
1886 
	  

Abstract 
Stress intensity factors (SIF) are determined for an inclined and / 
or eccentric crack in a finite orthotropic lamina using the bounda-
ry collocation method. The stress functions are defined such that 
they satisfy governing equations in the domain, the boundary 
condition on the crack surface and also the singularity at the crack 
tip. The unknown coefficients in the stress functions are deter-
mined such that the boundary condition on the edges of lamina is 
satisfied. The analysis is also being carried out for isotropic mate-
rial using finite element analysis software ANSYS for comparison 
of results. Also, comparison of results with existing solutions is 
found in good agreement. 
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NOTATION 

a11,a12,a22, 

a16,a26,a66 

Elastic Constants for orthotropic 
lamina 

σx,σy Stresses in x and y directions respec-
tively 

P Applied Stress in y-direction  τxy Shear stress in x-y plane.  

Q No. of collocation points on the edges 
of the lamina 

ν12 Poisson’s Ratio 

G12 Shear Modulus 

 

KI, KII Mode I and Mode II Stress intensity 
Factors respectively 
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ex, ey Eccentricity of the crack in x and y 
directions respectively.  

YI, YII Normalized Mode I and Mode II 
Stress intensity Factors respectively 

Re Real part N,M  No. of terms associated  with  the 
stress functions 

α Angle of fibre orientation zk Complex coordinate, zk=x+sky.  

εx, εy, γxy Longitudinal, transverse and shear 
strains 

U(x,y) Airy’s stress function 

Φ(z1), 
ψ(z2) 

Stress Functions Ak, Bk,  Unknown coefficients in the stress 
functions.  

a Crack length  θ Angle of the crack.  

sk , k=1,2 Complex parameters of anisotropy k Biaxial loading factor 

 
1 INTRODUCTION 

The topic of crack problem in finite orthotropic lamina has received considerable attention as the 
applications of structures using the composite materials are increasing with every sunrise. The SIF 
of a finite lamina is different from that of infinite lamina according to the dimensions of lamina, 
crack length, crack angle, material properties and boundary conditions. Accurate determination of 
stress intensity factor of finite lamina is required for ensuring reliable design of the structures.  
 Boundary collocation method has been proved to be an effective computational tool and has 
been successfully applied to variety of crack problems of isotropic materials (Chen and Chen, 1981; 
Newman, 1976; Ukadgaonkar and Murali, 1991; Wang et.al, 2003) and anisotropic materials (Wang 
and Chang, 1994; Woo and Samson, 1993). Various methods like modified mapping collocation 
method (Bowie and Freese, 1972), boundary integral equations (Tan and Gao, 1992) and singular 
integral equation formulation (Ryan and Mall, 1989) are successfully applied to solve the problems 
of finite orthotropic lamina / laminates containing edge / central crack.   
 The finite element method for determination of stress intensity factors is not well suited for 
discontinuities that do not align with the element edges. In order to get rid of this, mixed mode 
stress intensity factors using element free Galerkin method (Ghorashi et.al, 2011). Further to this, 
enriched finite element method is employed (Ozkan et.al., 2010) for study of effect of anisotropy on 
stress intensity factors for a cracked compact tension specimen, edge specimen and a plate 
containing central inclined crack. Calculation of the SIF from full field displacement data and 
asymptotic expansion of the crack tip displacement field is one possibility. This approach requires 
use of X-ray diffraction and optical microscopy (Wang et.al., 2011). Conformal mapping is 
promising method for solution of various crack problems in anisotropic plates. It is used (Beam and 
Jang, 2011) for obtaining SIF of a crack emanating from a infinite wedge in anisotropic material 
under antiplane shear.  
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 In the present work, stress intensity factors are determined for an inclined crack in a finite or-
thotropic lamina subjected to uniaxial / biaxial loading to study the effect of fibre angle, crack an-
gle and biaxial loading factor. Also, effect of eccentricity in x direction and/or y direction is studied. 
 

2 BASIC EQUATIONS 

The generalized Hooke’s Law in plane stress for an orthotropic lamina can be expressed in the fol-
lowing manner (Lekhnitskii, 1976). 
 

ε!
ε!
τ!"

=   
a!! a!" a!"
a!" a!! a!"
a!" a!" a!!

