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Abstract 
A structural analysis of framed structures using the finite element method considering both the Bernoulli- 
Euler and the Timoshenko beam theories can be performed adopting cubic interpolation functions that yield 
analytical solutions for the displacements. However, these theories may not provide stress results with 
sufficient accuracy. In such cases, it is necessary to employ higher order beam formulations, that may require 
a high level of discretization. Therefore, this study proposes an enhanced Reddy beam element, obtained by 
considering interpolation functions calculated directly from the solution of the differential equation system. 
This solution minimizes the impact of structural discretization on the analysis, and framed structures can be 
effectively modeled considering the minimum number of elements required to describe the geometry. The 
results obtained by the proposed formulation were compared against classical beam theories and the Reddy 
beam model adopting conventional shape functions, showing the efficacy of the proposed element in 
simulating the elastic behavior of framed structures in a FEM-like procedure. 
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1 INTRODUCTION 

The quality of information obtained from a numerical analysis of framed structures depends on the structural theory 
considered. Among these, the most classical theory is the Bernoulli- Euler beam theory (EBBT). EBBT assumes that beam 
cross-sections remain plane and orthogonal to the beam axis after deformation, thereby disregarding shear deformation. 
As a consequence, this formulation proves inadequate to predict the behavior of structures with a moderate slenderness 
ratio or with a small shear-to-bending ratio (Rodrigues et al. 2021a). 

As an alternative, the Timoshenko bending theory (TBT) considers that cross sections remain plane, but not 
necessarily orthogonal to the deformed longitudinal axis. It introduces shear deformation as an additional rotation of the 
cross-section (Timoshenko 1921), resulting in an element where the transversal displacement and rotation are 
independent variables. This yields accurate structural displacements, regardless of the slenderness of the beam. 

While both beams theories provide a reliable and often comparable displacement field, they exhibit different results 
regarding shear stress, for both not consistent with the correct shear stress distribution in the section, given that the 
shear stress is undetermined when considering the EBBT, and the TBT leads to a constant shear stress distribution 
(Polizzotto 2015) dependent of the shear correction factors (Dong et al. 2010), in contrast to the requirement that the 
upper and lower surfaces of the beam be stress free. 

Usually, the dominant criterion in the design of a beam regarding its resistance is the maximum value of normal 
stress, related to the bending moment. However, shear stresses can be important, particularly in thin-walled bars and 
short, thick beams. According with Chakrabarti et al. (2012), despite of the Bernoulli-Euler beam theory does not consider 
the transverse shear deformation, its effect is very important for beams having low values of span to depth ratio, low 
shear rigidity or continuous spans.  In Timoshenko’s beam theory (TBT), transverse shear strain distribution is assumed 
to be constant through the beam thickness and thus requires problem dependent shear correction factor, whereas the 
actual variation of shear stress is parabolic becoming zero at the beam top and bottom surfaces. While the shear 
correction factor helps to predict the global response such as deflection or vibration frequency well, it is not sufficient 
for an accurate prediction of the local response such as the shear stress distributions within structures like composite 
beams (Uddin et al. 2017a). 

To improve shear stress prediction, several high-order bending theories were developed in the literature (Levinson 
1981; Bickford 1982; Reddy 1984a; 1984b; Heyliger and Reddy 1988; Petrolito 1995), where cross sections deform 
according to polynomial, trigonometric, or hyperbolic functions (Shi and Voyiadjis 2011; Almeida et al. 2011; 
Nguyen et al. 2022; Vinh and Son 2022; Neves et al. 2011; Vidal and Polit 2008; El Meiche et al. 2011; Mahi et al. 2015).  

High-order beam models typically have the capability to accurately predict shear stress distribution (Reddy 2022), 
making them widely applicable in structural engineering to simulate the behavior of steel and steel-concrete composite 
elements (Chakrabarti et al. 2012; Meghare and Jadhao 2015; Uddin et al. 2017a; 2017b; 2018; 2020). They are also 
relevant in structural analyses of laminated composite and sandwich beams, whether associated or not with refined 
theories such as the zig zag theory (Karama et al. 2003; Vidal and Polit 2011; Vo and Thai 2012; Szenkrényes 2014; 
Iurlaro et al. 2015; Karttunen et al. 2017; Zhen et al. 2019; Leite and Rocha 2023). Sayyad and Ghugal (2017) provide a 
comprehensive literature review on this topic.  

These theories are also employed in the analysis of micro-beams and nonlocal theories (Reddy 2007; Wanji et al. 
2012; Mohammad-Abadi and Daneshmehr 2014; Sahmani et al. 2014; Nazemnezhad and Zare 2016; Augello et al. 2019; 
Faroughi et al. 2020; Golbakhshi et al. 2022; Karamanli et al. 2023; Zheng et al. 2023), nonhomogeneous and functionally 
graded beams (Simsek and Reddy 2013; Khorshidi et al. 2016; Darijani and Mohammadabadi 2014; Karamanli and Vo 
2020; Ruocco et al. 2020; Ruocco and Reddy 2021). Higher order beam have also shown satisfactory results in addressing 
buckling and vibration of beams and nanobeams (He and Yang 2014; Nazemnezhad and Zare 2016; Mittelstedt and 
Mittelstedt 2020; AkhavanAlavi et al. 2019; Lin et al. 2020; Muc 2020) as well as in analysis of beams resting on elastic 
foundations (Stojanović and Petković 2016), and porous beams (Keleshteri and Jelovica 2022). 

