sandwich plates. 
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The FGSW plate (Pattern 1) 
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The FGSW plate (Pattern 2) 
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1  INTRODUCTION 

Sandwich structures are typically constructed of two thin, high-strength laminates with a thick, 
lightweight core. This design provides exceptional bending stiffness with optimized weight. In addition, 
sandwich panels also have excellent sound and thermal insulation properties. However, the susceptibility to 
stress concentrations at load-bearing points and potential weaknesses due to geometric or material 
inconsistencies are limitations that need to be considered. So, the investigation of their mechanical behavior is 
necessary and of practical significance in engineering. Several typical deformation theories have been proposed 
to study sandwich structures, such as the FSDT (Do & Tran, 2024; Hosseini-Hashemi, Taher, Akhavan, & Omidi, 
2010; Luat et al., 2021; Thanh, Van Ke, Hoa, & Trung, 2021; Tran & Le, 2023), the higher-order shear deformation 
theory (HSDT) (J. Reddy, 2000, 2011; Talha & Singh, 2010; H.-T. Thai & Kim, 2013; A. M. Zenkour, 2006, 2013b), 
nth-order shear deformation theory (Yaghoobi & Fereidoon, 2014), or quasi-3D theory (Mantari & Soares, 2013; 
Neves, Ferreira, Carrera, Cinefra, Roque, et al., 2012; Sobhy & Al Mukahal, 2023), and many refined shear 
deformation theories. 

Several typical works have explored the mechanical behaviors of sandwich plates. For example, A. M. 
Zenkour (2013a) used an exact solution to analyze the bending of FGSW plates. Zarga (2019) presented an exact 
method based on quasi-3D theory to examine the thermomechanical bending of FGSW plates. Alibeigloo and 
Alizadeh (2015) analyzed the frequencies and static problems of FGSW plates using the differential quadrature 
method (DQM) within the framework of third-order shear deformation theory (TSDT). Natarajan and Manickam 
(2012) examined the mechanical response of FGSW plates using an efficient quasi-3D theory. Li, Iu, and Kou 
(2008) applied TSDT to investigate the frequencies of FGSW plates. (Neves et al., 2017; Neves, Ferreira, Carrera, 
Cinefra, Jorge, et al., 2012) examined the static and buckling of FGSW plates using zigzag theory based on HSDT. 
Liu and Jeffers (2017) employed layer-wise displacement theory and isogeometric analysis (IGA) to analyze 
FGSW plates. Additionally, studies on static and dynamic response of sandwich plate can be found in other 
sources (Neves et al., 2013; Q.-H. Pham, Nguyen, & Tran, 2022; Q.-H. Pham, Tran, & Nguyen, 2023a, 2023b; Q. 
H. Pham, Tran, Zenkour, & Nguyen-Thoi, 2023; H.-T. Thai, Nguyen, Vo, & Lee, 2014; Tran & Truong Thi Huong, 

2024; Tran, Zenkour, & Pham, 2025; A. Zenkour, 2005). 
In the last few years, there has been a growing interest among researchers in exploring plates and shells 

supported by elastic foundations (EF). Commonly used foundation models in such studies include the Winkler 
Foundation (WF), a one-parameter model (Katsikadelis & Armenakas, 1984); Pasternak Foundation (PF), a two-
parameter model (Avcar & Mohammed, 2018); and Kerr Foundation (KF), a three-parameter model (Keshtegar, 
Motezaker, Kolahchi, & Trung, 2020). Among these, the two-parameter Pasternak model is frequently 
employed, while the Kerr model can be reduced to the other two foundation models. Several authors have 
concentrated on examining the mechanical response of structures supported by EFs, including (Tounsi et al., 
2024; Tounsi, Mostefa, Attia, et al., 2023; Tounsi, Mostefa, Bousahla, et al., 2023), (Belabed, Bousahla, Houari, 
Tounsi, & Mahmoud, 2018; Belabed, Tounsi, Al-Osta, Tounsi, & Minh, 2024), Bounouara et al. (2023), Gawah et 
al. (2024), and Lafi et al. (2024). Moreover, additional numerical results related to the mechanical behavior  
analysis of structures resting on EFs can be found in references (Bouadi, Bousahla, Houari, Heireche, & Tounsi, 
2018; Do, Nguyen, Tran, Le, & Pham, 2023; Le, Tran, Pham, & Pham, 2025; Mudhaffar et al., 2023; T. T. Nguyen, 
Le, Tran, & Pham, 2024; V. C. Nguyen, Tran, Sobhy, Hoang, & Hoa Pham, 2025; Q.-H. Pham et al., 2023b; Tran & 
Truong Thi Huong, 2024; Tran et al., 2025). 

 
The FEM was first introduced by Clough (1960). This method involves discretizing the problem domain 

into smaller, geometrically simpler components known as "finite elements". Within each element, displacement 
variables are represented using shape functions. The accuracy of structural analysis using FEM improves with 
higher-order shape functions. However, employing higher-order shape functions also introduces mathematical 
complexity. Today, FEM is widely used in structural analysis and offers significant advantages over analytical 
methods, particularly for structures with complex geometries and arbitrary boundary conditions (Akbaba, 
Yıldırım, & Canbaloğlu, 2022; V. C. Nguyen, Tran, Nguyen-Thoi, & Pham, 2022; Uddin, Rasel, Adewole, & Al 
Kalbani, 2022; Vu, Pham, Tran, & Pham, 2023). 

Although the use of a four-node element (so-called Q4 element) has been a convenient and effective 
method for analyzing the mechanical behavior of structures, yielding promising preliminary results, it becomes 
evident that relying on only five degrees of freedom (DOFs) per node-based on Lagrange interpolations with a 
shear correction factor-fails to fully satisfy the stress-free conditions at the upper and lower surfaces of plates. 
To address this issue, several methods have been proposed, including IGA (C. H. Thai, Nguyen-Xuan, & Phung-
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Van, 2023), an exact solution based on HSDT (Djilali et al., 2022), FEM combined with TSDT based on Hermite 
and Lagrange approximations (Do & Pham, 2023), and others. Although these methods offer high accuracy, their 
complex mathematical formulations and/or the increased number of DOFs lead to higher computational costs, 
particularly when combined with MCS for uncertain natural frequency analysis. To address these constraints, 
our work employs i-FSDT. 

In traditional analysis, it is often assumed that the input parameters are deterministic. However, because 
of random differences in construction, manufacturing methods, aging, and operational circumstances, these 
parameters are frequently unclear and are best described by probability density functions (PDFs). As a result, 
state functions that represent design conditions cannot be determined with certainty by employing 
deterministic design methods. The stochastic design technique revolves around evaluating the state function 
within the context of the PDF for uncertain parameters (Kapur & Lamberson, 1977; Smith, 2024). These methods 
provide insights into structural natural frequencies and allow reliability-based design improvement. 

The mechanical behavior of composite structures has garnered significant attention from scientists 
worldwide. Despite the numerous advantages of composite structures, a key drawback is the occurrence of 
delamination and the discontinuity of transverse shear stress along the plate's thickness. A sandwich structure, 
a type of composite structure, features a thick, lightweight core layer protected by two outer skin layers that 
are highly durable and heat-resistant. This combination of material layers ensures the continuity of shear stress 
through the plate's thickness. The primary goal of this study is to develop an enhanced FEM based on the 
classical Q4 element for analyzing FGSW plates supported by VEF. After validating the accuracy and performance 
of the proposed elements, this work also examines the impact of geometric parameters, material properties, 
type of foundations, and BCs on the natural frequency of FGSW plates supported by the VEF. Additionally, the 
natural frequency of FGSW plates under uncertain input parameters is fully explored. 

