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Abstract 
Tensegrity structures are geometric nonlinear systems and statically and kinematically indeterminate 
structures that require an initial shape-finding procedure to establish a self-equilibrium state. This paper 
presents a shape-finding algorithm requiring structure topology, strut force, cable force density, and a random 
initial estimate of node coordinates as input. The equilibrium of the structure is achieved by zeroing the 
nonlinear static equilibrium in which the generalized nodal coordinates are chosen as variables. The modified 
Newton-Raphson method is used to solve the nonlinear equilibrium system by decreasing the nonlinear least 
square function to ensure global convergence. The stability of the self-balancing structure was evaluated using 
the properties of the geometric and tangent stiffness matrix. Various numerical examples are presented to 
illustrate the method's effectiveness for 2-d and 3-d tensegrity structures with multiple states of self-stress. 
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1 INTRODUCTION 

Tensegrity is a self-stable system consisting of a set of compressed components inside tensile components (Motro, 
2003). The tensegrity's structural elements are designed to carry axial force, making the tensegrity an ideal structure for 
robotics (Paul et al., 2006), spatial (Tibert and Pellegrino, 2002), and civil engineering (Latteur et al., 2017; Feron et al., 
2019) applications. Therefore, designing a structure that meets the requirements of various applications has become 
increasingly relevant. 

Recently, form-finding methods have become a crucial aspect in the design of tensegrity structures. These methods differ 
regarding algorithms, variables, and initial input parameters. Some examples are methods based on iterative algorithms, such 
as the force density method originally used for cable-net structures (Schek, 1974). The method linearizes the nonlinear 
equilibrium equations of the system in terms of force per unit length and node position (Tran and Lee, 2010; Koohestani, 2017). 
The structure is obtained by simultaneous manipulation of the force density and equilibrium matrices such that the null spaces 
are the optimum geometrical position of nodes and force densities (Zhang and Ohsaki, 2006). Later, optimization methods 
based on minimizing the trace of the force density matrix were introduced in (Cai and Feng, 2015; Heng et al., 2021; 
Wang et al., 2021), with constraints such as the rank deficiency of force density, the group of members, and furthermore, the 
constraint on the properties of the structural components. The common feature of these algorithms is finding the acceptable 
set of force densities compatible with the geometric position of the nodes of the structure. Therefore, these methods are 
classified as static iterative algorithms in the review of the form-finding method by Tibert and Pellegrino (2011).  

In addition to static methods, using nonlinear programming methods has played an essential role in geometrically 
determining the length of structural elements. These methods, as described in (Tibert and Pellegrino, 2011), aim to 
minimize or maximize a set of element lengths while keeping the lengths of other elements constrained. For example, in 
(Pellegrino, 1986), the length of struts was maximized while the length of cables was kept at a particular value. In 
addition, the stationary-based method presented in (Miki, 2011; Zhang et al., 2021) allowed the algorithm to minimize 
the length of the cables while constraining the length of the struts, resulting in various complex tensegrity. By taking the 
weight coefficient of members' length as the force density, the principles behind these methods are similar to the 
principle of virtual work as explained in (Miki, 2011).  

Moreover, the method using the element properties (Zhang et al., 2014; Yuan et al., 2017; Xue et al., 2020; Ma et al., 
2022a) has emerged, whereby solving the system's equilibrium minimizes the system's potential energy to achieve a stable 
structure. Inspired by the Lagrange method in which the node coordinates were variable, Ma et al. (2022a) studied the 
equilibrium and the stiffness of clustered tensegrity structures. Furthermore, a unified analysis method of tensegrity with 
interconnected rigid bodies is studied (Wang et al., 2023). The equilibrium and compatibility equations are derived through 
an energy approach combined with the Lagrange multiplier method achieving the computation of the self-stress state and 
mechanism mode. The drawbacks of algorithms that use the material properties are the rigid body motion that leads to the 
singularity of the structural stiffness matrix (Zhang et al., 2014), and the starting points of the developed method are close 
to the final solution of the structure (Gasparini et al., 2012; Xue et al., 2020).  

However, there are cases when more control over the shape or prestress distribution of the configuration is 
necessary (Baudriller et al., 2006). In references (Xue et al., 2020; Khafizov and Savin, 2021), the method introduces the 
preferred strut direction into the problem statement to find the tensegrity with preferred orientation and shape. The 
structure is modeled as a collection of points representing the nodes (connecting struts and cables), where the 
equilibrium of each node is required for the overall system's stability. The design using the specified strut stiffness and 
cable forces in advance was developed in (Xue et al., 2020). The method requires the final length of the struts and 
searches for the minimum potential energy within the unknown final length of the cables. A modified dynamic relaxation-
based form-finding is used to obtain a structure that presents an inextensible tensile member (He et al., 2024). The 
relationship between the number of struts and strings to satisfy the full-rank convexity criterion for a form-finding 
process is given in (Harish et al., 2023). Even though the above method yields self-equilibrium and stable tensegrity and 
controls the structural components of the tensegrity, none of the previous methods can directly control the struts' force 
distribution and optimize the elements' length when the cable force density is given. The present work aims to develop 
a numerical method to find the shape of tensegrities within a given topology, strut forces, force density in cables, and an 
initial random estimate of nodal position. To this end, we utilize the nonlinear system of equilibrium equations based on 
the given parameters to find a self-balanced configuration (the nodal positions, which means the node coordinates are 
taken as variables). The algorithm developed is based on the modified Newton-Raphson method in which the line search 
framework is used to decrease the least square function obtained through the nonlinear equilibrium to ensure a rapid 
convergence of the algorithm from a random initial guess.  