The Reddy beam model (Reddy 1984b; 2022; Heyliger and Reddy 1988) represents the most classical theory among 
these higher-order beam models. In this model, a modification of the Timoshenko beam model is proposed, assuming 
that the cross section is capable of warping according to a suitably specified warping mode, with the profile of the warped 
cross section crosses the upper part and lower surfaces orthogonally (Polizzotto 2015). This effect is achieved by 
expanding the displacement field as cubic functions of the coordinate along the thickness of the cross section (Ruocco 
and Reddy 2023). In Reddy et al. (1997) is presented relationships between bending solutions of classical and shear 
deformation beam theories. 

Nevertheless, the augmentation of the stress field is not free of challenges. In contrast to more straightforward 
beam models, higher-order beams typically lack analytical solutions and necessitate a numerical approach for resolution. 
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In a FEM context, the application of interpolation functions calculated from the solution of the differential equations 
governing the problem at hand - for both Bernoulli- Euler and Timoshenko beam theories cubic Hermitian interpolation 
functions (Rodrigues et al. 2019; Molina-Villegas and Ortega 2023; Reddy 1997) - leads to numerical results coincident 
to the analytical solution and, as a consequence, a structural response independent on the level of discretization 
(Rodrigues et al. 2021a). Structural analysis software usually employs these approaches (McGuire et al. 2000; Martha 
and Rangel 2022; Rangel and Martha 2019), returning the exact solution of structures with complex geometries using 
only one element per member (Yang and Leu 1994; Yang and Kuo 1994; Bathe 1996; Reddy 2019). 

However, for the Reddy beam model, this is not the case. Adopting, as usual in the literature, Hermitian cubic 
functions to represent the out-of-plane displacements and linear functions to represent both axial displacements and 
rotations, even for a simple problem such as a clamped beam, a high level of discretization is necessary to converge to 
the exact response of the problem. Notably, in this manner the rotational components are governed by a function 
independent of transversal displacements. 

Recently an analytical solution of the equations governing the Reddy beam has been presented in (Ruocco and 
Reddy 2023), proving effective in both linear and nonlinear scenarios. Nevertheless, this solution incorporates 
exponential terms that compromise its efficiency within the framework of a finite element numerical process 
(Rodrigues et al. 2021b). These terms still require a dense discretization to achieve solution convergence, thereby 
diminishing the advantages derived from the use of an analytical solution as shape functions. 

In this paper, a new shape function and its corresponding stiffness matrix are introduced to better approximate the 
solution of a Reddy beam. This is achieved by developing a series expansion of the exponential terms from the exact 
solution, thereby regularizing their behavior and obtaining a polynomial kinematics that can be easily implemented in an 
automated computational code. The derivation from the analytical solution, along with the coupling between 
displacements and rotations stemming from it, yields a solution that is simultaneously stable and converging to the exact 
solution with a significantly reduced discretization if compared to conventional shape functions. This reduction in 
discretization does not compromise the quality of the solution, both in terms of displacement and the associated stress 
field, as demonstrated by the examples provided. 

2 REDDY BEAM MODEL 

In the Reddy beam theory, as described by Polizzotto (2015), the Timoshenko model is modified to permit the 
warping of cross-sections. This modification ensures that the profile of the warped section intersects the upper and lower 
surfaces orthogonally, as illustrated in Figure 1. 

 
Figure 1 Bernoulli- Euler, Timoshenko and Reddy bending kinematics - Adapted from Rodrigues et al. (2021a). 

This effect is achieved by proposing a cubic displacement field along the thickness of the cross section (Ruocco and 
Reddy, 2023). Assuming zero shear stress on the upper and lower faces of the section, the displacement field:  

 (1) 
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is finally obtained. In equation (1),  and represent the axial and transverse displacement, respectively, 
of the section centroidal axis, indicates the rotation of the cross section, allowing to obtain the longitudinal and 
transversal displacements and of any point in the section, as illustrated in Figure 2. For rectangular 
sections, the Reddy constant  is given in terms of the cross section height . 

 
Figure 2 Beam displacement field - Adapted from Rodrigues et al. (2019). 

The corresponding non-zero components of the linear part of the Green-Lagrange strain tensor are: 

 (2) 

 (3) 

The second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor are energetically conjugated and 
satisfy the condition of being expressible in terms of the know configuration (McGuire et al. 2000). The stresses are 
obtained from the constitutive law of the material, for elastic behavior, and assuming homogenous and isotropic 
material, the stress-strain tensor of the know configuration is constant and leads to the stress: 

  (4) 

This development is consistent with the nonlinear kinematics of the cross-sectional Reddy beam (Reddy 1984a; 
1984b; Heyliger and Reddy 1988, Reddy 2022; Ruocco and Reddy 2023). Thus, indicating with  the transversal load, and 

 the distributed moment along the element  axis, the virtual work principle can be written as: 

 (5) 

that is, 

 (6) 

having indicate with: 

 (7) 

the generalized stress components. 
Integrating equation (6) by parts leads to the system of differential equations governing the Reddy beam model:   
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 (8) 

 

wherein: 

 (9) 

is the effective shear force. 
The equation system (8) can be rewritten in terms of ( , ), returning:   

 (10) 

 (11) 

where,  correspond to the higher-order moment of inertia.  