2 THEORETICAL FORMULATION 

2.1 The FGSW plate model 

Considering rectangular FGSW plates with a hardcore (Pattern 1) and a softcore (Pattern 2), as shown in 
Figure 1. The group of ℎ1 − ℎ2 − ℎ3 represents the thickness ratios of the bottom, the core, and the top layer 
of plates (also referred to as the "scheme"); ℎ = ℎ1 + ℎ2 + ℎ3 is the total thickness of the plate. 
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a) The FGSW plate (Pattern 1). b) The FGSW plate (Pattern 2). 

Figure 1 The FGSW plate model placed on the VEF. 

The volume 𝑉𝑐
(𝑖)

 of the ceramic phase of each layer is determined by Akavci (2016): 
+ For Pattern 1: 

{
 
 

 
 𝑉𝑐

(1)
= (

𝑧 − 𝑧1
𝑧2 − 𝑧1

)
𝑘

𝑧 ∈ [𝑧1; 𝑧2]

𝑉𝑐
(2)
= 1 𝑧 ∈ (𝑧2; 𝑧3)

𝑉𝑐
(3)
= (

𝑧 − 𝑧4
𝑧3 − 𝑧4

)
𝑘

𝑧 ∈ [𝑧3; 𝑧4]

 (1a) 
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+ For Pattern 2: 

{
 
 

 
 𝑉𝑐

(1)
= 1 − (

𝑧 − 𝑧1
𝑧2 − 𝑧1

)
𝑘

𝑧 ∈ [𝑧1; 𝑧2]

𝑉𝑐
(2)
= 0 𝑧 ∈ (𝑧2; 𝑧3)

𝑉𝑐
(3)
= 1 − (

𝑧 − 𝑧4
𝑧3 − 𝑧4

)
𝑘

𝑧 ∈ [𝑧3; 𝑧4]

 (1b) 

The effective material properties of FGSW plates are determined by 

𝑃(𝑖)(𝑧) = 𝑃𝑐𝑉𝑐
(𝑖)
+ 𝑃𝑚 (1 − 𝑉𝑐

(𝑖)
) ,    𝑖 = 1,2,3 (2) 

here, 𝑃(𝑖)(𝑧) represents the material characteristics of each layer, such as Young's modulus, Poisson's ratio, and 
mass density; 𝑘 is the power-law index. Additionally, Figure 2 shows the plot of the effective Young's modulus 
versus the thickness of the FGSW (Al/Al2O3) plate (1-2-1) with the mechanical properties provided in Table 1. 

 
a) Pattern 1 

 
b) Pattern 2 

Figure 2 The effective Young's modulus via the FGSW plate thickness (scheme 1-2-1). 

Table 1 The mechanical properties of component materials. 

Materials Young's modulus (GPa) Density (kg/m3) Poisson's ratio 

Al2O3 380 3800 0.3 
ZrO2 151 3000 0.3 

Al 70 2707 0.3 

 

2.2 The VEF model 

In reality, the elastic foundation (EF) is not uniform and does not provide uniform support across the 
plate. In this study, we employ three heterogeneous foundation models to represent the non-uniform support 
of EFs better and more realistically. These foundation models ensure continuity, satisfying integrability 
conditions when calculating foundation stiffness matrices. The plate is considered to rest on the PF model, as 
specified by Keshtegar et al. (2020): 

ℝ = 𝑘1𝑤 − 𝑘2 (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) (3) 

where ℝ represents the reaction force of the EF, and 𝑘1 is the Winkler parameter, which is dependent on x-axis 
only. It is assumed to have a linear, parabolic, or sinusoidal variation, given by Pradhan and Murmu (2009): 

𝑘1 =
𝛫1ℎ

3

𝑎4

{
 
 

 
 1 + 𝜇

𝑥

𝑎
𝑙𝑖𝑛𝑒𝑎𝑟         (Type 1)

1 + 𝜇 (
𝑥

𝑎
)
2

𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐  (Type 2)

1 + 𝜇𝑠𝑖𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 (Type 3)

 (4) 

where 𝛫1 is a constant and 𝜇 is a variable parameter, 𝑘2 denotes the shear layer stiffness. Notably, 
when 𝜇 is zero, the VEF simplifies to the PF. 
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2.3 The r-FSDT 

According to the FSDT, the displacement of any point on FGSW plates is defined by J. N. Reddy (2003): 

{

𝑢 (𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦)

𝑣 (𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦)

𝑤 (𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)

 (5) 

where 𝑢0, 𝑣0, 𝑤0, 𝜃𝑥, 𝜃𝑦 are the displacement variables in the mid-plane of plates (see Fig. 3). 

The normal strain is represented by 
𝜺 = 𝜺𝑚 + 𝑧𝜿, (6) 

in which 
The membrane strain as 

𝜺𝑚 = {

𝑢0,𝑥
𝑣0,𝑦

𝑢0,𝑦 + 𝑣0,𝑥
}. (7) 

The bending strain as 

𝜿 = {

𝜃𝑥,𝑥
𝜃𝑦,𝑦

𝜃𝑥,𝑦 + 𝜃𝑦,𝑥

}. (8) 

The transverse shear strain as 

𝜸 = 𝑔(𝑧) {
𝑤0,𝑥 + 𝜃𝑥
𝑤0,𝑦 + 𝜃𝑦

}, (9) 

with 𝑔(𝑧) is introduced by H. N. Nguyen, Hong, Vinh, Quang, and Thom (2019): 

𝑔(𝑧) =
5

4
cos (

𝜋𝑧

ℎ
). (10) 

The stress-strain relationships based on Hooke's law by J. N. Reddy (2003): 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄44]

 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

, (11) 

where 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1−𝜐2
,     𝑄12 = 𝑄21 =

𝜐𝐸(𝑧)

1−𝜐2
, 𝑄44 = 𝑄55 = 𝑄66 =

𝐸(𝑧)

2(1+𝜐)
. (12) 

The i-FSDT is chosen as a practical compromise; it significantly improves accuracy over classical FSDT and 
satisfies the condition that the shear stress is curvilinear and zero at the top and bottom surfaces of the plate 
while avoiding the complexity and computational burden of HSDT, making it suitable for many real-world 
structural analyses, especially when combined with MCS. 

2.4 Weak form of FGSW plates 

Using Hamilton's principle, the governing equations for plates are determined by J. N. Reddy (2003): 

∫ (𝛿𝒰 + 𝛿𝑈𝑓 − 𝛿𝒦)d𝑡 = 0
𝑡2
𝑡1

, (13) 

where 
The strain energy 𝒰 as 

𝒰 =
1

2
∫ (𝜺𝑇𝑫𝜺+ 𝜸𝑇𝔸𝑝𝜸)dψψ

, (14) 

with 

 𝜺 = [𝜺𝑚 𝜿]𝑇,     𝑫 = [
𝔸 𝔹
𝔹 ℂ

], (15) 

and 𝔸, 𝔹, ℂ, and 𝔸𝑝 are calculated by 

(𝔸,𝔹, ℂ) = ∫ (1, 𝑧, 𝑧2) [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

]
ℎ/2

−ℎ/2
d𝑧, (16) 

𝔸𝑝 = ∫ 𝑔(𝑧) [
𝑄55 0
0 𝑄44

]
ℎ/2

−ℎ/2
d𝑧. (17) 

The foundation's strain energy 𝑈𝑓 as 
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𝑈𝑓 =
1

2
∫ (𝑘1𝑤

2 + 𝑘2(𝑤,𝑥
2 +𝑤,𝑦

2))
𝜓

d𝜓 (18) 

The kinetic energy of the plate 𝒦 as 

𝒦 =
1

2
∫ 𝒖̇𝑇𝕄𝒖̇d𝜓
ψ

. (19) 

in which 𝒖𝑇 = [𝑢0 𝑣0 𝑤0 𝜃𝑥 𝜃𝑦], and 𝕄 is the mass matrix determined by 

𝕄 =

[
 
 
 
 
𝑚1 0 0 𝑚2 0

𝑚1 0 0 𝑚2

𝑚1 0 0

𝑚3 0

sym 𝑚3]
 
 
 
 

, (20) 

with {𝑚1,𝑚2, 𝑚3} = ∫ 𝜌(𝑧)
ℎ 2⁄

−ℎ 2⁄
{1, 𝑧, 𝑧2}d𝑧. 