The remainder of the paper is organized as follows: Section 2 outlines the notation used in this paper for the 
properties of tensegrity elements. Section 3 explains the nonlinear static equilibrium of the tensegrity structure based 
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on a set of forces in the struts and the force density in the cables. Section 4 introduces the shape-finding algorithm based 
on the modified Newton-Raphson method (MN-RM). Section 5 validates the accuracy and efficiency of the iterative 
algorithm implemented on different tensegrity structures. Section 6 thoroughly discusses the algorithm proposed in this 
paper, and Section 7 concludes the discussion.  

2 ELEMENT PROPERTIES OF TENSEGRITY STRUCTURE 

The tensegrity system is a structure consisting of a network of nn nodes connected by a network of nc tensile 
components and ns struts. The elements are represented by vectors whose values come from the node vectors connected 
by these elements. The vector nj=[xj yj zj]T denotes the coordinates of the j-th vertex in the cartesian frames x- y- and z-, 
so that the j-th vertex connected to an e-th component is denoted by nej. For instance, the expression of a vector be of 
the e-th structural component connecting the (starting) node nev and the (end) node neu (u≠v) in Figure 1 is as follows: 

1 :  is structural dimension  d
e eu ev d  b n n   (1) 

from which it follows the right side of equation (1) can be obtained using the following expression:  

 T
eu ev e n n Nc  (2) 

where N and ce are the node matrix and connectivity vector of the e-th component, respectively.    

 
Figure  1: Geometrical representation of the e-th component in 3-d cartesian frame. 

The node matrix consists of a sequence of the node vectors as 
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 (3) 

The vector ce represents the connection between nodes neu and nev, which are the u-th and v-th columns of the 
node matrix. To this, the vector ce is expressed by a column vector whose u-th and v-th entries are 1 and -1, respectively, 
and zero otherwise. The connectivity vector of the e-th component is thus given as 
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The connectivity matrix is obtained by stacking all connectivity vectors into a matrix C as 

 
1     ,  

m

TT T T m n
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 (5) 
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2.1 Geometrical property of element 

The node matrix defined in equation (3) is a set of d rows and the sequence of nn columns of the coordinate vectors 
nj (j=1,2, …,nn); the node matrix can be vectorized as  

 1  n
T dn

j
    n n  

 (6) 

Equation (6) represents the node vector, so-called generalized nodal coordinates. Using the generalized node 
coordinate, the e-th component length in Figure 1 that connects the nodes nev and neu is calculated as  

     
1
2 T T

e e d e e dl       c I n n c c I n  (7) 

in which ⊗ is the Kronecker product and Id is the identity matrix of size d × d. Considering the sum of the product of the 
dimensional connectivity vector as a matrix Ce, the expression of the length of the e-th component in equation (7) is 
simplified to 

 
1
2  T

e el     n C n  (8) 

with Ce, being a symmetric and positive semidefinite matrix, written using the tensor product and the vector connectivity 
of the node matrix as 

     m mdn dnT
e e e d

  C c c I   (9) 

2.2 Element’s axial force 

Element forces in tensegrity are typically tensile and compressive forces. They are inner forces of the structural 
elements, which act as external forces on the starting and ending nodes of elements. The nodes of elements are defined 
with the nodal position in a cartesian frame, so it is more suitable for equilibrium analysis of tensegrity to represent the 
inner force fe of the e-th element on the starting and end node of the element as a force vector acting in d- directions as 

 e
e e

e

f
l


C n

f  (10) 

where Cen/le is the cosine direction of the e-th element and fe is the force vector. Let us now take the ratio of force and 
length as force per unit length, noted as δe and given as 

 1
e e ef l   (11) 

δe is known as the force density of the e-th member (Schek, 1974; Tran and Lee, 2010). Equation (11) into (10) yields 

 e e ef C n  (12) 

The magnitude of fe is proportional to the element vector Cen and acts on the starting and end nodes of the element 
in the opposite direction relative to the cartesian frame axis. The sign of the element vector defines the direction of the 
magnitudes of the force vectors. The magnitudes of the force vector are axial components in the d-direction of the 
cartesian frame, while the resultant force is axial to the element. 
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3 STATIC EQUILIBRIUM OF TENSEGRITY SYSTEM 

This section presents the equilibrium equations of a general d-dimensional tensegrity structure based on the force 
density, generalized node coordinate, element forces, and element length. The static equilibrium of a typical node 
denoted by j in d-direction is expressed as follows:  

 j e
e j

 f f


 (13) 

The notation e   j denotes the set of forces of e members meeting at node j. The force fj represents the residual 
nodal force of the sum of the magnitude of inner forces in d-direction; the residual nodal force is zero in each direction 
for a tensegrity in a self-equilibrium state. 

Replacing the right side of equation (13) with the right side of equation (12), the nodal force of equation (13) is 
represented by a term combining the force density and the generalized nodal coordinate as 

  j e e
e j

 f C n


 (14) 

In our shape-finding approach, we use the strut forces instead of the force densities so that the residual nodal force 
expressed in equation (14) holds for 

 
c sn j n j

s
j c c s

c j s j s

f

l
  f C n C n

 

 
 (15) 

Where nc   j represents a network of c tensile members of the force density δc connected to the node j. fs and ls are the 
force and length of the s-th strut meeting at the node j. The sign minus in equation (15) denotes the compression of 
struts. 