 

3 SOLUTIONS OF THE DIFFERENTIAL EQUATIONS 

The Reddy beam theory’s differential equations can be rewritten into a homogeneous form by setting equations 
(10) and (11) to zero. Upon derivation of equation (11), and substituting expression (10), the resulting differential relation 
is given by:  

 (12) 

The third derivative of the rotation is then calculated as: 

 (13) 

integrating equation (12) twice yields expressions for the cross-sectional rotation and its derivative: 

 (14) 

 (15) 

Applying relations (13) to (15) to the equilibrium equation (10) results in a fourth-order differential equation in 
terms of the out-of-plane displacement : 
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 (16) 

returning: 

 (17) 

where  is a constant depending on the cross-section height  and on the Poisson coefficient , and  are 

constants of integration to be determined by posing the proper boundary conditions. 
The cross-sectional rotation, determined from equation (15), takes the form: 

 (18) 

According with Rodrigues et al. (2019; 2021a), this homogeneous solution  corresponds to the final solution 
in the direct stiffness method when no transverse force  is present within the element.  

Given that the interpolation functions are derived from the homogenous solution of the differential equation system 
ensures that the displacements and nodal rotations in the discrete model are exact, independent of the level of the 
discretization.  

4 INTERPOLATION FUNCTIONS 

The elastic behavior of a Reddy beam can be represented as a function of its nodal displacements (Figure 3) using 
the approximation provided by equations (19) to (22). 

 
Figure 3 Deformed configuration of an isolated Reddy element - Adapted from Rodrigues et al. (2021a).  

 (19) 

 (20) 

 (21) 

 (22) 

Typically, numerical analyses are performed by employing Hermitian interpolating functions for the out-of-plane 
component , and linear interpolation for both the axial displacement and rotation .  

However this study, making use of the analytical solutions presented in equations (17) and (18), proposes improved 
interpolation functions to better represents the out-of-plane displacement field. Rewriting the obtained displacement field as: 
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 (23) 

it is possible to evaluate the nodal values represented in Figure 4 as: 

 (24) 

the interpolation functions can be then obtained as: 

 (25) 

having indicate with: 

 (26) 

the interpolation functions.  
From equation (23), it becomes evident that the determined shape functions contain exponential terms. The 

presence of these terms introduces numerical instabilities, offsetting the advantages derived from using an analytical 
solution. Unlike beam models characterized by polynomial solutions, exponential terms necessitate a dense 
discretization to converge to a stable solution. To eliminate these numerical instabilities, it is possible to replace the 
exponential terms with their expansion truncated to the second order, resulting in: 

 (27) 

Finally, the total cross-sectional becomes: 
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 (28) 

To show the potentiality of the proposed interpolation functions, the problem of a clamped beam was analyzed 
(Figure 4).  The proposed beam have a length of L = 1 m, Young’s modulus of E = 107 kN/m2, Poisson’s ratio 𝜈𝜈 = 0.3. 

 

Figure 4 Clamped beam with concentrated load.  

According with Ruocco and Reddy (2023), the analytical solution of the problem considering the Reddy beam model 
is given by:  

 (29) 

 (30) 

 (31) 

Figures 5 to 7 shows the displacements obtained by comparing the analytical solution with numerical results, 
denoted as RBT, where Hermitian and linear shape functions are adopted for displacement and rotations, respectively. 
Additionally, are reported the results obtained with the proposed modified shape functions, and indicated with MRBT, 
considering a discretization with a single element. The solutions are presented for two different slenderness ratio 
𝜆𝜆 (𝐿𝐿/ℎ)  = 10, and 𝜆𝜆 = 40. The concentrated load is P = 1030 kN for the slenderness ratio of 10, and 16 kN for the 
slenderness ratio of 40. Both solutions, analytical and numerical are performed considering just a linear elastic analysis 
for comparison purposes only. 

 

Figure 5 Displacement (𝑣𝑣) comparison between solutions - (a) 𝜆𝜆 = 10  and (b) 𝜆𝜆 = 40. 
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Figure 6 Displacement (𝑑𝑑𝑣𝑣/𝑑𝑑𝑑𝑑) comparison between solutions - (a) 𝜆𝜆 = 10  and (b) 𝜆𝜆 = 40. 

 
Figure 7 Cross-sectional rotation (𝜃𝜃) comparison between solutions - (a) 𝜆𝜆 = 10  and (b) 𝜆𝜆 = 40. 

The results demonstrate the effectiveness of the proposed interpolation in predicting the displacement field of the 
beam. Moreover, for the highest slenderness ratio 𝜆𝜆 = 40, the analytical solution faces challenges in providing a solution 
for the transversal displacement due to numerical instabilities in the exponential terms.  