Replacing Eq. (14), Eqs. (18)-(19) into Eq. (13), the weak form of FGSW plates is defined by 

∫ 𝛿𝜺𝑇𝑫𝜺d𝜓 + ∫ 𝛿𝜸𝑇𝔸𝑝𝜸d𝜓ψψ
+ ∫ ℝ𝛿𝒘

ψ
d𝜓 = ∫ 𝒖𝑇𝕄𝒖̈d𝜓

ψ
. (21) 

2.5 Finite element procedure 

In this article, the Q4 element with 5 DOFs per node offers a good balance of accuracy, computational 
efficiency, and compatibility with advanced plate theories, making it a reliable choice for the structural analysis 
of plates. The element displacement vector is introduced by 
𝒒𝑒 = [𝒒1

𝑇 𝒒2
𝑇 𝒒3

𝑇 𝒒4
𝑇]𝑇, (22) 

with the node displacement vector is shown in Figure 3 by Ferreira (2009): 
𝒒𝑖 = {𝑢0𝑖 𝑣0𝑖 𝑤𝑖 𝜃𝑥𝑖 𝜃𝑦𝑖}         𝑖 = 1,2,3,4. (23) 

x

y

z

01u

01v

02u

02v

03u

03v

04u

04v

1x1 y 2x2 y

3x3 y4x4 y

01w 02w

03w04w

node1 node2

node3node4

 
Figure 3 The Q4 element model with five DOFs. 

Replacing Eq. (22) into Eq. (4), the strain vectors can be determined by 
𝜺 = [𝐁1 𝐁2]𝒒𝑒, (24a) 
𝜸 = 𝐁3𝒒𝑒, (24b) 

with 

𝐁1 = ∑ [

𝑁𝑖,𝑥 0 0 0 0

0 𝑁𝑖,𝑦 0 0 0

𝑁𝑖,𝑦 𝑁𝑖,𝑥 0 0 0
]4

𝑖=1 , (25a) 

𝐁2 = ∑ [

0 0 𝑁𝑖,𝑥 0 0

0 0 0 𝑁𝑖,𝑦 0

0 0 𝑁𝑖,𝑦 𝑁𝑖,𝑥 0
]4

𝑖=1 , (25b) 

and 

𝐁3 = ∑ [
0 0 𝑁𝑖,𝑦 0 𝑁𝑖
0 0 𝑁𝑖,𝑥 𝑁𝑖 0

]4
𝑖=1 . (25c) 

Now, the vibration equation of the plate element as 

𝑴𝑒𝒒𝑒̈ + (𝑲𝑒 +𝑲𝒆
𝑓
)𝒒𝑒 = 𝟎 (26) 
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where 
The element stiffness matrix 𝑲𝑒 as 

𝑲𝑒 = ∫ ({

𝑩1
𝑩2
𝑩3

}

𝑇

[

𝔸 𝔹 0
𝔹 ℂ 0
0 0 𝔸𝑝

] {

𝑩1
𝑩2
𝑩3

})𝜓
d𝜓. (27) 

The foundation element stiffness matrix 𝑲𝒆
𝑓

 as 

𝑲𝒆
𝑓
= 𝑘1∫ 𝐍𝑤

T𝐍𝑤d𝜓 + k2∫ [(
∂𝐍𝑤
∂x

)
T

(
∂𝐍𝑤
∂x

) + (
∂𝐍𝑤
∂y

)
T

(
∂𝐍𝑤
∂y

)]d𝜓
𝜓𝜓

 (28) 

The element mass matrix 𝑴𝑒 as 

𝜧𝑒 = ∫ 𝑵𝑇𝕄𝑵
𝜓

d𝜓, (29) 

in which 𝑵 is the shape function matrix defined by 

𝑵 = ∑

[
 
 
 
 
 
𝑁𝑖 0 0 0 0

𝑁𝑖 0 0 0

𝑁𝑖 0 0

𝑁𝑖 0

sym 𝑁𝑖]
 
 
 
 
 

4
𝑖=1 . (30) 

Then, the governing equation of the FGSW plate as 

𝑴𝒒̈ + (𝑲+𝑲𝑓)𝒒 = 𝟎 (31) 

herein, 𝑲 = ∑ 𝑲𝑒 𝑛𝑒𝑙 , 𝑴 = ∑ 𝑴𝑒𝑛𝑒𝑙  and 𝑲𝑓 = ∑ 𝑲𝑒
𝑓

𝑛𝑒𝑙  denote the global stiffness matrix, the global mass 
matrix and the global foundation stiffness matrix, respectively. These global matrices are assembled from 
element matrices based on the index matrix of the finite element algorithm (Ferreira, 2009), with "nel" being 
the total number of elements. 

The assumption that 𝒒 = 𝒒0 sin(𝜔𝑡) ≠ 0, we get: 

|𝑲 + 𝑲𝑓 −𝜔2𝑴| = 𝟎, (32) 

with 𝜔 is the natural frequency. 
In this study, a Dirichlet boundary condition is applied by imposing displacement constraints along the 

plate edges (see Figure 4). This condition is commonly used in FEM simulations due to its simplicity and 
efficiency, allowing flexible imposition of boundary conditions without the need to resolve the problem from 
scratch as in analytical methods. 

- Simply supported (S): 
𝑢0 = 𝑤0 = 𝜃𝑥 = 0 at 𝑦 = 0 & 𝑦 = 𝑏 and/or 𝑣0 = 𝑤0 = 𝜃𝑦 = 0 at 𝑥 = 0 & 𝑥 = 𝑎. 

- Clamped (C):  
𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0. 

SSSS

x

S

S S
S x

SSCC

C

C S
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SCSC

x
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CCCC

C
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C

y y y y

 
Figure 4 The type of BCs of FGSW plates. 

2.6 The uncertain input parameters 

In the conventional design approach, design parameters such as load (L) and strength (S) are considered 
distinct and predictable values. The relationship between L and S is fully understood as the design condition, 
which includes system parameters like frequency. A system is considered secure when its load capacity 
significantly exceeds the applied load (Do & Tran, 2024; Q.-H. Pham et al., 2023b). However, in real-world 
situations, these parameters usually behave as uncertain variables, following distribution patterns shown in 
Figure 5a. Even with traditional safety-focused design principles, there are still vulnerable zones (indicated by 
the slashed section), where the strength parameter value is lower than that of the load parameter. Additionally, 
the shape of the dangerous region is influenced by the distribution forms. This critical region can be more easily 
quantified and managed using reliability theory. This approach involves calculating the system's failure 
probability by analyzing the distribution of the state function G (G=S-L). The function G depends on the 
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distribution of the parameters S and L. A failure occurs when 𝐆 < 0, while no failure is observed when 𝐆 ≥ 0 
(see Figure 5b). 