Considering the whole system of nn nodes (j=1,2, … ,nn), the feasible set of the prestress vector for a self-balanced 
system is 

 
1 1 1

n c sn n n
s

j c c s
j c s s

f

l


  

    nF f C n C n  (16) 

The lengths of the struts are nonlinear functions of generalized coordinates, hence the system of the residual nodal 
force Fn (dnn×1). The force is written as Fn to show its dependence on the position of node coordinates. A similar notation 
is adopted in all functions and equations whose values depend on the node coordinates, except for strut lengths, 
equilibrium, and geometric stiffness matrices. Equation (16) is divided into the tensile axial force and compressive axial 
force and can be simplified as follows:  

 GnF K n  (17) 

where 

 G
1 1

,  ,  and  
c sn n

s
c s c c c s s

c s s

f

l


 

     K K K K C K C  (18) 

Note that KG (dnn × dnn) is the symmetric matrix called the geometric stiffness matrix (Tran and Lee, 2010), which 
can be proved based on equations (9), (12) and (16). In addition, Kc is positive semidefinite, contrary to Ks, which is 
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negative semidefinite due to the negative force densities expressing the compression in struts. To prove those 
assertations, let's consider a matrix D given as 

    
m

n n

n
n nT

e e e
e

  D c c 

 (19) 

The matrix defined in equation (19) is a force density matrix in which the sum of the entries in each column is zero 
(Heng et al., 2021). Taking into account the relationship between Ce and ce, the force density matrix can be expanded to 
the geometric stiffness matrix as follows:  

 G d K D I  (20) 

Let's emphasize that equation (17) applies only for the nodal force Fn, which does not take into account the 
elements' torsion and does not consider yielding and buckling constraints or the self-weight of the structural elements. 
The structure's scale depends mainly on the force densities (weight) (Miki, 2011; Koohestani, 2017). It is clear that, from 
equation (17), the self-equilibrium of the tensegrity structure is ensured by the relationship between the force densities 
and the nodal positions; in other words, the force densities and length of elements. Thus, the presence of a residual force 
(Fn ≠ 0) in a system that is in self-equilibrium shows the unbalance between the given force densities, the struts' member 
force, and the node positions.  

4 FORM-FINDING ALGORITHM 

The form-finding method finds the generalized nodal coordinates n that balance the nonlinear equilibrium equation (17). 
The solution of the nonlinear system is obtained under the following assumptions: 

• Assumption 1: The force density of cables and the forces of strut elements are given in advance. 

• Assumption 2: There is no external force, such as example, the reaction force due to nodes' support. 

• Assumption 3: The structure elements are considered as lines connecting two nodes such that the topology of the 
structure is given and remains unchangeable along the performance of the form-finding algorithm. 

For the nonlinear system given in equation (17), the Newton's step and Newton-like approaches are the proposed 
strategic methods to find an approximate solution to similar problems (Al-Towaiq and Hour, 2016; Al-Towaiq and Abu 
Hour, 2017). However, these methods have significant drawbacks, such as starting with an initial estimate close to the 
zeros of the nonlinear system (Vetterling and Press, 1992) and finding an acceptable step length that ensures the 
algorithm's convergence. Based on the above assumptions, we cannot define the reference configuration close to the 
final solution because the lengths of struts and cables are unknown. The nonlinear static equilibrium is solved using the 
modified Newton-Raphson method and ensure the algorithm's convergence when the starting point is random. 

4.1 Intermediary function: Nonlinear least square function 

The feasibility of the iterative algorithm for solving equation (17) consists in reducing the least square function 
(||Fn||2/2= Fn

TFn/2) at each iteration, which can be considered as an approximately equal condition for trying to minimize 
the function 

 2
G

1

2
T n n K n  (21) 

Equation (21) is the least square function obtained from the nonlinear equilibrium system of equation (17). There 
are effective techniques (and software implementations) that solve the least squares problem with tremendous accuracy 
and very high reliability (Boyd and Vandenberghe, 2004). However, there are circumstances when the minimization of 
equation (21) is not equivalent to explicitly zeroing Fn; because it may occasionally fail by landing on a minimum that 
does not respond to the state of self-equilibrium. 
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The relative condition that the minimum of the least square function is the solution of Fn involves the first-order 
and the second-order optimality conditions, called gradient and Hessian, respectively. The vector n minimizes Пn when 
the gradient respond to (Antoniou and Lu, 2007) 

 0


  


n
n n

 (22) 

which can be obtained as 

 ;T n n nJ F  (23a) 

G T n nJ K n  (23b) 

where Jn is the Jacobian matrix. The derivation of equation (23) and the Jacobian's expression can be found in Appendix. 
If we consider in equation (23b), the Jacobian matrix non-singular and the non-zero vector n, the first order optimality 
condition can be fulfilled when the geometric stiffness matrix is singular. The further condition of vector n being the 
minima of Пn requires the second-order optimality condition, so-called Hessian, to be positive semidefinite at the second-
order derivative of Пn.  