5 LOCAL STIFFNESS MATRIX 

The stiffness matrix can be calculated as: 
 

 

 

 (32) 
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Using cubic shape functions, equation (32) returns : 

3 2 3 2

2 2

0 0 0 0 0 0

4 16 2 4 4 4 16 2 4 40 0
7 25 7 75 15 7 25 7 75 15
2 4 4 16 16 2 2 4 2 40 0
7 75 21 225 105 45 7 75 21 225

EA EA
L L

EI GA EI GA GA EI GA EI GA GA
L L L L L L
EI GA EI GAL EI GAL EI GA EI GAL
L L L L L

−

       + + − − +       
       
        + + − − − −        
        

3 2 3

16 2
105 45

4 16 2 68 8 4 16 2 68 40 0
15 105 45 105 45 15 105 45 105 45

0 0 0 0 0 0

4 16 2 4 4 4 160 0
7 25 7 75 15 7 25

EI GAL
L

GA EI GAL EI GAL GA EI GAL EI GAL
L L L L

EA EA
L L

EI GA EI GA GA EI GA
L L L L L

  − +  
  

      − + − − + − +      
      

−

    − − − − − +   
    2

2 2

2 4 4
7 75 15

2 4 2 4 16 2 2 4 4 16 16 20 0
7 75 21 225 105 45 7 75 21 225 105 45

4 16 2 68 40
15 105 45 105 45

EI GA GA
L

EI GA EI GAL EI GAL EI GA EI GAL EI GAL
L L L L L L

GA EI GAL EI GAL
L L

  − − −   
   

           + − − + − − + −           
           

 − + − + 
 

4 16 2 68 80
15 105 45 105 45
GA EI GAL EI GAL

L L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      − − +            (33) 

However, employing the proposed approximation for displacements given by equations (19) to (21) and (28), and 
using interpolation functions shown in equations (27), the corresponding stiffness matrix is : 

3 2 3 2

2 2

0 0 0 0 0 0

12 6 12 60 0 0 0

6 64 8 16 8 6 62 4 16 40 0
21 45 105 45 21 45 105 45

16 8 68 8 16 40 0 0 0
105 45 105 45 105 45

EA EA
L L

EI EI EI EI
L L L L
EI EI GAL EI GAL EI EI GAL EI GAL
L L L L L L

EI GAL EI GAL EI GAL
L L L

−

−

       + − − + − −       
       
    − + − −   
    

3 2 3 2

2 2

68 4
105 45

0 0 0 0 0 0

12 6 12 60 0 0 0

6 62 4 16 4 6 64 8 16 80 0
21 45 105 45 21 45 105 45
16 4 68 40 0
105 45 105

EI GAL
L

EA EA
L L

EI EI EI EI
L L L L
EI EI GAL EI GAL EI EI GAL EI GAL
L L L L L L

EI GAL EI G
L L

 − +  
 

−

− − −

       + − − − + −       
       

 − − − + 
 

16 8 68 80 0
45 105 45 105 45
AL EI GAL EI GAL

L L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       − +              (34) 

For instance, considering the simple clamped beam modeled with just one element (Figure 4), λ = 10, numerically, 
the stiffness matrix for both beams theories are written as,  

5 0 0 0 5 0 0 0
0 1.2332 0.1038 0.5128 0 1.2332 0.1038 0.5128
0 0.1038 0.1375 0.0848 0 0.1038 0.0338 0.0848
0 0.5128 0.0848 0.3446 0 0.5128 0.0848 0.1682
5 0 0 0 5 0 0 0

0 1.2332 0.1038 0.5128 0 1.2332 0.1038 0.5128
0 0.1038 0.0338

RBTK

−
−

− − −
− −=

−
− − − − −

−

510

0.0848 0 0.1038 0.1375 0.0848
0 0.5128 0.0848 0.1682 0 0.5128 0.0848 0.3446

 
 
 
 
 
 
 
 − − 

− −    (35) 

5 0 0 0 5 0 0 0
0 0.0500 0.0250 0 0 0.0500 0.0250 0
0 0.0250 0.3546 0.3412 0 0.0250 0.1832 0.1716
0 0 0.3412 0.3446 0 0 0.1716 0.1682
5 0 0 0 5 0 0 0

0 0.0500 0.0250 0.5128 0 0.0500 0.0250 0
0 0.0250 0.1832 0.1716 0 0.0250 0.3546 0.34

MRBTK

−
−

− − −
− −=

−
− − − −

− − −

510

12
0 0 0.1716 0.1682 0 0 0.3412 0.3446

 
 
 
 
 
 
 
 
 

− −    (36) 
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It can be observed that the classical Reddy stiffness matrix represents a major rigidity for the transversal displacement of the 
element provided by the terms 16 25GA L  and 4 75GA . However, the MRBT theory increases the rigidity related to the derivative 
of transversal displacement and their relation with the total cross-sectional rotation. These terms that are responsible to adjust 
the MRBT matrix to consider the shear deformation, otherwise, the displacement result would correspond to EBBT theory. 

According with equations (29) to (31), the analytical solution for displacements at the free node of the clamped 
beam is obtained as: 

 (37) 

meanwhile, the Reddy beam models, using the stiffness matrix presented in equations (35) and (36), yields: 

 (38) 

In the case of a slenderness ratio 𝜆𝜆 = 40, the analytical solution diverges encountering difficulties in computing the 
transversal displacement: 

 (39) 

whereas the numerical approximations return: 

 (40) 

6 EQUIVALENT NODAL LOADS 

In usual structures, the most general loading case considered to obtain nodal reactions is a linearly distributed force 
, Figure 8. 

 
Figure 8 Equivalent nodal loads.  

This linear load can be written by composing a uniformly distributed load , with a linear (triangular) load, 
.  The nodal equivalent loads can be calculated by using the interpolation functions related to the 

transversal displacement ( ). 