In this work, the uncertain variables include Young's modulus 𝐸𝐴𝑙 , 𝐸𝐴𝑙2𝑂3; mass densities 𝜌𝐴𝑙, 𝜌𝐴𝑙2𝑂3; and 
power-law index 𝑘; and indicated by the vector 𝝃 = [𝜉𝑖]𝑖=1:𝑛 = [𝐸𝐴𝑙 𝐸𝐴𝑙2𝑂3 𝜌𝐴𝑙 𝜌𝐴𝑙2𝑂3 𝑘] with n is the 
total number of uncertain variables. The uncertain variables 𝜉𝑖 are independent and follow a standard 

distribution with a mean 𝜉𝑖̅ and uncertain parameter 𝛾𝑖. 

𝜉𝑖 = 𝜉𝑖̅(1 + 𝛾𝑖), (33) 
here 𝛾𝑖 is described by the mean 𝛾𝑖̅ and the standard deviation 𝜎𝛾𝑖. 
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Figure 5 The PDF in uncertain variables. 

The characteristics of the uncertain natural frequency are defined by Q.-H. Pham et al. (2023b): 

𝜏̅ =
1

𝑁𝑠
∑ 𝜏𝑖
𝑁𝑠
𝑖=1 ,     𝜎𝜏 = √

1

𝑁𝑠−1
∑ (𝜏𝑖 − 𝜏̅)2
𝑁𝑠
𝑖=1 , 𝑆𝑘𝜏 =

1

𝑁𝑠
∑ (

𝜏𝑖−𝜏̅

𝜎𝜏
)
3𝑁𝑠

𝑖=1 ,     𝐾𝑢𝜏 =
1

𝑁𝑠
∑ (

𝜏𝑖−𝜏̅

𝜎𝜏
)
4𝑁𝑠

𝑖=1 . (34) 

here, 𝑁𝑠 is the sample size, 𝜏̅ is the mean; 𝜎𝜏 is the standard deviation; 𝑆𝑘𝜏 is the skewness and 𝐾𝑢𝜏 is the 
kurtosis of the distribution. 

Note that MCS is a flexible and easy-to-implement method for structural analysis when input parameters 
are uncertain. It can handle complex, nonlinear models and does not require analytical solutions. However, its 
main drawback is the high computational cost, as a large number of simulations are needed to achieve accurate 
results, especially for rare event estimation. Therefore, MCS is well-suited for general probabilistic assessments 
but may be inefficient for problems requiring fast computation or very low failure probability estimation. 

3 VERIFICATION AND RESULTS NUMBER 

In this section, we created a MATLAB program to do the computations with MATLAB version R2018a. The 
computations were carried out using a laptop running Windows 10 Pro and equipped with an Intel(R) Core(TM) 
i5-4300M CPU @ 2.60GHz and 8.0 GB of RAM. The dimensionless parameters are given as 

𝜔∗ = 𝜔
𝑎2

ℎ0
√
𝜌0

𝐸0
; 𝜌0 = 1𝑘𝑔/𝑚

3; 𝐾1 = 𝑘1
𝑎4

𝐷𝑐
;  𝐾2 = 𝑘2

𝑎2

𝐷𝑐
 with 𝐷𝑐 =

𝐸Al2O3ℎ0
3

12(1−𝜈Al2O3
2 )

 (35) 

3.1 Verification studies 

Example 1: Considering the SSSS square FG (Al/Al2O3) plate placed on EF. The dimensionless frequency is 

provided by  𝜔∗∗ = 𝜔ℎ√
𝜌𝐴𝑙

𝐸𝐴𝑙
 . Observing that the obtained results converge at a mesh size of 14 × 14 and well 

agree with those of exact methods employing quasi-3D (Shahsavari, Shahsavari, Li, & Karami, 2018) and TSDT 
(Baferani, Saidi, & Ehteshami, 2011), as given in Table 2 and displayed in Figure 6. However, to ensure accuracy 
and achieve high smoothness of the deformation field, the mesh size of 16 × 16 is used for the following studies. 
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Figure 6 Convergence of the proposed element. 

Table 2 The dimensionless frequencies 𝜔∗∗ of FG (Al/Al2O3) plates placed on EF with k=1 and ℎ = 𝑎/20. 

(K1, K2) Method 
Meshing 

8 × 8 10 × 10 12 × 12 14 × 14 16 × 16 18 × 18 

(0,0) 
Present 0.0226 0.0224 0.0224 0.0223 0.0223 0.0223 

Shahsavari et al. (2018) 0.0227 
Baferani et al. (2011) 0.0226 

(100,100) 
Present 0.0388 0.0386 0.0386 0.0385 0.0385 0.0385 

Shahsavari et al. (2018) 0.0388 
Baferani et al. (2011) 0.0386 

Example 2: We examine the SSSS FGSW (Al/ZrO2) plate placed on EF, considering both thin (𝑎/ℎ = 100) 

and moderately thick (𝑎/ℎ = 10) configurations. The dimensionless frequencies 𝜔∗ = 𝜔
𝑎2

ℎ
√
𝜌0

𝐸0
 with (𝜌0 =

1𝑘𝑔/𝑚3, 𝐸0 = 1𝐺𝑃𝑎) are provided in Table 3. It is evident that the results obtained are in full agreement with 
those of Akavci (2016), who used an exact solution based on the hyperbolic shear deformation theory. 

Table 3 The frequencies 𝜔∗ of FGSW plates placed on EF. 

𝑎/ℎ k Scheme 

Foundation stiffness 
(0,0)  (10,10)  (100,100)  

Present 
Akavci 
(2016) 

Present 
Akavci 
(2016) 

Present 
Akavci 
(2016) 

10 0 2-1-2 1.29798 1.29692 1.62162 1.61603 3.33662 3.31161 

1-1-1 1.29798 1.29692 1.62162 1.61603 3.33662 3.31161 

2-2-1 1.29798 1.29692 1.62162 1.61603 3.33662 3.31161 

2 2-1-2 0.99494 0.99389 1.40948 1.40287 3.31005 3.28172 

1-1-1 1.01906 1.01785 1.42350 1.41684 3.30402 3.27584 

2-2-1 1.04322 1.04293 1.43930 1.43347 3.30460 3.27742 

10 2-1-2 0.93809 0.93742 1.3774 1.37067 3.32436 3.29462 

1-1-1 0.95353 0.95372 1.38365 1.37733 3.31076 3.28050 

2-2-1 0.97969 0.98239 1.39945 1.39522 3.30840 3.28023 

100 0 2-1-2 1.34539 1.34038 1.66396 1.65899 3.37595 3.36942 
1-1-1 1.34539 1.34038 1.66396 1.65899 3.37595 3.36942 
2-2-1 1.34539 1.34038 1.66396 1.65899 3.37595 3.36942 

2 2-1-2 1.02204 1.01820 1.43385 1.43000 3.34037 3.33441 
1-1-1 1.04663 1.04279 1.44837 1.44444 3.33449 3.32829 
2-2-1 1.0722 1.06946 1.46539 1.46227 3.33575 3.32997 
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10 2-1-2 0.96421 0.96023 1.40068 1.39670 3.35438 3.34801 
1-1-1 0.97871 0.97582 1.40639 1.40285 3.34041 3.33315 
2-2-1 1.00607 1.00620 1.42325 1.42192 3.33868 3.33266 

