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Abstract 
In this paper, nonlinear responses of a clamped-clamped buckled 
beam are investigated. Two efficient and easy mathematical tech-
niques called He’s Variational Approach and Laplace Iteration 
Method are used to solve the governing differential equation of 
motion. To assess the accuracy of solutions, we compare the re-
sults with the Runge-Kutta 4th order. The results show that both 
methods can be easily extended to other nonlinear oscillations and 
it can be predicted that both methods can be found widely appli-
cable in engineering and physics. 
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1 INTRODUCTION 

The Euler–Bernoulli theory of beams provides a reasonable explanation of the bending behavior of 
long isotropic beams. It is based on the assumption that a relationship between bending moment 
and the beam curvature exists. The vibration problems of uniform Euler-Bernoulli beams can be 
solved by analytical or approximate approaches. In this respect, several methods have been devel-
oped recently for finding approximate solutions to nonlinear problems; see (Boukhalfa and Hadjoui, 
2010; Da Silva et al., 2009; He, 2006; Ganji et al., 2011; Ganji, 2012; Bayat et al., 2011; Khan et al., 
2012; Nikkar et al., 2012; Ghasempoor et al., 2102; Ghotbi et al., 2012; Fereidoon et al., 2010) and 
the references therein. 

Lai et al. (2008) utilized Adomian Decomposition Method to obtain the natural frequencies and 
mode shapes for the Euler- Bernoulli beam under various supporting conditions. The single-mode 
discretization was employed to solve free vibrations of a simply supported buckled beam by 
Burgreen (1984). Pirbodaghi et al. (2009) studied non-linear vibration behavior of geometrically 
non-linear Euler-Bernoulli beams subjected to axial loads using homotopy analysis method. Also, 
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the effect of vibration amplitude on the non-linear frequency and buckling load is discussed. Hsu et 
al. (2008) used Modified Adomian Decomposition Method to solve free vibration of non-uniform 
Euler-Bernoulli beams with general elastically end conditions. Liu and Gurram (2009) investigated 
the free vibration of Euler-Bernoulli beam under various supporting conditions using a variational 
iteration method (VIM). At the end, recently, Barari et al. (2011) studied non-linear vibration be-
havior of geometrically non-linear Euler-Bernoulli beams using variational iteration method and 
parameter perturbation method. 

The Laplace Iteration Method (LIM) and Variational Approach (VA) which were introduced by 
Rafieipour et al. (2012) and He (2007) are very powerful methods in solving non-linear differential 
equations and studying nonlinear vibration of beams. The Variational Approach which is also called 
He’s Variational Approach, as well as the Laplace Iteration Method, was utilized here to obtain the 
analytical expression for geometrically non-linear vibration of clamped-clamped Euler-Bernoulli 
beams fixed at one end. Geometric non-linearity arises from non-linear strain-displacement relation-
ships. This type of nonlinearity is most commonly treated in the literature. Sources of this type of 
nonlinearity include midplane stretching, large curvatures of structural elements, and large rotation 
of elements. 
 
2 MATHEMATICAL FORMULATION 

Consider a straight beam on an elastic foundation with length L, a cross-section A, a mass per unit 
length µ, moment of inertia I, and modulus of elasticity E that subjected to an axial force of mag-
nitude F’ as shown in Fig. 1. It is assumed that the cross-sectional area of the beam is uniform and 
its material is homogenous. The beam is also modeled according to the Euler Bernoulli beam theo-
ry. Planes of the cross sections remain planes after deformation, straight lines normal to the mid-
plane of the beam remain normal, and straight lines in the transverse direction of the cross section 
do not change length. The first assumption ignores the in plane deformation. The second assump-
tion ignores the transverse shear strains and consequently the rotation of the cross section is due to 
bending only. The last assumption, which is called the incompressibility condition, assumes no 
transverse normal strains. The last two assumptions are the basis of the Euler-Bernoulli beam theo-
ry (Rao, 2007). 
 

 
Figure 1   Schematic of an Euler-Bernoulli beam subjected to an axial load. 
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 The equation of motion including the effects of mid-plane stretching is given by: 
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Where C is the viscous damping coefficient, K' is a foundation modulus and U is a distributed 

load in the transverse direction. 
Assume the non-conservative forces were equal to zero. Therefore Eq. (1) can be written as fol-

lows: 
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For convenience, the following nondimensional variables are used: 
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where R=(I/A)0.5  is the radius of gyration of the cross section. As a result Eq. (2) can be written 
as follows: 
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Assuming W (X,t) =ψ (X)η(t)  where ψ (X)  is the first eigenmode of the beam (Tse, 1978) and 

applying the Galerkin method, the equation of motion is obtained as follows: 
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Where α = α1 + α2F +K and α1, α2 and β are as follows: 
 

∫
∫ ∫

∫
∫

∫
∫ === 1

0

2

1

0

1

0

2

1

0

2

1

0
21

0

2

1

0
1

)'"(5.0
,

"
,

dx

dxdx

dx

dx

dx

dxiv

ψ

ψψψ
β

ψ

ψψ
α

ψ

ψψ
α

 

(6) 

 
The Eq. (5) is the governing non-linear vibration of Euler-Bernoulli beams. The center of the beam 
subjected to the following initial conditions: 
 

 η(0) = A, η(0) = 0. (7) 
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where A denotes the non-dimensional maximum amplitude of oscillation. 
 