 (41) 

Therefore, the equivalent nodal loads considering the proposed Reddy beam formulation correspond to the 
Bernoulli-Euler beam theory. Since that the interpolation functions are the same (first line of Equation 27), leading to the 
usual equivalent nodal loads. 

 (42) 
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7 NUMERICAL APPLICATIONS 

In this section, numerical examples were developed to verify the accuracy of the proposed finite element. Framed 
structures were modeled with both a high and a reduced level of discretization. The following descriptions identify 
elements in the examples: 

EBBT – Classic Bernoulli- Euler beam theory using Hermitian functions. 
TBT – Classic Timoshenko beam theory using cubic functions [Martha (2018)]. 
RBT – Classic Reddy beam theory using Hermitian and linear interpolation functions for displacement and rotation, 
respectively, matrix (33). 
MRBT – Modified Reddy beam theory, proposed in this study. The stiffness matrix is given by the presented in matrix (34).  
For consistency, the proposed formulation is compared with a converged result according to the usual Reddy model 

with a high level of discretization. 
 

7.1 Clamped Beam 

To validate the developed element (MRBT), the clamped beam depicted in Figure 9 has been analyzed. A reduced 
slenderness ratio 𝜆𝜆 = 𝐿𝐿/ℎ = 10 was employed to assess the element’s behavior. The beam have a length of L = 1 m, 
Young’s modulus of E = 107 kN/m2, section form factor of 𝜒𝜒 = 5/6 (in case of TBT element), and Poisson’s ratio 𝜈𝜈 = 0.3. 
The applied load was P = 1030 kN, and M = 1.03 kNm.   

 
Figure 9 Clamped beam. 

For EBBT and TBT the results are consistent, irrespective of structural discretization. On the contrary, the RBT model 
returns results depending on the adopted discretization, as shown in the convergence curve reported in Figure 10, where 
is compared the vertical displacement (v) at the free node for the RBT and the proposed model MRBT. It is evident that 
considering a single element the displacement resulting traditional RBT does not align with the correct result.  

 
Figure 10 Displacement (v) convergence in a clamped beam (λ = 10) - RBT and MRBT model. 

The modified model also yields results that vary with discretization. Nevertheless, the influence is significantly 
reduced, and even with just one element it is possible to obtain numerical results close to the analytical ones, as reported 
in Table 1. 

The displacements found using all beam theories (EBBT, TBT, RBT and MRBT) and a single element are summarized 
in Figure 11. 
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Table 1 Transversal displacement (v) in a clamped beam (λ = 10) - RBT and MRBT model. 

elements dof RBT MRBT 
v Diff v Diff 

1 4 0.62761 24.53% 0.83005 0.18% 
2 8 0.78207 5.96% 0.83074 0.10% 
4 16 0.82048 1.34% 0.8312 0.05% 

10 40 0.83051 0.13% 0.83142 0.02% 
20 80 0.83146 0.02% 0.83156 0.00% 
40 160 0.83159 0.00% 0.83159 0.00% 

 
Figure 11 Displacement in a clamped beam (λ = 10) for distinct theories using one element. 

Another crucial aspect to assess is related to shear stress. As is well-known, for the EBBT the shear stress distribution 
is undetermined, and the TBT leads to a constant shear stress distribution. The Reddy beam model improves upon these 
theories by providing a parabolic shear distribution. Thus, the MRBT needs to be evaluated in this context. 

Figure 12 illustrates the convergence study for shear stress using both Reddy stiffness matrices, the classical RBT 
and the MRBT proposed in this work. The shear stress was assessed at the middle of the cross-section (maximum shear 
stress) at the free node of the clamped beam. The numerical values are presented in Table 2. 

 
Figure 12 Shear stress (τ) convergence (clamped beam), λ = 10 - RBT and MRBT model. 

Table 2 Shear stress (τ) in a clamped beam (λ = 10) - RBT and MRBT model. 

elements dof RBT MRBT 
τ Diff τ Diff 

1 4 4946 83.71% -46320 52.57% 
2 8 5821 80.83% -26440 12.91% 
4 16 1918 93.68% -30480 0.40% 

10 40 -12550 58.66% -30640 0.92% 
20 80 -23370 23.02% -30400 0.13% 
40 160 -27890 8.14% 

 

80 320 -30330 0.10% 
160 640 -30360 0.00% 

 
From Figure 12, it is evident that achieving a convergence value with the standard Reddy beam stiffness matrix requires 

more than 300 degrees of freedom. As a consequence, the beam must be modelled with 80 or 160 elements, implying a 
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high-level discretization to attain a correct evaluation of the shear stress. For example, a discretization with 40 RBT elements 
returns a difference from the converged result of approximately 8.14%, and it rises 93.68% considering 4 elements. 

However, with the modified Reddy beam theory, better approximations are achieved even with reduced 
discretization. These considerably reduces the dimension of the system to be solved. Convergence is obtained with only 
16 degrees of freedom, meaning that employing 4 elements is sufficient to reach the expected results. In such case, the 
difference between the shear stress obtained with 160 elements using the RBT element is only 0.40%.  

Figure 13 illustrates the results from Table 2, showing the shear stress distribution in the cross-section of the free 
node, and how it changes depending on the discretization and the considered element.  