3.2 Natural frequency analysis with deterministic parameters 

 Firstly, the first six eigenmodes of FGSW (Al/Al2O3) plates in three types of VEFs with Pattern 1 are plotted 
in Figure 7 and with Pattern 2 as shown in Figure 8. It can be observed that the deformation in each case is 
asymmetrical, depending on the support by the type of EFs and BCs. Generally, the greatest deformation occurs 
in the area of sandwich plates that is less supported by the foundation. As shown in Figure 9, for each Pattern, 
the sandwich plate supported by Type 3 results in the largest natural frequency, followed by Type 2 and the 
smallest by Type 1. In addition, for each foundation style, there will be equal natural frequency pairs, i.e., the 
same eigenmode, but only different in viewing direction. Besides, the sandwich plate with Pattern 2 results in 
the first frequency being larger than that of Pattern 1, however, the opposite happens with the higher 
frequencies, i.e., the higher frequencies of the FGSW plate of Pattern 1 will be larger than that of Pattern 2. It 
can be seen that the natural frequency of FGSW plates depends simultaneously on both the overall stiffness and 
the overall mass of the sandwich plates as well as the elastic foundation stiffness, so it is necessary to study the 
influence of the schemes, power-law index, foundation types, and Patterns on the natural frequency of FGSW 
plates. 

Secondly, Table 4 and Figure 10 provide the natural frequency of the FGSW plates when the input 
parameters are varied. It can be seen that, with Pattern 1 (hardcore), the thicker the ceramic defect, the lower 
the natural frequency corresponding to the schemes 2-1-2, 1-2-2,1-2-1, 1-4-1, and 1-0-1. Although the ceramic 
core thickness increases, the sandwich plate becomes stiffer, but the mass of the sandwich plate also increases 
faster, so the natural frequency decreases. In addition, as the power-law index increases, the oscillation 
frequency also increases. This is because increasing k leads to a decrease in the stiffness of plates, but the mass 
decreases even faster. With Pattern 2 (softcore), the natural frequency changes with a more complex rule. 
Specifically, the thicker the metal core, the higher the natural frequency corresponds to diagrams 2-1-2, 1-2-2, 
1-2-1, 1-4-1 and 1-0-1. Increasing k results in a decrease in the natural frequency of schemes 1-0-1, 2-1-2, and 
1-2-2 supported by Type 1; and the scheme 1-0-1 of Type 2 and Type 3. As 𝑘 increases, the natural frequency of 
plates increases, corresponding to the schemes 2-1-2, 1-2-2, 1-2-1, and 1-4-1 (except k=1) supported by Type 2 
and Type 3. In the remaining cases, k=1 results in the maximum frequency. 

Moreover, Table 5 and Table 6 list the first six natural frequencies corresponding to different input 
parameters and BCs for the two Patterns. It can be seen that the frequencies increase respectively with the SSSS, 
SSCC, SCSC, and CCCC, as expected. 

3.3 Natural frequency analysis with uncertain parameters 

In this examination, the authors assume that uncertain quantities have the same standard deviation at 
different levels 𝜎𝛾 = 0.01; 0.1. The average value of the input uncertain parameters 𝜉𝑖̅ is obtained as the 

deterministic values listed in Table 1, i.e.: 𝐸̅𝐴𝑙 = 70 GPa; 𝐸̅Al2O3 = 380 GPa; 𝜌̅Al = 2707 kg/m
3; 𝜌̅Al2O3 =

3800 kg/m3, and 𝑘̅ = 1. Figure 11 presents the PDF of the uncertain variable 𝐸Al2O3 whose width increases 

with increasing standard deviation. To account for the uncertainty in design parameters and determine the 
natural frequency of FGSW plates, a sampling size of 𝑁𝑠 = 10

4 is employed. 
Figure 12 illustrates the variation range of the natural frequency of FGSW plates corresponding to 

standard deviations 𝜎𝛾 = 0.03 and 0.1 under uncertain input parameters listed in Table 7. It is observed that 

the frequency range associated with the uncertain parameters 𝐸Al2O3 and 𝜌Al2O3forms a circular distribution, 

while the range for 𝐸Al, and 𝑘 appears elliptical. In contrast, the variation due to 𝜌Al results in a nearly circular 
shape. These results indicate that uncertainties of 𝐸Al2O3 and 𝜌Al2O3 have a more significant impact on the 

natural frequency compared to 𝜌Al, 𝐸Al and 𝑘. Furthermore, the distribution of the natural frequency (with 
skewness 𝑆𝑘𝜏 = 0.0273 and kurtosis 𝐾𝑢𝜏 = 2.9551) closely resembles a standard distribution, as shown in 
Figure 12f. It is noteworthy that a skewness of zero and a kurtosis of three correspond to a mesokurtic (standard) 
distribution. 

Finally, Table 8 and Figure 13 illustrate the impact of the standard deviation 𝜎𝛾 on the probability 

distribution function of the natural frequency of the FGSW plate. As expected, an increase in 𝜎𝛾 results in a 

corresponding increase in the skewness 𝑆𝑘𝜏 of the distribution. A negative skewness value indicates a left-
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skewed leptokurtic distribution, whereas a positive skewness implies a right-skewed leptokurtic distribution. 
When 𝜎𝛾 is less than 0.1, the 𝐾𝑢𝜏 in all cases remains close to 3, which is consistent with that of a standard 

normal distribution. Kurtosis is a statistical measure that reflects the propensity of a distribution to produce 
outliers. A kurtosis value greater than 3 indicates a distribution that is more prone to outliers (leptokurtic), while 
a value less than 3 suggests a distribution with fewer outliers (platykurtic). 
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Foundation 
types 

The eigenmodes 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 

Type 1 

 
𝜔1
∗ = 2.5531 

 
𝜔2
∗ = 4.3703 

 
𝜔3
∗ = 4.3785 

 
𝜔4
∗ = 5.8132 

 
𝜔5
∗ = 5.8132 

 
𝜔6
∗ = 6.2721 

Type 2 

 
𝜔1
∗ = 2.3404 

 
𝜔2
∗ = 4.2516 

 
𝜔3
∗ = 4.2809 

 
𝜔4
∗ = 5.8132 

 
𝜔5
∗ = 5.8132 

 
𝜔6
∗ = 6.2053 

Type 3 

 
𝜔1
∗ =  2.8697 

 
𝜔2
∗ = 4.4689 𝜔3

∗ = 4.5572 
 

𝜔4
∗ = 5.8132 

 
𝜔5
∗ = 5.8132 

 
𝜔6
∗ = 6.3361 

Figure 7 The first six eigenmodes of FGSW plates (SSSS, /𝑏 = 1, 𝑎/ℎ = 10, 𝐾1 = 100,𝐾2 = 5, 𝜇 = 5, 𝑘 = 1, scheme 1-3-1, and Pattern 1). 
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Foundation 
types 

The eigenmodes 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 

Type 1 

 
𝜔1
∗ = 2.7240 

 
𝜔2
∗ = 4.1488 

 
𝜔3
∗ = 4.1488 

 
𝜔4
∗ = 4.3425 

 
𝜔5
∗ = 4.3564 

 
𝜔6
∗ = 5.8761 

Type 2 

 
𝜔1
∗ = 2.4796 

 
𝜔2
∗ = 4.1488 

 
𝜔3
∗ = 4.1488 

 
𝜔4
∗ = 4.1950 

 
𝜔5
∗ = 4.2349 

 
𝜔6
∗ = 5.8309 

Type 3 

 
𝜔1
∗ = 3.0882 

 
𝜔2
∗ = 4.1488 

 
𝜔3
∗ = 4.1488 

 
𝜔4
∗ = 4.4663 

 
𝜔5
∗ = 4.5745 

 
𝜔6
∗ = 5.8761 

Figure 8 The first six eigenmodes of FGSW plates (SSSS, /𝑏 = 1, 𝑎/ℎ = 10, 𝐾1 = 100,𝐾2 = 5, 𝜇 = 5, 𝑘 = 1, scheme 1-3-1, and Pattern.
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a) Pattern 1 

 
b) Pattern 2 

Figure 9 The first six natural frequencies of FGSW plates with different foundation types 
(SSSS, /𝑏 = 1, 𝑎/ℎ = 10, 𝐾1 = 100,𝐾2 = 5, 𝜇 = 5, 𝑘 = 1, and scheme 1-3-1). 