  
σ!
σ!
τ!"

 

 
Representing σx, σy, τxy in terms of Airy’s stress function U(x, y) 
 

σ! =
∂!U
∂y!

; σ! =
∂!U
∂x!

; τ!" =
− ∂!U
∂x ∂y

 

 
The compatibility condition is, 
 

∂!ε!
∂y!

+
∂!ε!
∂x!

=
∂!γ!"
∂x ∂y

 

 
By introducing Hooke’s law in terms of F(x,y) into the compatibility equation, we get following bi-
harmonic equation 
 

a!!
∂!U
∂x!

− 2a!"
∂!U
∂x! ∂y

+ 2a!" + a!!
∂!U

∂x! ∂y!
− 2a!"

∂!U
∂y! ∂x

+ a!!
∂!U
∂y!

= 0 

 
The Airy’s stress functions can be represented as 
 

U x, y =   2Re U! z! + U! z!  
(5) 

z! = x + s!y; z! = x + s!y 
 
U1 and U2 are analytic functions of complex variables z1 and z2 respectively. The complex parame-
ters s1 and s2 are roots of characteristic equation  
 

a!!s! − 2a!"s! + 2a!" + a!! s! − 2a!"s + a!! = 0 
 

The stress components are represented in terms of stress functions, 
 

σ! =   2Re Φ! z! + ψ! z!  

(1) (1) 

(2) 

(3) 

(4) 

(6) 
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σ! =   2Re s!!Φ! z! + s!!ψ! z!  
τ!" =   −2Re s!Φ! z! + s!ψ! z!  

where,Φ z! = U!! z! ,ψ z! = U!! z!  
 

3 STRESS FUNCTIONS 

Figure 1 shows various crack configurations considered in the present study. The coordinate system 
x1-o1-y1 is used for defining the various orientations. The principal axes of orthotropy are considered 
to be located at an angle α to the reference axis. The crack is inclined at an angle θ. The stress 
functions are defined with respect to x-o-y coordinate system and hence facilitating further deter-
mination of stress intensity factors.  

 
Figure 1:  An inclined and / or eccentric crack in a finite orthotropic lamina. 

 
A function F is introduced to define the functions Φ and ψ. The function F consists of  

 
F = F! + F!                                                                         (8) 

  
The functions Φ and ψ consist of two parts viz.  
 

Φ = Φ! + Φ! 
ψ = ψ! + ψ!                                                      (9) 

  
 

(7) 
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Relationship between Φ1, ψ1 and F1 is 
 

Φ! z! = F! z!  
ψ! z! = −BF! z! + CF! z!                                                      (10) 

 
The relationship between Φ2, ψ2 and F2 is,  
 

Φ! z! = F! z!  
ψ! z! = −BF! z! + CF! z!  

(11) 

B =
(s! − s!)
(s! − s!)

; C =
(s! − s!)
(s! − s!)

 

 
 In order to satisfy the stress singularity at the crack tips and ensuring stress free boundary con-
dition on the crack surface, stress functions are defined as,  
 

F! z = (z! − a!) A!  z!!!
!

!!!!

 

 

F! z = B!  z!!!
!

!!!!

 

 
Leading to,  

Φ z! = (z!! − a!) A!  z!!!!
!

!!!!

  +    B!  z!!!!
!

!!!!

 

 

ψ z! = C z!! − a! A!  z!!!!
!

!!!!

  +    B!  z!!!!
!

!!!!

+ B B!  z!!!! −
!

!!!!

   z!! − a!    A!  z!!!!
!

!!!!

 

 
 Ak and Bk are the complex coefficients to be determined such that boundary condition on the 
edges of lamina is satisfied. 
 The stress components can be calculated as per equation 7.  
At a point on the lamina boundary, boundary condition can be represented as of two types 

i) Stress boundary condition 
ii) Force boundary condition 

Force boundary condition is expressed in terms of  
 

f! + if! = 1 + is! Φ z! + 1 + is! ψ z! + 1 + is! Φ z! + 1 + is! ψ z! + c         (13) 
 
 The determination of constants in the stress functions and hence the stress functions will facili-
tate the determination of stress intensity factors as,  

(12) 
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K!" = 2 2π
(s! − s!)

s!
lim
!!→!

z! − a e!!!Φ!
! z!  