The shear stress distribution along the beam is illustrated in Figure 14 (a) for the RBT element’s converged result. 
Figure 14 (b) demonstrated that the same result can be represented using the proposed MRBT element with a reduced 
number of elements. 

 
Figure 13 Cross-section shear stress convergence (clamped beam), λ = 10 – (a) RBT and (b) MRBT. 

 
Figure 14 Shear stress (τ) clamped beam (λ = 10) - (a) RBT with 160 elements and (b) MRBT model with 20 elements. 

A similar study was conducted for a clamped beam considering a slenderness ratio 𝜆𝜆 = 4, corresponding to h = 
0.25 m. The applied load was P = 16050 kN. The convergence curve for the transversal displacement of the free node is 
presented in Figure 15, and numerical results are shown in Table 3.  
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Figure 15 Displacement (v) convergence in a clamped beam (λ = 4) - RBT and MRBT model. 

Table 3 Transversal displacement (v) in a clamped beam (λ = 4) - RBT and MRBT model. 

elements dof RBT MRBT 
v Diff v Diff 

1 4 0.66920 22.41% 0.853058 1.09% 
2 8 0.821443 4.76% 0.857346 0.59% 
4 16 0.855768 0.78% 0.860152 0.27% 

10 40 0.86183 0.07% 0.861812 0.08% 
20 80 0.862317 0.02% 0.862293 0.02% 
40 160 0.862473 0.00% 0.862468 0.00% 

Another noteworthy point is that, despite the similarity of the MRBT stiffness matrix with the EBBT, the 
displacement is more aligned with the results obtained from the Timoshenko beam model when a small slenderness is 
considered, and this alignment is achieved without the need of the section form factor. This observation is illustrated in 
Figure 16 with a single element. 

 

Figure 16 Displacement in a clamped beam (λ = 4) for distinct theories using one element. 

The modified model also yields results that vary with discretization. Nevertheless, the influence is significantly reduced, 
and even with just one element it is possible to obtain numerical results close to the analytical ones, as reported in Table 3.  

The convergence of shear stress is shown in Figure 17, and numerical results are presented in Table 4. Additionally, Figure 18 
illustrates the parabolic shear stress distribution along the cross-section for various theories and the adopted discretization. 

 

Figure 17 Shear stress (τ) convergence in clamped beam (λ = 4) - RBT and MRBT model. 
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Table 4 Shear stress (τ) in a clamped beam (λ = 4) - RBT and MRBT model. 

elements dof RBT MRBT 
τ Diff τ Diff 

1 4 22420 88.44% -288600 48.84% 
2 8 -5081 97.38% -165200 14.80% 
4 16 -79980 58.75% -190200 1.91% 

10 40 -161500 16.71% -191100 1.44% 
20 80 -182000 6.14% -192900 0.52% 
40 160 -187400 3.35% 

 

80 320 -193400 0.26% 
160 640 -193900 0.00% 

 

 
Figure 18 Cross-section shear stress convergence (clamped beam), λ = 4 – (a) RBT and (b) MRBT. 

The results indicate that employing the MRBT leads to shear stress with accurate approximation using 4 elements, 
with a difference of 1.91% from the converged solution (160 RBT elements). In contrast, using the RBT formulation, it is 
necessary to use 40 or more elements to achieve a similar difference. The shear stress distribution for the RBT along the 
clamped beam is reported in Figure 19 (a), and in Figure 19 (b) for the MRBT element. 

 
Figure 19 Shear stress (τ) clamped beam (λ = 4) - (a) RBT and (b) MRBT with 160 elements. 
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Finally, the last example evaluated for the clamped beam considers a slenderness ratio of 𝜆𝜆 = 100, thus the height 
of the cross section corresponds to h = 0.01 m. The convergence curve for the transversal displacement of the free node 
is presented in Figure 20 and in Table 5.  

 
Figure 20 Displacement (v) convergence in a clamped beam (λ = 100) - RBT and MRBT model. 

Table 5 Transversal displacement (v) in a clamped beam (λ = 100) - RBT and MRBT model. 

elements dof RBT MRBT 
v Diff v Diff 

1 4 0.619319 24.95% 0.825284 0.01% 
2 8 0.773819 6.23% 0.825290 0.01% 
4 16 0.812445 1.54% 0.825295 0.01% 

10 40 0.823259 0.23% 0.825298 0.01% 
20 80 0.824804 0.05% 0.825299 0.01% 
40 160 0.825188 0.00% 0.825299 0.01% 

 
Also, the displacement for all beam theories (EBBT, TBT, RBT, MRBT) cited in this work is shown in Figure 21. 

 
Figure 21 Displacement in a clamped beam (λ = 100) for distinct theories using one element. 

Despite of this similar behavior observed for the displacements in the clamped beam examples previously described, in 
this specific case achieving convergence for shear stress requires 640-1280 elements (2560-5120 degrees of freedom) when 
using the usual RBT model. However, when the proposed MRBT element is employed, accurate results are obtained with just 
4 elements, mirroring the outcomes seen in the other examples, as illustrated in Figure 22 and summarized in Table 6. 