 
2 ( )T

T T

   

  
n n n

n n n n

J F

J F J J
 (24) 

The high term order (∇Jn
T=∇2Fn) is relatively expensive to compute, particularly in high-dimensional problem, and 

add significant computational complexity and memory requirements. Thus, the Hessian can be approximated according 
to reference (Boyd and Vandenberghe, 2004) as 

 2 T  n n nJ J  (25) 

According to the expression of the Jacobian in Appendix, the matrix Jn is square and symmetric Jn=Jn
T. The positive 

semi-definiteness of the Hessian in equation (25) is analyzed using the eigenvalue decomposition considering the 
symmetry of the Jacobi matrix. The eigenvalue decomposition of the Hessian is given as:  

 nn n

n
2

2

T

T T

T


    

  
JJ J

 

 (26) 

where Θ is the orthogonal matrix and Ѱ is the diagonal matrix that contains the eigenvalue of Jn. All Ѱii
2= Ѱi

2 are 
positive in the Hessian matrix, indicating that the Hessian is positive semidefinite. For the optimum n that minimizes Пn 
defines a set of self-equilibrium states. However, stability also ought to be considered. The stability is analyzed through 
the properties of the geometric stiffness matrix. The eigenvalue decomposition of the geometric stiffness matrix is 

G
T  K  (27) 

where Φ (dnn × dnn) is the matrix of eigenvector whose are the basis of KG. λ (dnn × dnn) is the diagonal matrix containing 
the eigenvalue whose i-th eigenvalue (λi=λii, with λ1 ≤ …  λi ≤ … ≤ λdnn) corresponds to the i-th eigenvector. There are three 
cases related to the eigenvalue of KG that need to be considered: 

• Case 1: The eigenvalues are in increasing order as:  
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 1   0,    
n nr dn r dn          (28) 

where r is the number of zero eigenvalues of KG. The geometric stiffness matrix is positive semidefinite, and the structure 
is super-stable only if r ≥ d(d+1). This condition is equivalent to the condition related to the rank deficiency of the force 
density matrix (nn-rank(D) ≥ d+1) proposed in references (Connelly and Terrell, 1995; Connelly, 2002; Tran and Lee, 2010). 
Those conditions are related based on equation (20) due to the geometric stiffness matrix being an expansion of the 
force density matrix in dimension d so that the stability condition can be confirmed by the rank deficiency d(nn-rank(D)) 
≥ d(d+1). 

• Case 2: The number of zero eigenvalues is r ≤ d2. KG is positive semidefinite, but the obtained node position 
degenerates into a lower dimension. Similar to the first case, the rank deficiency of the force density matrix is lower 
than the requirement, so the obtained nodal coordinates for 2-d and 3-d structures are co-linear and co-planar, 
respectively. This relates to an inadequate scaling set of the force densities, especially for cables, which happens 
with structures with one degree of freedom of the self-stress state. 

• Case 3: KG is negative semidefinite and the eigenvalue are in increasing order 

 1 1 1 ( )  0,   0,   
np r dn p r                 (29) 

If r ≥ d(d+1) is satisfied, we evaluate the eigenvalues of the tangent stiffness matrix KT of the tensegrity given in 
(Guest, 2006; Ohsaki and Zhang, 2006; Zhang and Ohsaki, 2006) as follows: 

 T G E K K K  (30) 

where KE is the linear stiffness matrix given as: 

 E
Tdiag

     
ea

K A A
L

 (31) 

e, a, and L denote vectors of Young's moduli, cross-section areas, and prestressed lengths of nm members, 
respectively. A is an equilibrium matrix obtained as in (Ma et al., 2022b). 

   . .T T
dI b d NA C C  (32) 

in which b.d. (●) is the block diagonal of ●. The eigenvalues of the tangent stiffness matrix are in decreasing 
order as 

1 1  , 0
n m mdn r r          (33) 

The zero rm eigenvalues of the tangent stiffness matrix correspond to the rigid body motion and internal mechanism 
modes. To evaluate the system stability, it is necessary to check if the forces of structural elements can stiffen all the 
internal mechanism modes (Zhang and Ohsaki, 2006; Tran and Lee, 2010). 

4.2 Modified Newton-Raphson method 

Various techniques exist for solving the nonlinear least square function (Nocedal and Wright, 1999). The Gauss-
Newton approach, a modified Newton's line search method, is the most simple and straightforward technique for solving 
equation (21). The benefit of the Gauss-Newton method is that it uses equation (25) to approximate the Hessian rather 
than equation (24) to determine the Gauss-Newton direction (Boyd and Vandenberghe, 2004; Yuan et al., 2017).  
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T T n n n nJ J n J F  (34) 

The Gauss-Newton search step in equation (34) is the value that minimizes the least square function. Although the 
consideration of using the step length in equation (34) requires a significant value of the eigenvalue Ѱi to ensure an 
acceptable step Δn is a descendent direction (Пn ≤ Пñ). This has led the Levenberg-Marquardt method presented in 
(Yuan et al., 2017) to modify the Hessian heuristically approximated with the tangent stiffness matrix by adding a positive 
definite matrix to the Hessian; it becomes the descending direction of the least square function. However, an improper 
choice of the quantity added to the Hessian leads to small steps that slowly reduce the function Пn, with a decrease 
criterion that does not guarantee quadratic convergence. This section proposes a MN-RM for zeroing the nonlinear 
equilibrium system.  