3 DESCRIPTION OF THE LAPLACE ITERATION METHOD  

Using the Laplace Transformation method an analytical approximated technique has been proposed 
to present an accurate solution for nonlinear differential equations. To clarify the basic ideas of 
proposed method consider the following second order differential equation, 
 

u(t) + N  u(t){ } = 0  (8) 

 
with artificial zero initial conditions and N is the nonlinear operator. Adding and subtracting the 
term ω 2u(t) , the Eq. (8) can be written in the form 
 

u(t) +ω 2u(t) = L  u(t){ } = f u(t)( )  (9) 

 
where L is the linear operator and 
 

( ) { }2( ) ( )  ( )f u t u t N u tω= −  (10) 

 
Taking Laplace transform of both sides of the Eq. (9) in the usual way and using the homoge-

nous initial conditions gives 
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where S and ℑ are the Laplace variable and operator, correspondingly. Therefore it is obvious that   
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Now, implementing the Laplace inverse transform of Eq. (12) and using the Convolution theo-
rem offer 
 

( )
0
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Substituting Eq. (10) and (15) into (14) gives 
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Now, the actual initial conditions must be imposed. Finally the following iteration formulation 

can be used (Hesameddini and Latifizadeh, 2009) 
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(17) 

 
Knowing the initial approximation 0u , the next approximations un ,n > 0  can be determined 

from previous iterations. Consequently, the exact solution may be obtained by using: 
 

 uu nn ∞→
= lim

 (18) 

 
In this method, the problems are initially approximated with possible unknowns and it can be 

applied in non-linear problems without linearization or small parameters. The approximate solu-
tions obtained by the proposed method rapidly converge to the exact solution. 
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4   IMPLEMENTATION OF LAPLACE ITERATION METHOD  

Rewriting Eq. (5) in the standard form of Eq. (9) results in the following equation: 
 

 η(t)+ω
2η(t) = f (η(t)) , η(0) = A, η(0) = 0. (19) 

 
Where  
 

f (η(t)) =ω 2η(t)− N η(t){ },
N η(t){ } =αη(t)+ βη(t)3

 (20) 

 
Applying the proposed method, the following iterative formula is formed as: 
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Eq. (19) will be homogeneous, when f (η(t))  has a value of zero. So, its homogeneous solution 
 

)cos()(0 tAt ωη =  (22) 

 
is considered as the zero approximation for using in iterative Eq.(21). 
To obtain frequency of the system (ω), from Eq. (5), we have: 
 

 η = −αη − βη3  (23) 

 

 η = −αAcos(ωt)− βA3 cos3(ωt)  
 

(24) 
 
Integrating twice yields: 
 

η1 =
−7A3β − A3β cos3(ωt)+ 6A3β cos(ωt)− 9Aα + 9Aα cos(ωt)

9ω 2
 (25) 

 
Equating the coefficients of cos(ωt)  in η0  and η1 , the first approximation of the frequency can be 
expressed as: 
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ω LIM = α + 3
4
βA2  (26) 

 
Substituting Eq. (22) into (21) and eliminating the secular terms which is the coefficient of 
cos(ωt)  in forcing function )(ηf  results in: 
 

η1(t) = Acos(ωt)−
A3β(cos(ωt)− cos(3ωt))+12A3βωt sin(ωt)−16Aω 3t sin(ωt)+16Aαωt sin(ωt)

32ω 2

 
(27) 

 
where ω is evaluated from Eq. (26). In the same manner, the rest of the components of the iteration 
formula can be obtained. 
 
5 DESCRIPTION OF THE HE’S VARIATIONAL APPROACH 

In recent years, a heuristic variational approach, based on the method of energy balance has been 
introduced to solve nonlinear systems requiring no small parameters. This method, known as He’s 
variational method, can be easily implemented and yields to highly accurate results. In this method, 
a variational principle for the nonlinear oscillations is established, then a Hamiltonian is construct-
ed, from which the angular frequency can be obtained by a lacation method. To explain the method 
precisely, consider the following generalized nonlinear oscillations without forced terms: 
 

u"+ω 2u + ε f (u) = 0, u(0) = A, u '(0) = 0  (28) 

 
where f is a nonlinear function of u, u ' and u". 
For simplicity, if function f depends on u only, its variational functional can be obtained as: 
 

J(u) = − u '
2
+ω 2 u2

2
+ εF(u)

⎧
⎨
⎩

⎫
⎬
⎭0

t

∫ dt  (29) 

 
where F is the potential, dF / du = f . 
Its Hamiltonian reads 
 

H = − u '
2
+ω 2 u2

2
+ εF(u)  (30) 

 
which should be an invariant during the oscillation. With the invariant, we can apply the location 
method to identify the frequency by suitable choice of trial functions (He, 2006). If, by chance, the 