 
Figure 22 Shear stress (τ) convergence in a clamped beam (λ = 100) - RBT and MRBT model. 
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Table 6 Shear stress (τ) in a clamped beam (λ = 100) - RBT and MRBT model. 

elements dof RBT MRBT 
τ Diff τ Diff 

1 4 50.86 83.43% -463.3 50.91% 
2 8 71.23 76.80% -264.3 13.91% 
4 16 73.78 75.97% -304.7 0.75% 

10 40 66.3 78.40% -306.3 0.23% 
20 80 47.26 84.61% 

 

40 160 16.7 94.56% 
80 320 -87.58 71.47% 

160 640 -208.8 31.99% 
320 1280 -279 9.12% 
640 2560 -301 1.95% 

1280 5120 -307 0.00% 

The shear stress distribution along the cross section presented in Figure 23 also evidences the better convergence 
of the proposed element. 

 
Figure 23 Cross-section shear stress convergence (clamped beam), λ = 100 – (a) RBT and (b) MRBT. 

The shear distribution along the clamped beam is shown in Figure 24. However, in this case, using just 160 elements, 
it is not possible for the classical RBT theory to represent the converged result.  

 
Figure 24 Shear stress (τ) clamped beam (λ = 100) - (a) RBT and (b) MRBT with 160 elements. 
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7.2 Portal Frame 

This example assesses the proposed formulation in a more complex system, the portal frame depicted in Figure 25. 
The frame was modeled with a length of L = 1 m, and slenderness ratio of 𝜆𝜆 = 10. To model the frame using the 
Timoshenko beam theory, a section form factor of 𝜒𝜒 = 5/6 is considered. The material parameters remain consistent 
with those used in the clamped beam example. The applied load P is 1000 kN.   

 
Figure 25 Portal frame. 

Following the same methodology as in the initial example, a convergence curve was elaborated for the displacement 
(u) at the top of the left column, considering both the RBT and the proposed MRBT. The results of the convergence study 
are presented in Figure 26. Additionally, the numerical results obtained for both theories are summarized in Table 7.  

 
Figure 26 Displacement (u) convergence in a portal frame (λ = 10) - RBT and MRBT model. 

Table 7 Transversal displacement (u) in a portal frame (λ = 10) - RBT and MRBT model. 

elements dof RBT MRBT 
v Diff v Diff 

1 4 0.007549 94.91% 0.144108 2.75% 
2 8 0.115235 22.23% 0.147283 0.61% 
4 16 0.140934 4.89% 0.147774 0.27% 

10 40 0.147571 0.41% 0.148094 0.06% 
20 80 0.148180 0.00% 0.148212 0.02% 

From this analysis, it is evident that the RBT converges to a value of 0.14818 with 20 elements (80 degrees of 
freedom). However, when employing just one element, this theory yields to a result with a 94.91% error concerning the 
converged displacement. This discrepancy diminishes with an increased level of discretization, reaching acceptable 
results with 4-10 elements, with differences of 4.89% and 0.41%, respectively. 

Using the proposed model in this work, it is possible to model the structure with just one element for both columns 
and beams, akin to the behavior of the EBBT model. In this scenario, the difference from the converged displacement is 
approximately 2.75%. When utilizing 2 elements, this difference further decreases to less than 1%. Figure 27 illustrates 
the displacement for the distinct beam theories obtained with just one element in each member. 
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Figure 27 Displacement in a portal frame (λ = 10) for distinct theories using one element. 

To evaluate the shear stress, the middle of the beam is analyzed. The convergence study and numerical result for 
the maximum shear stress (which occurs in cross section centroidal axis) are shown in Figure 28 and Table 8, respectively. 

 
Figure 28 Shear stress (τ) convergence in a portal frame (λ = 10) - RBT and MRBT model. 

Table 8 Shear stress (τ) in a portal frame (λ = 10) - RBT and MRBT model. 

elements dof RBT MRBT 
τ Diff τ Diff 

2 20 -1702 113.39% 19670 54.76% 
4 44 -668.2 105.26% 10810 14.95% 

10 116 5384 57.64% 12800 0.71% 
20 236 9938 21.81% 12770 0.47% 
40 476 11950 5.98% 

 

80 956 12550 1.26% 
160 1916 12710 0.00% 

This example shows that using 10 MRBT elements leads to a difference of the order of 0.71% related to the result 
adopted. While for the RBT element, if just 10 elements are used, this difference is around of 57.64%. When using 4 
elements, the difference for MRBT is of 14.95%, while for the RBT this difference is 105.26%. This result of the 
discretization influence on the cross-section shear distribution is illustrated in Figure 29. 

 
Figure 29 Cross-section shear stress convergence (beam of portal frame) – (a) RBT and (b) MRBT. 
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The shear stress distribution along the beam of the portal frame is shown in Figure 30. Using a high level of 
discretization (160 elements), both theories are capable of simulating the shear stress distribution, giving the same results. 

 

Figure 30 Shear stress (τ) in the beam of the frame - (a) RBT and (b) MRBT with 160 elements. 

7.3 Frame with Distributed Loads 

The main objective of this example is to evaluate the proposed model when is acting distributed loads and with 
simply supported conditions. It is proposed an frame as shown in Figure 31. As in the other examples, the frame was 
modeled with a length of L = 1 m, slenderness ratio of 𝜆𝜆 = 10, and a section form factor of 𝜒𝜒 = 5/6. The material 
parameters remain consistent with previous examples. The distributed load q was adopted as 10000 kN/m. 

 

Figure 31 Frame distributed loads. 