K!!" = 2 2π  (s! − s!) lim!!→!
z! − a e!!!Φ!

! z!  

K!" = 2 2π
(s! − s!)

s!
lim
!!→!!

z! + a e!!!Φ!
! z!  

K!!" = 2 2π  (s! − s!) lim!!→!! z! + a e!!!Φ!
! z!                                  (14) 

 
 
 

4 NUMERICAL RESULTS AND DISCUSSIONS 

4.1 Solution Procedure 

1. The coordinates of No. of collocation points Q are marked which along with the angle of 
the fibre orientation determine the z1 and z2.  

2. At all collocation points, total error with respect to stresses (equation 7) and traction 
(equation. 13) is calculated.  

3. Let No. of terms in the stress functions =M+N+1, number of unknowns = 2(M+N+1)  
4. The coefficients of the stress functions are determined using least square method which 

will result in 2(M+N+1) number of equations. System of equations is solved using Math 
CAD.  

5. The stress intensity factors are then calculated as per equation 14. 
 
The normalized SIF are expressed where,  
 

Y! =
K!

P πa  cos!ϑ
 

Y!! =
K!!

P πa sin ϑ cos ϑ
 

 
 

4.2 Convergence 

The convergence of the present method is examined for the number of positive and negative terms 
in the stress functions i.e. M, N and the number of collocation points Q. The cases being considered 
are a crack eccentric in x-direction with ex/W=0.2, a/W=0.2 and a/W=0.7. The results obtained 
are shown in Figure 2 and Figure 3. It is seen that for smaller crack lengths that is a/W=0.2 num-
ber of terms in stress functions and the number of collocation points required to converge the solu-
tion is less than those for larger crack length a/W=0.7. Based on this study M=20, N=22 and 
Q=196 are used to obtain the solution. 



1892 S. Joshi and S. Manepatil/ Stress intensity factors for an inclined and/or eccentric crack in a finite orthotropic lamina 

Latin American Journal of Solids and Structures 11 (2014) 1886-1905 
 

 
Figure 2:  Effect of number of positive and negative terms (M, N) in stress functions on SIF.  (Q=196). 

 

 
Figure 3: Effect of number of collocation points (M=N=22). 

 
4.3 Comparison of Results 

SIF for finite isotropic plate / orthotropic lamina under the uniform stress loading condition are 
compared with the results already available in the literature and with ANSYS as indicated in Table 
1, Table 2, and Table 3.  
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 In ANSYS PLANE 82 elements are used.  A concentration keypoint is generated at the crack 
tip. KCALC command is used for determination of stress intensity factors after the local coordinate 
system is defined and used at the crack tip and the crack path defined in the post processer using 
path operations. The model of crack eccentric in x-direction as modeled using ANSYS is shown in 
Figure 4. It is clear from Figure 5 that quarter point elements exist near the crack tip.  
 
Sr. No.  Configuration  Reference  and SIF  ANSYS  Present Method  

1 Orthotropic Lamina, E1=24.13 GPa, 
E2=82.74 GPa, G12=20.68 GPa, υ12=0.7. 
Inclined crack  
H/W=2, a/W=0.2832 
θ=450 
 

(Wang et. al., 1980) 
YI=1.131 
YII = 1.153 

- YI=1.183 
YII = 1.112 

3 Isotropic  Plate H/W=3, a/W=0.707, In-
clined crack θ=450 
 

(Karami and Fenner, 
1986) 
 YI=0.732 
YII = 0.591 

YI=0.798 
YII = 0.637 

YI=0.764 
YII = 0.613 
  

4 Crack eccentric in x direction, H/W=2.5, 
a/W=0.2, ex/W=0.2  

(Ukadgaonker and 
Murali, 1991) 
YRI=2.2 

YRI =2.302 YRI=2.237 

 

Table 1: Comparison of results obtained by present method with those obtained using ANSYS. 
 

a/w→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
YI (Bowie and Freese, 1972) 
 

1.01 1.05 1.10 1.18 1.28 1.41 1.59 1.87 

YI (Present Method ) 1.03 1.09 1.17 1.21 1.32 1.49 1.68 1.91 
 

Table 2: Comparison of results for central horizontal crack in orthotropic lamina. 
 