 

 
a) Pattern 1, Type 1 

 
b) Pattern 1, Type 2 

 
c) Pattern 1, Type 3 

 
d) Pattern 2, Type 1 

 
e) Pattern 2, Type 2 

 
f) Pattern 2, Type 3 

Figure 10 The frequencies of FGSW plates versus schemes and power-law index 
(CCCC, 𝑎/𝑏 = 1, 𝑎/ℎ = 20, 𝐾1 = 𝐾2 = 200, and 𝜇 = 50). 
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a) 𝜎𝛾 = 0.05 

 
b) 𝜎𝛾 = 0.1 

Figure 11 The PDF of the uncertain variable 𝐸𝐴𝑙2𝑂3 at different standard deviations. 
 

 
a) The range of natural frequency versus uncertain 

parameter 𝐸Al2O3 

 
b) The range of natural frequency versus uncertain 

parameter 𝐸Al 

 
c) The range of natural frequency versus uncertain 

parameter 𝜌Al2O3 

 
d) The range of natural frequency versus uncertain 

parameter 𝜌Al 
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e) The range of natural frequency versus uncertain 

parameter 𝑘 

 
f) The distribution function of the natural frequency 

(𝑆𝑘𝜏 = 0.0273;𝐾𝑢𝜏 = 2.9551) 

Figure 12 The natural frequency of FGSW plates with standard deviations 𝜎𝛾 = 0.01 

(SSSS, 𝑎/𝑏 = 1, 𝑎/ℎ = 25, 𝐾1 = 150,  𝐾2 = 15, 𝜇 = 20, scheme 2-1-2, Pattern 1, and Type 1). 

 
a) Pattern 1 (Skewness) 

 
b) Pattern 2 (Skewness) 

 
c) Pattern 1 (Kurtosis) 

 
d) Pattern 2 (Kurtosis) 

Figure 13 Effect of 𝜎𝛾 on distribution function of natural frequency of FGSW plates 

(CCCC, 𝑎/𝑏 = 1, 𝑎/ℎ = 15, 𝐾1 = 200,𝐾2 = 10, 𝜇 = 15, and scheme 1-2-1). 
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Table 4 The dimensionless natural frequencies of FGSW plates 
(CCCC, 𝑎/𝑏 = 1, 𝑎/ℎ = 20, 𝐾1 = 200,𝐾2 = 10, and 𝜇 = 10). 

Patterns Foundation 
types 

Thickness 
ratio 

Power-law index 𝑘 

0 1 2 4 10 

Patterns 1 Type 1 1-0-1 5.1801 5.2973 5.3633 5.443 5.5346 
2-1-2 5.1801 5.2427 5.2759 5.3177 5.3708 
1-2-2 5.1801 5.2078 5.2211 5.2393 5.2658 
1-2-1 5.1801 5.1895 5.1939 5.2012 5.2123 
1-4-1 5.1801 5.1765 5.1752 5.1754 5.1765 

Type 2 1-0-1 4.3390 4.3597 4.3950 4.4505 4.5213 
2-1-2 4.3390 4.3223 4.3307 4.3537 4.3913 
1-2-2 4.3390 4.3054 4.2991 4.3024 4.3166 
1-2-1 4.3390 4.2962 4.2842 4.2791 4.2811 
1-4-1 4.3390 4.2990 4.2859 4.2770 4.2717 

Type 3 1-0-1 6.5033 6.8134 6.9416 7.0669 6.8978 
2-1-2 6.5033 6.7261 6.8116 6.8914 6.9734 
1-2-2 6.5033 6.6552 6.7105 6.7603 6.8120 
1-2-1 6.5033 6.6187 6.6589 6.6929 6.7235 
1-4-1 6.5033 6.5731 6.5972 6.6171 6.6324 

Pattern 2 Type 1 1-0-1 5.6059 5.4779 5.3918 5.3114 5.2361 
2-1-2 5.6059 5.5372 5.4779 5.4211 5.3665 
1-2-2 5.6059 5.5732 5.5347 5.4974 5.4606 
1-2-1 5.6059 5.6062 5.5819 5.5581 5.5357 
1-4-1 5.6059 5.6297 5.6196 5.6083 5.5985 

Type 2 1-0-1 4.5781 4.5589 4.5032 4.4442 4.3848 
2-1-2 4.5781 4.5999 4.5672 4.5295 4.4892 
1-2-2 4.5781 4.6148 4.5978 4.5766 4.553 
1-2-1 4.5781 4.6381 4.6327 4.6228 4.6106 
1-4-1 4.5781 4.6431 4.6468 4.6461 4.6437 

Type 3 1-0-1 6.0086 6.9380 6.7959 6.6781 6.5762 
2-1-2 6.0086 7.0310 6.9210 6.8295 6.7499 
1-2-2 6.0086 7.1092 7.0281 6.9601 6.8989 
1-2-1 6.0086 7.1600 7.0977 7.0466 7.0046 
1-4-1 6.0086 7.2218 7.1828 7.1500 7.1252 

Table 5 The first six dimensionless natural frequencies of FGSW plates 
(𝑎/𝑏 = 1, 𝑎/ℎ = 25, 𝐾1 = 150,𝐾2 = 5, 𝜇 = 20, 𝑘 = 2, and Pattern 1). 

BCs Foundation 
types 

Thickness 
ratio 

Dimensionless natural frequencies 

𝜔1
∗ 𝜔2

∗  𝜔3
∗  𝜔4

∗ 𝜔5
∗  𝜔6

∗  
SSSS Type 1 1-0-1 4.6294 4.6294 5.6248 6.1306 6.5568 7.0345 

2-1-2 5.0418 5.0418 5.5210 6.0345 6.9649 7.1409 
1-2-2 5.3823 5.3823 5.4475 5.9844 6.9784 7.0792 
1-2-1 5.4109 5.5444 5.5444 5.9608 6.9898 7.0410 
1-4-1 5.3750 5.7700 5.7700 5.9587 7.0121 7.0752 

Type 2 1-0-1 4.1655 4.6294 4.6294 4.8044 5.8889 5.9117 
2-1-2 4.0904 4.7364 5.0418 5.0418 5.8274 5.8485 
1-2-2 4.0404 4.7119 5.3823 5.3823 5.7920 5.8935 
1-2-1 4.0159 4.7017 5.5444 5.5444 5.7751 5.9216 
1-4-1 3.9966 4.7210 5.7700 5.7700 5.7845 6.0373 