A convergence study presented in Figure 32 was performed to verify the structural response with the discretization 
variation. For this example, the rotation of the node 3 (support of the beam) was verified. The numerical results for both 
Reddy beams theories (RBT and MRBT) are given in Table 9. 
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Figure 32 Rotation (𝜃𝜃) convergence in a frame with distributed load (λ = 10) - RBT and MRBT model. 

Table 9 Rotation (𝜃𝜃) in a frame with distributed load (λ = 10) - RBT and MRBT model. 
elements dof RBT MRBT 

θ Diff θ Diff 

1 8 0.29398 54.35% 0.653515 1.48% 
2 16 0.58176 9.66% 0.640769 0.50% 
4 32 0.635934 1.25% 0.642391 0.25% 

10 80 0.646368 0.37% 0.643111 0.14% 
20 160 0.644985 0.16% 0.643383 0.09% 
40 320 0.643981 0.00% 

  

The analysis shows that to reach a converged result for the cross-section rotation, the RBT element requires a 
discretization of 20-40 elements (160-320 dof). Using just one RBT element, the difference from the converged rotation 
is of 54.35%. In fact, is necessary at least 4 elements to reach acceptable results. 

However, it can be verified that even considering distributed loads and simply supported conditions, the MRBT 
presents very reduced discretization influence. If the proposed element (MRBT) is considered with just 1 element, the 
difference from the converged result is about 1.48%, reducing to 0.50% with 2 elements.  

Figure 33 shows the result for the rotation considering the distinct beams theories using one element per member. 
It is evident that employ the MRBT element permit a structural analysis for displacements similar to theories of EBBT and 
TBT, i.e, with a minimum number of elements required to describe the geometry. 

 
Figure 33 Rotation in a frame with distributed load (λ = 10) for distinct theories using one element. 

A convergence study for the shear stress was also performed (Figure 34). The shear stress considered for this study 
occurs at the node 3 (support of the beam), at the cross section centroidal axis (representing the maximum shear stress 
in this point). The obtained numerical values are presented in Table 10.   

 
Figure 34 Shear stress (τ) convergence in a frame with distributed loads (λ = 10) - RBT and MRBT model. 
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Table 10 Shear stress (τ) in a portal frame with distributed loads (λ = 10) - RBT and MRBT model. 

elements dof RBT MRBT 
τ Diff τ Diff 

2 16 -30600 125.48% 90370 24.75% 
4 32 -16260 113.54% 96750 19.44% 

10 80 40950 65.90% 111500 7.16% 
20 160 88960 25.93% 116800 2.75% 
40 320 111300 7.33% 119300 0.67% 
80 640 118200 1.58% 

 

160 1280 120100 0.00% 

The results evidence that to reach the shear stress using the usual RBT model is necessary a high level of 
discretization, around of 80 to 160 elements (640-1280 dof). If a reduced discretization is considered the difference from 
the response is around 125.48% (2 elements), or 113.54% (4 elements), and also the sign is inverted. Acceptable results 
are presented with a discretization of 40 elements. 

However, modeling the structure with the proposed element (MRBT), this reduced discretization of 40 elements 
leads to a difference only of 0.67% from the response. Use 2 or four elements will lead to relevant differences, but this 
difference is only achieved with more than 20 elements in the classical RBT model. Acceptable results are reached with 
a discretization of 10 elements. 

The influence of the discretization on the shear stress distribution is shown in Figure 35. The results demonstrate 
that the convergence is achieved more easily when the proposed element is applied. On the other hand, the usual RBT 
element demands a high level of discretization to reach reasonable values. 

 
Figure 35 Cross-section shear stress convergence (beam of frame with distributed load) – (a) RBT and (b) MRBT. 

Finally, the shear stress distribution is predicted with similar behavior if a hard number of elements are used. Figure 
36 present this distribution considering 160 elements for both theories (RBT and MRBT). 

 
Figure 36 Shear stress (τ) in the beam of the frame with distributed load - (a) RBT and (b) MRBT with 160 elements. 
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8 CONCLUSION  

In this study, an enhanced shape function for the Reddy beam model is presented. It allows framed structural 
analysis using just one element in each member, a practice commonly employed with both the Bernoulli- Euler and 
Timoshenko beam models. This feature facilitates easy integration into any FEM code. The proposed displacement 
interpolation also proves to be effective in predicting structural behavior when analytical solution fall short. 

The formulation underwent comprehensive evaluation through various numerical examples. Initially, we compared 
the proposed interpolation functions with the analytical solution for the Reddy beam model, demonstrating the element 
capability to reproduce this solution without the stability problems deriving by the exponential terms contained in the 
closed-form solution. Subsequently, a detailed analysis of a clamped beam was conducted, examining displacements and 
shear stress distribution for different structural slenderness ratios. Finally, was performed a study on a framed structure, 
evaluating displacements and shear stress distribution along the entire beam and cross-section. 

The results demonstrate the efficiency of the proposed element, able to predict accurately both the displacements 
and the stress field with just one element for each member, a capability lacking in conventional theories (Bernoulli- Euler 
or Timoshenko) implemented for structural analysis of frames. Notably, the shape functions usually adopted for the 
Reddy beam model (Reddy 2022) necessitates higher-order discretization for correct displacement and shear stress 
determination, a challenge effectively mitigated with the proposed approach. 
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