The algorithm uses the Newton step and establishes a decrease rate criteria within an acceptable step length. The 
Newton step can be calculated from equation (34) as 

   1

1

T T



  

 
n n n n

n n

n J J J F

J F
 (35) 

When the step decreases the least square function, the Jacobian matrix tends to become singular as its value depends 
on the geometric stiffness matrix and leads to the largest step length. To ensure the Hessian is not singular as the node 
vector approaches the minimum of Пn, we add a positive-defined diagonal matrix so that the step is as follows:  

    1

ndn


   n nn J I F  (36) 

β is a positive quantity that guarantees the existence of the decedent step. If the value of β in equation (36) is small 
(i.e., β <1); Δn increases and decreases with β >1. In equation (36) the positive definite matrix does not change during 
the iteration of form-finding; it ensures that the Jacobi has the inverse. The acceptable Newton step is a descending 
direction of equation (21) with an initial rate of decrease given as 

1T

T

   

 
n n n n n

n n

n F J J F

F F
 (37) 

The positive definite diagonal matrix is unequivocally disregarded as the decrease rate remains unaffected by the 
value of the variable β. As the function Пn approaches the minimum, the nonlinear system equation (17) moves toward 
self-equilibrium; at this point, the step must further reduce Пn while avoiding Δn to cause the divergence of the node 
vector from the solution. To control the node vector's divergence, the search direction is determined by the step Δn, 
while the step size ƞ is used to regulate the decrease rate so that the new position of the node vector is thus obtained 
as: 

;  with:  0 1     n n n  (38) 

From equation (38), it is possible to construct a sequence of steps in which Пn decreases too slowly relative to the 
step length or the line of decreases in Пn is too small relative to the initial rate of decrease equation (37) as it is explained 
in (Vetterling and Press, 1992). As a result, the algorithm may not converge to a minimum of Пn. For this purpose, we 
assume that the average acceptance rate of the decrease of the least-square function at the new position is at least a 
fraction of the initial rate. 

   with   0 1        n n n n


 (39) 
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Note that the step length depends on the rate of decrease, and it must guarantee a decrease of Пn at each iteration. 
To obtain the value of ƞ that ensures the satisfaction of equation (39), we assume that the full Newton step length (ƞ=1) 
will reduce Пn to satisfy the criteria of decreasing the equation (39) at the first step.  

Therefore, the value of ƞ can be obtained using the quadratic approximation of the least square function at 
the nodal position given in equation (38). Let's redefine the least square function rewritten as a function ПȠ of a 
step size ƞ as: 

 
n

 



    n n
  (40) 

The quadratic approximation of ПȠ is calculated as 

 
 

1 0|

2

|   

  

  

                  
n n n n nn n

 

 (41) 

From which its minimum is (Vetterling and Press, 1992) given by the following equation: 

 2


 
 

    
n

n n n

n
n



 (42) 

The process from equation (36) to (42) is repeated with the setting of n to ñ till the design tolerance error ϵ is smaller 
or equal to the tolerance error of the target function. 

4.3 MN-RM form-finding algorithm 

To achieve the self-balance of the tensegrity system based on the nonlinear system of equation; the nodal force 
function, the least square function, and the Jacobian matrix are iteratively evaluated; for this purpose, we explicitly define 
these functions to assess them without their reconstruction at the given position. The algorithm consists of the following 
main parts:  

(i) Input: the initial random starting point (ñ); the topology of the structure ce (e=1 … nm), the cables forces densities, 
struts force, β and the design tolerance error ϵ. 

(ii) Calculate Fn and Jn as explicit function, and set i=1. 

(iii) Evaluate Fn and Jn at ñ. 

(iv) Calculate the Newton step Δn using equation (36). 

(v) Update n= ñ + ƞΔn; use the full step at first iteration (i=1 ←  ƞ=1). 

(vi) If the decrease criteria in equation (39) is satisfied, go to the next step; otherwise, calculate the minimum of ƞ 
using equation (42) and return to step (v). 

(vii) Evaluate the tolerance ϵ ≤ Пn if satisfied, stop and extract n. Otherwise, set i=1←i+1, ñ ← n and return to step 
(iii). 

5 NUMERICAL EXAMPLES 

Numerical examples of various tensegrities are presented to capture the efficiency of the shape-finding algorithm 
presented in the section 4.3. The initial guess of the configuration with residual nodal forces is solved using the MN-RM 
algorithm to define the self-equilibrium of the structure. The stability of the obtained configuration is analyzed using the 
geometric and tangent stiffness matrix criteria for stability. In all examples, the initial parameters related to the rate of 
decrease and convergence criteria are set as α=10-4 and ϵ =10-4, respectively.  
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5.1 X-module tensegrity 

The X-modules are structures consisting of crossbars and four cables. The number of struts differs according to the class of 
the system; class one structures have two struts, while class four modules have four struts meeting at a node, respectively. The 
topology and self-equilibrium configurations related to class one and four X-modules are shown in Figure 2.  

 
Figure 2: Obtained geometry of two X-module tensegrity structures. 

The configuration in Figure 2.a is the class one structure consisting of two struts connected by four cables within 
the choice of cables' force density δ3-6=1.40Ncm-1 and the struts' force f1-2=20.00N, the length of elements and r (=6) 
smallest eigenvalues that confirm the super stability of the structure are given in Table 1.  

Table 1 Final length and smallest eigenvalues of X-module tensegrity structure in Figure 2.  
 

i 1 2 3 4 5 6 7 8 

 li [cm] 14.29 14.29 10.00 10.20 10.00 10.20   

Figure 2.a λi×10-5 -0.51 -0.51 -0.51 -0.51 0 0   
 li [cm] 10.00 10.00 10.00 10.00 14.11 14.18 14.12 14.18 

Figure 2.b σi 0 0 0 1.00 2.83 3.83 5.43 5.42 

The self-equilibrium and the super stability states are obtained at the 20-th iteration within the target error 0.73×10-4 and 
β=3 (Figure 3). The force density in struts agrees with those obtained in (Tran and Lee, 2010; Zhang et al., 2014; Yuan et al., 2017).  