Type 3 1-0-1 4.6294 4.6294 6.5568 7.8435 7.8456 8.2470 
2-1-2 5.0418 5.0418 7.1409 7.7064 7.7095 8.1188 
1-2-2 5.3823 5.3823 7.6124 7.6181 7.6230 8.0472 
1-2-1 5.5444 5.5444 7.5647 7.5720 7.8527 8.0115 
1-4-1 5.7700 5.7700 7.5179 7.5292 7.9932 7.9999 
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SCSC Type 1 1-0-1 4.6294 5.9511 6.4126 7.2578 7.5053 7.9138 
2-1-2 5.0418 5.858 6.3239 7.1916 7.3894 7.8056 
1-2-2 5.3823 5.8020 6.2845 7.2081 7.3215 7.7590 
1-2-1 5.5444 5.7733 6.2654 7.2203 7.2871 7.7367 
1-4-1 5.7535 5.7700 6.2715 7.2663 7.3053 7.7474 

Type 2 1-0-1 4.4178 4.6294 5.0135 6.0474 6.1598 6.6618 
2-1-2 4.3551 4.9545 5.0418 6.0121 6.0854 6.5963 
1-2-2 4.3261 4.944 5.3823 6.0638 6.0653 6.6011 
1-2-1 4.3118 4.9404 5.5444 6.0557 6.0946 6.6054 
1-4-1 4.3138 4.9724 5.77 6.0801 6.2147 6.6658 

Type 3 1-0-1 4.6294 8.1774 8.3722 8.3735 8.7139 8.7146 
2-1-2 5.0418 8.2436 8.2456 8.5873 8.6042 8.9058 
1-2-2 5.3823 8.1609 8.1656 8.5124 8.5430 9.2080 
1-2-1 5.5444 8.1163 8.1241 8.4719 8.5129 9.1879 
1-4-1 5.7700 8.0722 8.0910 8.4385 8.5101 9.2075 

SSCC Type 1 1-0-1 5.2756 5.967 6.4574 6.4775 7.4064 7.5183 
2-1-2 5.7455 5.8752 6.3946 7.0326 7.3546 7.4035 
1-2-2 5.8216 6.1335 6.366 7.3368 7.3975 7.5076 
1-2-1 5.7942 6.3183 6.3527 7.3034 7.4236 7.7337 
1-4-1 5.7774 6.3725 6.5754 7.2837 7.5405 7.8267 

Type 2 1-0-1 4.4391 5.0960 5.2756 6.1756 6.2250 6.4574 
2-1-2 4.3780 5.0441 5.7455 6.1026 6.2062 6.6664 
1-2-2 4.3522 5.0468 6.0848 6.1335 6.2872 6.6810 
1-2-1 4.3395 5.0502 6.0763 6.3183 6.3338 6.6905 
1-4-1 4.3454 5.0988 6.1027 6.4892 6.5754 6.7616 

Type 3 1-0-1 5.2756 6.4574 7.8572 8.2992 8.3843 8.7677 
2-1-2 5.7455 7.0326 7.7217 8.176 8.257 8.6482 
1-2-2 6.1335 7.5074 7.6311 8.1138 8.1774 8.5879 
1-2-1 6.3183 7.5852 7.7337 8.0835 8.1351 8.5567 
1-4-1 6.5754 7.543 8.0484 8.0789 8.0983 8.5477 

CCCC Type 1 1-0-1 5.9855 6.5523 7.5324 7.5756 8.0294 8.6816 
2-1-2 5.8955 6.4769 7.4196 7.5410 7.9328 8.5676 
1-2-2 5.8452 6.4620 7.3567 7.6142 7.9070 8.5301 
1-2-1 5.8195 6.4562 7.3250 7.6571 7.8962 8.5170 
1-4-1 5.8070 6.4935 7.3104 7.8116 7.9332 8.5626 

Type 2 1-0-1 4.4639 5.1906 6.1941 6.4241 6.7998 7.6645 
2-1-2 4.4051 5.1478 6.1228 6.4252 6.7475 7.5954 
1-2-2 4.3836 5.1671 6.1084 6.5407 6.7758 7.6126 
1-2-1 4.3731 5.1795 6.1019 6.6057 6.7929 7.6261 
1-4-1 4.3846 5.2489 6.1334 6.8021 6.8826 7.7201 

Type 3 1-0-1 8.3968 8.3984 8.8173 8.8297 8.8641 8.8641 
2-1-2 8.2704 8.2728 8.7005 8.7189 9.5180 9.5705 
1-2-2 8.1917 8.1971 8.6437 8.6769 9.4650 9.5293 
1-2-1 8.1492 8.1579 8.6131 8.6573 9.4186 9.5339 
1-4-1 8.1100 8.1304 8.6030 8.6791 9.4023 9.6119 
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Table 6 The first six dimensionless natural frequencies of FGSW plates 
(𝑎/𝑏 = 1, 𝑎/ℎ = 25, 𝐾1 = 150,𝐾2 = 5, 𝜇 = 20, 𝑘 = 2, and Pattern 2). 

BCs Foundation 
types 

Thickness 
ratio 

Dimensionless natural frequencies 

𝜔1
∗ 𝜔2

∗  𝜔3
∗  𝜔4

∗ 𝜔5
∗  𝜔6

∗  
SSSS Type 1 1-0-1 5.5421 5.5421 5.5809 6.2713 7.3073 7.6308 

2-1-2 5.2185 5.2185 5.686 6.3741 7.391 7.4383 
1-2-2 4.8497 4.8497 5.7672 6.4291 6.8686 7.5308 
1-2-1 4.6259 4.6259 5.8298 6.4914 6.5518 7.6079 
1-4-1 4.2368 4.2368 5.8914 6.0007 6.5223 7.6719 

Type 2 1-0-1 4.1713 5.0222 5.5421 5.5421 6.1009 6.6105 
2-1-2 4.2471 5.0966 5.2185 5.2185 6.1981 6.6674 
1-2-2 4.2999 4.8497 4.8497 5.1201 6.2456 6.6136 
1-2-1 4.3457 4.6259 4.6259 5.1665 6.3034 6.5518 
1-4-1 4.2368 4.2368 4.3837 5.1697 6.0007 6.3242 

Type 3 1-0-1 5.5421 5.5421 7.7986 7.8164 7.8494 8.3485 
2-1-2 5.2185 5.2185 7.391 7.9437 7.9614 8.494 
1-2-2 4.8497 4.8497 6.8686 8.0559 8.0721 8.5898 
1-2-1 4.6259 4.6259 6.5518 8.1408 8.1566 8.6743 
1-4-1 4.2368 4.2368 6.0007 8.2241 8.2367 8.5145 

SCSC Type 1 1-0-1 5.5421 5.9896 6.5926 7.5762 7.8502 8.1538 
2-1-2 5.2185 6.0887 6.69 7.6985 7.931 8.2696 
1-2-2 4.8497 6.156 6.7367 7.7781 7.9112 8.3215 
1-2-1 4.6259 6.2097 6.7903 7.8454 7.9564 8.1712 
1-4-1 4.2368 6.252 6.8091 7.4839 7.8954 7.9024 

Type 2 1-0-1 4.5307 5.2924 5.5421 6.4222 6.7872 7.1172 
2-1-2 4.5996 5.2185 5.3607 6.5089 6.8392 7.1975 
1-2-2 4.6351 4.8497 5.3733 6.5392 6.7800 7.1976 
1-2-1 4.6259 4.6730 5.4120 6.5856 6.8103 7.2414 
1-4-1 4.2368 4.6889 5.4010 6.5872 6.7194 7.2100 