164       A. Nikkar et al. / Study of nonlinear vibration of Euler-Bernoulli beams by using analytical approximate techniques 

Latin American Journal of Solids and Structures 11(2014) 157 - 168 

 

exact solution had been chosen as the trial function, then it would be possible to make the residual 
zero for all values of t by appropriate choice of ω. From this point of view, He’s variational method 
is completely different from the classical variational methods, but has little likeness to Ritz method. 
Because, Ritz method is only valid for fixed domain, but in He’s variational method, the integral 
boundary is not fixed. So He’s functional formulation can be called as variational functional with 
movable domain. Therefore, He’s variational approach is quite different from the classic Ritz meth-
od in calculus of variation. Following the approach adopted by the Öziş and Yildirim, 2006) in a 
previous publication He’s method has been used to determine the periodic solutions and the periods 
of strongly nonlinear systems given below in subsequent three examples (Öziş and Yildirim, 2006). 
More recently, He’s method also adopted by D’Acunto for self-excited systems (D’Acunto, 2006a; 
2006b). 
 
6 IMPLEMENTATION OF HE’S VARIATIONAL APPROACH 

The governing equation of the system is: 
 

 

d 2η(t)
dt 2

+αη(t)+ βη(t)3 = 0 , η(0) = A, η(0) = 0.  (31) 

 
We can, now, easily obtain the following variational formulation: 
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By He’s method; we search the solution in the form: 

 

η(t) = Acos(ωt)  (33) 

 
Substituting Eq.(33) into Eq.(32) results in 
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or 
 

J(η) = 0.1963495409 A
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. (35) 
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Making J stationary with respect to A, according to He’s method (He, 2007), we obtain: 
 

∂J
∂A

= 0.1963495409 2A(−8ω
2 + 8α + 3βA2 )+ A2 (6βA)

ω
= 0  (36) 

 
or simplifying 
 

−16Aω 2 +16Aα +12βA3 = 0  (37) 

 
So the frequency can be approximated as: 
 

ωVA = α + 3
4
βA2  (38) 

 
and zero-order approximate solution from Eq.(33) is: 
 

η(t) = Acos( α + 0.75βA2 t)  (39) 

 

3 RESULTS AND DISSCUSIONS 

In this stage, nonlinear responses of a clamped-clamped buckled beam are proposed. Mathematical-
ly, the beam is modeled by a partial differential equation possessing cubic non-linearity because of 
mid plane stretching. Governing non-linear partial differential equation of Euler- Bernoulli’s beam is 
reduced to a single non-linear ordinary differential equation using Galerkin method. The frequency 
of both methods is exactly the same and transverse vibration of the beam center is illustrated ver-
sus amplitude and time. The effects of non-dimensional maximum amplitude of oscillation, A, on 
the time marching solutions for the motion equation is investigated in Table 1. 

In order to verify the precision of the methods, current results were compared with Runge-Kutta 
4th order method in Table 1. It is observable that our results are in excellent agreement with the 
results provided by Runge-Kutta 4th order. The behavior of η(A,t)  obtained by LIM and VA at 
α=π and β=0.15 is shown in Figs. 2 and 3. The comparison of the dimensionless deflection versus 
time for results obtained from LIM, VA and Runge-Kutta 4th order has been depicted in Fig. 4 for 
α=π and β=0.15, with maximum deflection at the center of the beam equal to five (A=5).  
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Table 1   Comparison between LIM & VA with time marching solution for the motion equation (5), when t = 0.5(s), 
α=β=1 

 
A LIM VA RKF ERROR(LIM) ERROR(VA) 

0.01 0.008775710 0.008775735 0.008775693 -0.000000017 -0.000000042 
0.1 0.087643206 0.087668378 0.087643042 -0.000000168 -0.000025336 
0.2 0.174597455 0.174797831 0.174597438 -0.000000017 -0.000200393 
0.3 0.260180487 0.260851146 0.260182593 -0.000002106 -0.000668553 
0.4 0.343723299 0.345294531 0.343733783 0.000010484 -0.001560748 
0.5 0.424576467 0.427599316 0.424609486 0.000033019 -0.002989830 
1 0.767843030 0.789109858 0.768790533 -0.000947503 -0.020319325 
10 -2.960606970 -3.461741578 -3.700321826 -0.739714856 -0.238580248 

 
 

 
Figure 2   Comparison between LIM and VA deflection versus time α=π and β=0.15 and A = 5 with Runge-Kutt 4th order. 

 

  
Figure 3   LIM deflection at α=π and β=0.15 Figure 4   VA deflection at α=π and β=0.15 
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4 CONCLUSIONS 

In this study, nonlinear responses of a clamped-clamped buckled beam are established to verify the 
vibrational behaviors of beam. Variational approach and efficient approximate method (LIM) is 
employed to derive the nonlinear responses of a clamped-clamped buckled beam. The frequency of 
both methods is exactly the same and transverse vibration of the beam center is illustrated versus 
amplitude and time. Comparing with numerical Results, it is shown that the approximate analytical 
solutions are in very good agreement with the corresponding solutions. 
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