 
Figure 3: The convergence of the least square function of the X-modules towards the self-equilibrium. 

The configuration of the class four tensegrity module obtained using the MN-RM algorithm is shown in Figure 2.b; 
the force density in cable members is δ5-8=1.00Ncm-1, and the force in struts is f1-4=20.00N. The converge graph plotted 
in Figure 3 shows the self-balanced configuration was obtained on the 9-th iteration within the error of 0.46×10-4 by 
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setting β=0. The eigenvalues presented in Table 1 are obtained after evaluating the tangent stiffness matrix with the 
members' axial stiffness (eiai) set to 0.10. The three zero eigenvalues represent the infinitesimal mechanism mode and 
the rigid body motions that can be constrained with the prestress (Tran and Lee, 2010). The node position of the initial 
guess and the self-balanced structures shown in Figure 2 are given in Table 2. 

Table 2 Initial and final node coordinates in configuration of tensgrity structures in Figure 2.  

  ni 1 2 3 4 5 

In
iti

al
 g

ue
ss

  x- 0.39 0.67 0.74 0.52 - 

Figure 2.a y- 0.35 0.15 0.59 0.26 - 

 x- 0.41 0.67 0.93 0.81 0.48 

Figure 2.b y- 0.76 0.42 0.97 0.99 0.86 

Se
lf-

eq
ui

lib
riu

m
  x- -5.24 6.40 4.61 -3.45 - 

Figure 2.a y- 4.48 -3.80 6.24 -5.56 - 

 x- -58.33 -66.60 -64.00 -50.07 -52.66 

Figure 2.b y- 148.85 143.22 157.09 154.48 140.61 

5.2 Octahedral cell tensegrity 

The systems in Figure 4 are class two structures with eight cables and five struts. The force densities of cables and 
strut forces related to different cases of the final configuration are given in Table 3. As shown in Figure 5, the MN-RM 
iterative procedure has converged on the 6-th iteration for case 1 and case 3 with a minimum of the target function of 
0.67×10-4 and 0.62×10-4, respectively. The convergence of the least squares function of case 2 towards self-equilibrium 
with a design error of 0.90×10-4 was obtained on the 12-th iteration.  

Table 3 Forces density of cables and strut forces of cases considered for octahedral cell tensegrity.  

element (i) 
fi [N] δi [Ncm-1] 

1 2 3 4 5 6 7 8 9 10 11 12 13 

nodes n1-n2 n2-n3 n3-n4 n1-n4 n5-n6 n1-n5 n2-n5 n3-n5 n4-n5 n1-n6 n2-n6 n3-n6 n4-n6 

Case 1 14.60 14.60 14.60 14.60 14.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Case 2 11.00 11.00 11.00 11.00 8.00 1.00 1.00 1.20 1.20 1.00 1.00 1.20 1.20 

Case 3 15.00 11.00 15.00 11.00 21.00 0.72 0.72 0.72 0.72 1.20 1.20 1.20 1.20 

After investigating the stability condition through eigenvalue decomposition in equation (27), there were r=12 zero 
eigenvalues. Still, the smallest eigenvalues were negative (-2.00, -2.07, and -1.92 for case 1, case 2, and case 3, 
respectively), indicating the structure was not super stable. To this end, the tangent stiffness matrix was investigated, 
where the axial stiffness was set to 0.50 for struts and 0.0005 for cables, and the structures have no infinitesimal 
mechanism after constraining their rigid body motion. The tangent stiffness matrix was positive, meaning the structures 
are in the prestressed stable configuration. 

 
Figure 4: Self-equilibrium configurations of octahedral cell tensegrity. a. perspective view, b. top view of each case. 



An efficient Newton-Raphson based form-finding method for tensegrity structures with given strut forces 
and cable force density 

Angelo Vumiliya et al. 

Latin American Journal of Solids and Structures, 2024, 21(12), e571 13/20 

Table 4 contains the lengths of elements of the self-equilibrium configurations corresponding to the structural 
conditions given in Table 3. In addition, the force densities of struts of case 1 are consistent with the values found in 
(Tran and Lee, 2010). 

 
Figure 5: The convergence of the least square function of the octahedral cell 

Table 4 Length of structural members on the self-equilibrium state of octahedral cell tensegrities.  

li [cm] 1 2 3 4 5 6 7 8 9 10 11 12 13 

Case 1 14.60 14.60 14.60 14.60 14.60 7.30 10.95 10.95 10.95 10.95 10.95 10.95 10.95 
Case 2 10.38 10.63 10.63 10.63 4.38 9.12 9.12 6.06 6.06 9.12 9.12 6.06 6.06 
Case 3 16.67 12.50 16.67 12.50 11.67 12.72 12.72 12.72 12.72 11.30 11.30 11.30 11.30 

5.3 Tensegrity dome 

By solving the linear static equilibrium, Tran and Lee (2010) have derived the normalized force densities and shown that the 
structure is stable regardless of the material properties. In this subsection, the tensegrity dome is solved using the MN-RM algorithm, 
and the stability state result from the analysis of the geometric stiffness matrix is compared to the stability state found in (Tran and 
Lee, 2010). The conditions taken for the cable force density are not the same as those in (Tran and Lee, 2010); the set of cable force 
density is grouped as δ7-12=1.46Ncm-1, δ13-18=2.00Ncm-1 and strut forces f1-6=20.00N. The plot in Figure 6 shows the nonlinear 
regressive curve of the convergence of the target function toward the self-equilibrium. The self-balanced model shown in Figure 7 is 
super stable regardless of the material properties, which Tran and Lee confirmed in (Tran and Lee, 2010). The elements' length of the 
self-stable tensegrity dome concerning the initial element properties is given in Table 5. Additionally, the related nodes coordinates 
are given in Table 6. 