a/
W↓ 

ey/W=0 ey/W=0.2 ey/W=0.4 

 P A P  A P A 
 YI YI YI YII YI YII YI YII YI YII 
0.1 1.018 1.016 1.021 0.0006 1.039 0.0002 1.043 0.0018 1.048 0.001 
0.2 1.061 1.051 1.072 0.0035 1.067 0.0021 1.110 0.011 1.089 0.015 
0.3 1.141 1. 162 1.172 0.012 1.181 0.01 1.203 0.0342 1.197 0.043 
0.4 1.251 1.271 1.261 0.0243 1.271 0.0251 1.3712 0.0712 1.354 0.086 
0.5 1.401 1.371 1.417 0.0497 1.462 0.051 1.562 0.121 1.617 0.103 
0.6 1.512 1.424 1.552 0.0771 1.613 0.078 1.732 0.1867 1.697 0.164 
0.7 1.71 1.63 1.812 0.1178 1.834 0.1221 2.105 0.2712 1.981 0.294 
0.8 1.82 1.74 2.232 0.1532 2.188 0.1612 2.393 0.3893 2.478 0.433 

 

Table 3: Comparison of results for a central crack and crack eccentric in y direction in finite isotropic plate. 
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Figure 4: Crack eccentric in X-direction modeled using the ANSYS. 
 

 

 
 

Figure 5: Quarter point elements near crack tip (Node No. 97). 
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4.4 Case-I –An Inclined Crack under uniaxial loading (k=0) .  

4.4.1 Effect of f ibre angle 

Figure 6 shows an inclined crack in a finite orthotropic lamina.  Here, k=0 i.e. uniaxial loading is 
applied, H/W=1, a/W=0.2. The material properties are, E1=53.74 GPa, E2=17.91 GPa, G12=8.96 
GPa, υ12=0.25 
 The crack angle is fixed at θ=450. The fibre angle α is varied from 00 to 1800. The normalized 
Mode I and Mode II stress intensity factors are plotted in Figure 7. The variation of YI and YII 
follows same trend with the fibre angle the maxima for both occurs at fibre angle 1050. 
 

 
Figure 6: An inclined central crack in a finite orthotropic lamina subjected to uniaxial loading. 
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Figure 7: Effect of fibre angle on Mode I and Mode II SIF. 

 
4.4.2 Effect of crack length 

The effect of crack length on YI and YII for various combinations of fibre angle and crack angle is 
plotted in Figures 8, 9. Mode I SIF is highest when both fibre angle and crack angle are zero. If 
either or both are changed to 450, YI decreases and percentage decrement decreases with increase in 
crack length. Mode II SIF values for combinations of fibre angle (α) and crack angle (θ) α=00 
θ=450 , α=450 θ=00, α=450 θ=450 are at par with.  
 

 
Figure 8: Effect of crack length on Mode I SIF. 
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Figure 9: Effect of crack length on Mode II SIF. 

 
4.5 Case-II An inclined crack under the biaxial loading 

In order to study the effect of biaxial loading (configuration outlined in Figure 10)   on the SIF for 
an inclined crack, the lamina dimensions are, H/W=1, a/w=0.2 α=0. Material properties are same 
as those in the previous case. Figure 11, 12 show the variation of Mode I and Mode II SIF respec-
tively with various biaxial loading factors and crack angles. Biaxial loading factor k=1, Mode I SIF 
values are symmetric about a vertical line passing through crack angle 900.  For k=1, Mode I SIF is 
independent of the crack angle. .It is seen that when biaxial loading factor k=1, YII is independent 
of crack angle and its value is zero. Mode II SIF is zero for  crack angles 00,900,1800 irrespective of 
value of k. Except for k=1 Mode I and Mode II SIF show the sinusoidal variation with maxi-
ma/minima occurring at crack angle 900 for Mode I SIF  and that occurring at 450/1350 for Mode II 
SIF.   
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Figure 10: An inclined central crack subjected to biaxial loading. 
 
 
 
 

 
 

Figure 11: Effect of biaxial loading on Mode I SIF. 
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Figure 12: Effect of biaxial loading on Mode II SIF. 
 