Type 3 1-0-1 5.5421 8.3411 8.4029 8.7518 8.9129 9.6879 
2-1-2 5.2185 8.4877 8.5357 8.9000 9.0368 9.2178 
1-2-2 4.8497 8.5642 8.6009 8.6289 9.0058 9.0993 
1-2-1 4.6259 8.1712 8.6760 8.6959 8.7081 9.0827 
1-4-1 4.2368 7.4839 7.9756 8.5145 8.7476 8.7540 

SSCC Type 1 1-0-1 6.0209 6.3156 6.7248 7.5911 7.7304 8.1449 
2-1-2 5.9468 6.119 6.8162 7.2790 7.7145 8.2082 
1-2-2 5.5266 6.1834 6.7645 6.8498 7.7955 8.1576 
1-2-1 5.2716 6.2365 6.4525 6.8992 7.8627 8.1892 
1-4-1 4.8282 5.9098 6.2757 6.9043 7.9122 8.1046 

Type 2 1-0-1 4.5718 5.4560 6.3156 6.4450 7.1263 7.2303 
2-1-2 4.6394 5.5172 5.9468 6.5320 7.1590 7.2790 
1-2-2 4.6714 5.5142 5.5266 6.5623 6.7645 7.0661 
1-2-1 4.7085 5.2716 5.5479 6.4525 6.6083 7.0811 
1-4-1 4.7205 4.8282 5.5206 5.9098 6.6084 6.9563 

Type 3 1-0-1 6.3156 7.7304 7.8329 8.3912 8.4714 8.9272 
2-1-2 5.9468 7.279 7.9768 8.5312 8.6085 9.0596 
1-2-2 5.5266 6.7644 8.0857 8.6331 8.6872 9.1348 
1-2-1 5.2716 6.4525 8.1696 8.7046 8.7667 9.2031 
1-4-1 4.8282 5.9098 8.2486 8.7016 8.7677 8.8108 

CCCC Type 1 1-0-1 6.0608 6.8837 7.6343 8.3944 8.4820 9.0970 
2-1-2 6.1572 6.9665 7.7538 8.4960 8.5209 9.1913 
1-2-2 6.2176 6.9829 7.8274 8.4327 8.5217 9.1991 
1-2-1 6.2696 7.0264 7.8928 8.4466 8.5766 8.8574 
1-4-1 6.3045 7.0142 7.9365 8.1124 8.1124 8.3266 
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Type 2 1-0-1 4.6242 5.6506 6.4913 7.3925 7.5089 8.2984 
2-1-2 4.6897 5.7019 6.5747 7.4569 7.5154 8.3625 
1-2-2 4.7166 5.6789 6.5981 7.3821 7.4283 8.3246 
1-2-1 4.7522 5.7055 6.6422 7.3773 7.4605 8.3588 
1-4-1 4.7587 5.6578 6.6367 7.214 7.4005 8.1124 

Type 3 1-0-1 8.3914 8.4556 8.9710 9.1339 9.8658 10.2068 
2-1-2 8.5363 8.5859 9.1085 9.2451 9.9877 9.9920 
1-2-2 8.6453 8.6714 9.1878 9.2836 9.2858 9.2884 
1-2-1 8.7187 8.7392 8.8574 8.8574 9.2603 9.3401 
1-4-1 8.1124 8.1124 8.7851 8.7917 9.2985 9.3458 

Table 7 The characteristics of input parameters. 

No. Parameters Unit Law of distribution 
Deterministic 

value 
Uncertain parameter 

(𝛾𝑖̅, 𝜎𝛾𝑖) 

1 𝐸Al GPa Standard distribution - (70, 0.01 or 0.1) 

2 𝐸Al2O3 GPa Standard distribution - (380, 0.01 or 0.1) 

3 𝜌Al kg/m3 Standard distribution - (2707, 0.01 or 0.1) 

4 𝜌Al2O3 kg/m3 Standard distribution - (3800, 0.01 or 0.1) 

5 𝑘 - Standard distribution - (1, 0.01 or 0.1) 
6 𝜐Al - - 0.3 - 

7 𝜐Al2O3 - - 0.3 - 

Table 8 Effect of 𝜎𝛾 on distribution function of natural frequency of FGSW plates 

(CCCC, 𝑎/𝑏 = 1, 𝑎/ℎ = 15, 𝐾1 = 200,𝐾2 = 10, 𝜇 = 15, and scheme 1-2-1). 

Patterns Foundation 
types 

The standard deviation 
𝜎𝛾 = 0.01 𝜎𝛾 = 0.025 𝜎𝛾 = 0.05 𝜎𝛾 = 0.075 𝜎𝛾 = 0.1 

Pattern 1 Type 1 0.0334(a) 0.049 0.0834 0.1034 0.1393 
2.9512(b) 2.9534 2.9605 3.0461 3.0433 

Type 2 -0.0331(a) 0.0212 0.0252 0.106 0.1854 
3.0144(b) 3.0392 3.0578 3.0871 3.0368 

Type 3 0.0522(a) 0.0572 0.104 0.1405 0.121 
3.011(b) 3.0823 3.1469 3.0598 3.0624 

Pattern 2 Type 1 -0.0315(a) 0.0076 0.0668 0.0715 0.0915 
3.1181(b) 2.8904 2.9994 2.9945 3.0532 

Type 2 -0.0103(a) 0.0123 0.0476 0.0629 0.096 
3.0316(b) 3.0088 2.9979 2.9252 3.083 

Type 3 0.0235(a) 0.0246 0.0628 0.0831 0.1018 
2.9742(b) 2.9494 3.0383 3.0299 3.0288 

Note that: (a) The skewness of the distribution; (b) The kurtosis of the distribution. 

4 CONCLUSIONS 

This study presents an enhanced approach that integrates a simple finite element technique based on the 
Q4 element with the improved first-order shear deformation theory to investigate the natural frequencies of 
FGSW plates resting on a variable elastic foundation. Additionally, Monte Carlo Simulation is employed to 
analyze the impact of uncertain input parameters on the natural frequencies. The results yield several 
noteworthy points, including: 
➢ The proposed factor facilitates the transformation of mathematical formulas, thereby reducing the overall 

analysis time. This advantage becomes particularly significant when used in conjunction with Monte Carlo 
Simulation, which typically demands substantial computational time and storage resources. 

➢ FGSW plates with a hardcore exhibit greater bending stiffness compared to those with a softcore. However, 
in vibration-related problems, the natural frequency is influenced by both the stiffness and the overall mass 
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of the sandwich plates. Consequently, in many cases, FGSW plates with a softcore may outperform those 
with a hardcore due to their lower mass, which can lead to higher natural frequencies. 

➢ VEF significantly affects the natural frequency of FGSW plate, the deformation field of the plate depends on 
the support of different types of foundation. 

➢ In general, the power-law index reduces the stiffness and alters the mass distribution of the structure. By 
adjusting the value of the power-law index 𝑘, it is possible to tailor the material gradation and mechanical 
behavior to achieve desired structural properties. 

➢ The standard deviation of the input uncertain variable has a significant influence on the uncertainty 
associated with the natural frequency of FGSW plates. An increase in the standard deviation leads to a 
corresponding rise in the variability of the natural frequency. 

➢ Although Monte Carlo Simulation is conceptually straightforward, it is computationally intensive and time-
consuming. Therefore, future research could aim to improve the efficiency of MCS by incorporating advanced 
sampling strategies, intelligent computational methods leveraging artificial intelligence (AI), and other 
innovative approaches. 

➢ The numerical results presented in this study can assist engineers in the analysis and design of FGSW plates, 
particularly in situations where input parameters may be uncertain or imprecise. 
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