 
Figure 6: Tensegrity dome. a. Topology of the tensegrity dome, b. different configurations of the tensegrity dome obtained during 

the convergence of the target function toward the self-equilibrium. 
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Figure 7: Obtained self-balanced configuration of the tensegrity dome. a. Perspective view, b. top view. 

Table 5 Length of structural members on the self-equilibrium state of octahedral cell tensegrities.  

i 1-3 4-6 7-12 13 14 15 16 17 18 

li [cm] 26.23 24.00 8.23 17.07 15.09 15.29 14.58 16.62 16.35 

Table 6 Initial and final node coordinates in configuration of the tensegrity dome.  

 ni 1 2 3 4 5 6 7 8 9 

In
iti

al
 

gu
es

s x- 0.32 0.55 0.98 0.55 0.33 0.62 0.36 0.76 0.41 
y- 0.49 0.69 0.97 0.33 0.84 0.74 0.95 0.03 0.36 
z- 0.66 0.28 0.23 0.71 0.62 0.59 0.66 0.05 0.35 

Se
lf-

eq
ui

lib
riu

m
 

x- -11.28 1.86 11.04 4.36 -10.70 8.49 -6.57 11.37 -3.69 
y- -7.48 3.86 5.42 -10.93 7.06 -7.37 10.62 -6.88 11.11 
z- 5.40 -14.27 10.25 -0.50 4.53 -6.68 -1.65 1.02 6.05 

5.4 Truncated tensegrity cells 

We also consider the spherical tensegrity to enhance the integrity of the proposed form-finding algorithm. The 
general topology of spherical tensegrities consists of ns struts and nc = 3ns strings. To obtain a regular spherical shape, 
the strings are categorized as nct (=2ns) string connecting the truncated edges and ncv (=ns) vertical strings. Accordingly, 
the force densities are categorized as δct, the force density of the truncated string, and δcv, the force density of the vertical 
cables. Figure 8 shows the convergence of the truncated tetrahedral from a random initial guess to a self-equilibrium 
state. The structure in Figure 8.a is a truncated tetrahedral comprising 6 struts, 12 truncated strings, and 6 vertical cables. 
The properties of structural elements are that the cable force density was defined as δct=0.87Ncm-1 and δcv=0.60Ncm-1 
with struts force fs=17.87N. The length of elements of the self-equilibrium configuration is obtained as lct=8.59cm, 
lcv=19.54cm and lb=29.80cm defining the super stability of the structure according to the analysis of the r smallest 
eigenvalue of the geometric stiffness matrix given in Table 7. 

Table 7 Smallest eigenvalues of truncated tensegrity structure in Figure 8.  

λi ×10-5 1-3 4-6 7-9 10-12 β Пn 1/2×10-4 Iterations 

Figure 8.a -0.20 0 0.06 0.14 5.5 10.95 291 
Figure 8.b -0.12 0 0.27 0.68 5 9.12 6755 
Figure 8.c -0.75 0 0.03 0.72 10 12.72 429 
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Figure 8: Different configurations of truncated tensegrities toward the self-equilibrium. 

Figure 8.b-c are truncated octahedral and cubic configurations towards the self-equilibrium positions. The structural 
components consist of 24 and 12 struts, leading to 36 cables and 18 cables for the truncated octahedral and cubic 
structures, respectively. The force densities of truncated cables and vertical cables of the octahedral model are 
δct=0.91Ncm-1 and δcv=0.86Ncm-1, and the struts force fb=18.00N. The self-equilibrium configuration has the element 
lengths as lct=16.17cm, lcv=19.16cm and lb=43.99 cm. The super stability state of the structure is concluded with the value 
of the smallest eigenvalues (in Table 7) of the geometric stiffness matrix. The force densities of truncated and vertical 
cables are δct= δcv=1Ncm-1, and the strut force is set to fb=20.00N for the cubic truncated model. The balance of the 
structure obtained in Figure 8.c corresponds to strut lengths lb=47.60cm and cable lengths lct=16.90cm, lcv=19.51cm. 
According to the r smallest eigenvalue value in Table 7, the structure is stable regardless of the material property. 

6 DISCUSSION 

The MN-RM form-finding algorithm's accuracy and efficiency have been demonstrated in Section 5 with 
introductory examples of different tensegrities. In this section, we compare the performance of some form-finding 
algorithms (Yuan et al., 2017) that solve the system of nonlinear equilibrium equations for tensegrities. 

First, we do not need to constrain the rigid body motion or modify the positive definite diagonal matrix as in 
(Zhang et al., 2014; Yuan et al., 2017) because we use a step control to ensure that the step length is the descending 
direction of the least square function. This allows MN-RM to save time in terms of function evaluation at each iteration, 
unlike Levenberg-Marquardt form-finding (LMFF) (Yuan et al., 2017) where the least square function is reevaluated in 
any no-descending direction of the step, resulting in the sub-step that consumes time. 