 

4.6 Case III Crack eccentric in y-direction 

As shown in Figure 13, a crack is symmetric about the y-axis and situated such that there is a dis-
tance from its centre to the plate centre. Here too, H/W=1,α=00 SIF are calculated for ey=0, 0.2, 
0.4, 0.6, 0.8. For different eccentricities and crack lengths, the stress intensity factors are plotted in 
Figure 14-15. It is noticed that the Mode I SIF values are same at the both crack tips, and Mode II 
SIF have different signs but same value. This may be so because, when the plate is in tension, the 
crack surfaces open. As, the crack is symmetric about the y axis, the two crack tips get opened by 
the same amount. Because of this phenomenon,  Mode I SIF values are same at both the crack tips. 
The elongation of the lamina in y- direction is accompanied by contraction in x -direction. As the 
crack is eccentric in y direction, the values of contraction on the two sides besides the crack are un 
equal. This deformation behavior is the reason that the mode II SIF values exist. By the same rea-
soning applicable for the Mode I, because the crack is symmetric about the y axis, the Mode II SIF 
values for the two tips are equal. However, the crack tips are in the first and second quadrants, the 
deformation in the x-direction has different direction of dislocation, so that the Mode II SIFs have 
opposite signs. When the crack is very long and the crack tips are near the ends of the plates, the 
SIF are very large.  
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Figure 13: A crack eccentric in y-direction. 

 
 
 

 
Figure 14: Mode I SIF for crack eccentric in y direction. 
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Figure 15: Mode II SIF for crack eccentric in y direction. 

 
4.7 Case IV Crack eccentric in x-direction 

Figure 16 shows the of crack eccentric in x-direction with H/W=1, α=00.  Fig. 17 and 18 show the 
SIF for the right and left crack tips respectively. Here only Mode I SIF exist which are different at 
the two crack tips. The ratio,  SIF at right crack tip to that at left crack tip increases with increase 
in the crack length. Considerable increment in this ratio is found only after a/w is greater than or 
equal to 0.3. For a/w greater than 0.5 minimum value of the ratio is 2.5.  

 
Figure 16: A crack eccentric in x direction. 
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Figure 17: Mode I SIF at right crack tip for crack eccentric in x direction. 

 
 

 
Figure 18: Mode I SIF at left crack tip for crack eccentric in x direct. 

 
4.8 Case V An inclined crack eccentric in both x and y directions 

Figure 19 shows the configuration of an inclined crack eccentric in x and y both directions. Here, 
H/W=1, ex/W=ey/W=0.4 and a/W=0.2. Figure. 20 shows the variation of normalized Mode I and 
Mode II SIF at both crack tips with the crack angle θ. The maxima for Mode I occurs at θ=00, 
1800 and minima occurs at θ=900, whereas, the maxima for Mode II occurs at θ=450, minima oc-
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curs at θ=1350. The maxima and minima for a given mode occur at the same crack angle for both 
the tips. Because the crack tips are in the same quadrant, the shear deformation of at the two tips 
has same sign, so is for Mode II SIF values. The nature of variation coincides with that for k=0 
under the study of effect of biaxial loading. Also, the results for H/W=1, ex/W=0.1, ey/W=0.4 and 
a/W=0.2 are plotted in Fig. 21 indicating that except crack angle = 900 , difference in Mode II SIF 
is higher as compared to results with  ex/W=ey/W=0.4.  
 

 
Figure 19: A crack eccentric in both x and y directions. 
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Figure 20: Mode I and Mode II SIF for crack eccentric in both x and y directions with ex/W=ey/W=0.4. 

 

 
Figure 21: Mode I and Mode II SIF for crack eccentric  
in both x and y directions with ex/W=0.1, ey/W=0.4. 
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5. CONCLUSIONS 

Stress functions are defined in this formulation for calculation of Mode I and Mode II SIF of an 
central crack, inclined crack and crack eccentric in x and / or y direction for finite orthotropic lam-
ina such that governing equations in the domain, stress free condition on the crack surface are satis-
fied and also, the inverse square root singularity exists at the crack tips. The force type and stress 
boundary condition on the periphery of the lamina are satisfied by boundary collocation using least 
square method. The comparison of results with those in literature and with the finite element soft-
ware ANSYS found in good agreement.  
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