Second, the MN-RM algorithm does not require a large value β for the diagonal entry of the positive definite matrix. 
Specifying a large value of β is a drawback of the algorithm due to its quadratic convergence. With β=10 tested on the 
prism tensegrity structure; the algorithm MN-RM requires 35 more iterations than LMFF to converge to the same design 
tolerance error. In this performance, the value of β was fixed during the iterative LMFF; moreover, the Hessian in LMFF 
is approximated by equation (25).   

Finally, we compare using Matlab software the performance and efficiency of the MN-RM algorithm, the LMFF 
algorithm and Matlab fsolve built-in function. The conditions for the comparison are that we use the same structure and 
the same initial estimate; we approximate the Hessian with equation (25) instead of using the tangent stiffness matrix as 
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the Hessian in LMFF algorithm. The numbering of the structural elements can be seen in Figure 9.a. The initial parameters 
of the considered tensegrity prism are the force density of the vertical cables, and the horizontal cables are δ4-6=1.00Ncm-1 
and δ7-12=0.58Ncm-1. The strut forces are f1-3=16.00N. It is confirmed that the MN-RM outperforms the LMFF and the Matlab 
fsolve built-in function, as shown in Figure 9.b. In case of β=0, the MN-RM takes one iteration to converge with high accuracy 
(ϵ=0.1323×10-12), whereas when β=0.2, the number of iterations required to achieve ϵ=0.2350×10-4 increase up to 6. This 
means, by setting β=0 the MN-RM is simply a Newton-Raphson with line search technique which presents the advantage 
for simple structure. However, for more complex structure the used of β>0 is necessary. The LMFF reaches the minimum of 
the least square function at the 11-th iteration with a design error of ϵ =0.5823×10-4 when β=100. In LMFF, the value of 
β=100 was observed to ensure the descending direction of Пn, with β divided by 2 at each iteration. The Matlab built-in 
fsolve function converge at the 5-th iteration with the design error ϵ=0.7538×10-7.  

 
Figure 9: a. Configuration and structural numbering of tensegrity prism. b. Graph of convergence of the MN-RM, LMFF algorithms and Matlab 

fsolve function. (c) Contour plot of the value of β versus the number of iterations with respect to the target function. 

Increasing the value of β in Figure 9.b increases the number of iterations, which is expected. On the other hand, in 
complex cases such as the tetrahedral tensegrity cell, the value of β might limit the method's ability to converge to the 
local minima of Пn as shown in Figure 9.c. Thus, the value of β and backtracking procedures ensure that the MN-RM 
moves steadily towards the solution. Hence, β helps in such cases by refining the step size to ensure that the method 
adapts to the local curvature of the function, thus maintaining the convergence of the gradient toward the root. 

7 CONCLUSION 

The proposed design of a tensegrity structure uses the force density in the cables and the force of the struts with a 
specific structural topology. The nonlinear equilibrium system was developed using the cables' force density, the struts' 
length, and the strut force. For this purpose, the coordinates of the nodes were chosen as variables. The self-equilibrium 
system was obtained using the modified Newton-Raphson method, which ensures a reduction of the nonlinear least 
square function resulting from the nonlinear equilibrium. The design algorithm promises to be a robust and reliable 
solution for the intended application of form-finding. The decrease rate of the objective function was set to a fraction of 
the initial reduction and has shown the great convergence of the modified Newton-Raphson method. The choice of the 
positive diagonal matrix was crucial for the algorithm's convergence; with β>10, the algorithm converged in more than 
40 iterations, in contrast to β<5, where convergence was achieved in less than 30 iterations. 
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Appendix – The derivation of the relative condition for the mínimum of the least square function and the Jacobian's 
expression 

The least-square function Пn construct from the nonlinear equilibrium system is given in the simplified form of 
equation (23) and can be written as 

 1

2
T n n nF F  (A.1) 

The first-order derivative of the least-square function is as 

  1

2
Tn 


  n nF F
n n

 (A.2) 

from which it follows that  

 T1

2
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 (A.3) 

where 

T
  


n

n n nJ F
n

 (A.4) 

in which Jn is the Jacobian matrix obtain as: 





n

n
F

J
n

 (A.5) 

For simplicity, we consider the jacobian matrix's i-th and j-th entries that correspond to the i-th and j-th entry of the 
nodal force and the node vector, the jacobian entries are determined as: 

 G[ ]
[ ]ij i

j




nJ R K n
n

 (A.6) 

Ri is the column vector which the i-th  entry is 1 and zero elsewhere. From equation (A.6), we obtain  

 G
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[ ] [ ]ij i
j j
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in which yields 

G
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[ ]ij i
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where Xj is the vector given as 
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The j-th entry of the vector Xj is 1 and zero elsewhere. Considering the geometric stiffness matrix in equation (18) 
and the length of struts in equation (8), the term the partial derivative of the geometric stiffness matrix concerning the 
j-th entry of the node vector is as follows: 

G
1

1 1
2

[ ] [ ]
[ ]

c sn n
s

c c s
c sj j T

s

f


 

              

 
K

C C
n n

n C n

 (A.10) 

Equation (A.10) can be simplified as 
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From this, it follows that  
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Equation (A.13) into (A.8) yields 
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The transpose of the Jn noted Jn
T, can be obtained by transposition of the entries as 
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which allows us to conclude 

T n nJ J  (A.16) 


