
11 (2014) 386 - 409	  

Abstract 
A numerical computer model, based on the dual reciprocity 
boundary element method (DRBEM) for studying the generalized 
magneto-thermo-visco-elastic stress waves in a rotating functional-
ly graded anisotropic thin film/substrate structure under pulsed 
laser irradiation is established. An implicit-implicit staggered 
algorithm was proposed and implemented for use with the 
DRBEM to get the solution for the temperature, displacement 
components and thermal stress components through the structure 
thickness. A comparison of the results for different theories is 
presented in the presence and absence of rotation. Some numerical 
results that demonstrate the validity of the proposed method are 
also presented. 
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1 INTRODUCTION 

Biot (1956) introduced the theory of coupled thermoelasticity to overcome the first shortcoming in 
the theory of uncoupled thermoelasticity introduced by Duhamel (1837) and Neuman (1885) where 
it predicts two phenomena not compatible with physical observations. First, the equation of heat 
conduction of this theory does not contain any elastic terms. Second, the heat equation is of a para-
bolic type, predicting infinite speeds of propagation for heat waves. Later on, generalized theories of 
thermoelasticity were introduced in order to eliminate the shortcomings of the uncoupled thermoe-
lasticity. Lord and Shulman (1967) developed the theory of coupled thermoelasticity with one re-
laxation time by constructing a new law of heat conduction to replace the classical Fourier's law. 
This law contains the heat flux vector as well as its time derivative. It contains also new constant 
that acts as relaxation time. Since the heat equation of this theory is of the wave-type, it automati-
cally ensures finite speeds of propagation for heat and elastic waves. Green and Lindsay (1972) in-
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cluded a temperature rate among the constitutive variables to develop a temperature–rate-
dependent thermoelasticity that does not violate the classical Fourier's law of heat conduction when 
the body under consideration has a center of symmetry; this theory also predicts a finite speed of 
heat propagation. This theory is known as the theory of thermoelasticity with two relaxation times. 
According to these theories, heat propagation should be viewed as a wave phenomenon rather than 
diffusion one Relevant theoretical developments on the subject were made by Green and Naghdi 
(1992, 1993) they developed three models for generalized thermoelasticity of homogeneous isotropic 
materials which are labeled as model I, II and III. These theories of thermoelasticity LS, GL and 
GN theories are known as the generalized theories of thermoelasticity with finite thermal wave 
speed. In general, it is not easy to obtain analytical solutions to a dynamical magneto-thermo-visco-
elastic problem in anisotropic materials. therefore, an important number of engineering and mathe-
matical papers devoted to the numerical solution have studied the overall behavior of such materi-
als (Oden and Armstrong, 1971; Ting and Chen, 1982; Dargush and Banerjee, 1991; Misra, et al., 
1992; Chen, et al., 2009; Tsai, 2009; Xing  and Makinouchi, 2002; El-Naggar, et al., 2002, 2004; 
Abd-Alla, et al., 2003, 2007, 2008; Wu and Chu, 2004; Baksi, et al., 2006; Hosseini, et al., 2007; 
Huang and Rosakis, 2007; Fahmy, 2008, 2009; Fahmy and  El-Shahat, 2008; Feng, et al., 2008; 
Othman and Song, 2008; Damanpack, et al. (2013); Rafieipour, et al. (2013)). 

Recently, generalized thermoelastic functionally graded thin films (FGTFs) have been attracting 
much attention for a wide variety of potential optical and electronic applications, including memory 
devices, solar cells, optoelectronic devices, bio/chemical sensors, semiconductor devices, transparent 
conductors, surface acoustic wave devices, optical modulator devices and integrated optic devices, 
because of their high dielectric constants, large spontaneous polarizations,and large pyroelectric, 
piezoelectric and electro optic effect. So it is very important and necessary to study the magneto-
thermoviscoelastic stress waves in the film/substrate structures. Interested readers can find more 
details and applications of thin films in the following references (Chen and Chung, 1995; 
Cherepanov and Martinez, 1997; Zhou et al., 2006; Hsueh et al., 2010; Chang, 2011). 

To deal with an arbitrary body force in elasticity, Nardini and Brebbia (1983) developed a pro-
cedure nowadays known as the dual reciprocity boundary element method (DRBEM). The purpose 
of the DRBEM is to convert the domain integral into a boundary one. This method was initially 
developed in the context of two-dimensional (2D) elastodynamics and has been extended to deal 
with a variety of problems wherein the domain integral may account for linear-nonlinear static-
dynamic effects. The DRBEM has been highly successful in a very wide range of engineering appli-
cations, including acoustics, aeroacoustics, aerodynamics, fluid dynamics, fracture analysis, geome-
chanics, elasticity and heat transfer. A more extensive historical review and applications of dual 
reciprocity boundary element method may be found in (Brebbia et al., 1984; Wrobel and Brebbia, 
1987; Partridge and Brebbia, 1990; Partridge and Wrobel, 1990; Partridge et al., 1992; Gaul et al., 
2003; Lu and Wu, 2006;  Fahmy, 2010, 2011, 2011a, 2012). 

The main aim of this paper is to study the propagation of magneto-thermo-visco-elastic stress 
waves through the thickness of the anisotropic functionally graded (FG) thin film/substrate struc-
ture when it is rotated about the y-axis under pulsed laser irradiation. An implicit-implicit stag-
gered strategy was developed and implemented for use with the DRBEM to obtain the solution for 
the displacement and temperature fields. Numerical computations for the temperature, displace-
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ment components and thermal stress components are carried out and represented graphically. Com-
parisons are made with the results predicted by the four theories (LS model, GL model, GN model 
II, GN model III) in the presence and absence of rotation. Some numerical results that demonstrate 
the validity of the proposed method are also presented. 

 

 
Figure 1   Geometry of the problem 

 
2 FORMULATION OF THE PROBLEM  

The structure consists of an anisotropic FG thin film of thickness h and an anisotropic FG sub-
strate with thickness d in the Cartesian coordinate system x, y, z  is considered as shown in Fig. 1. 
This structure is placed in a primary magnetic field H! acting in the direction of the y-axis and 
rotating about it with a constant angular velocity in the presence of pulsed laser irradiation. Here 
we address the generalized two-dimensional deformation problem in 𝑥𝑧-plane only, where the struc-
ture occupies the region R = 𝑥, 𝑧 : 0 < 𝑥 < d + h, 0 < 𝑧 < 𝑎  which is bounded by a simple closed 
curve C. At each and every point on the boundary C, the temperature and displacement are suitably 
specified. 

According to Lord-Shulman (LS), Green-Lindsay (GL) and Green-Naghdi (GN) theories, the 
governing equations of generalized magneto-thermo-viscoelasticity in a rotating anisotropic FG thin 
film/substrate structure, can be written in the following unified form: 

 
σ!",! + τ!",! − ρ!ω!x! = ρ!u!!  (1) 

 
σ!" = ℵ C!"#$

! u!,!
! − β!"

! (T! − T! + τ!T!) , C!"#$
! = C!"#$

! = C!"#$
!   , β!"

! = β!"
!  (2) 

  
τ!" = µμ! h!H! + h!H! − δ!"(h!H!) , h! = ∇× u!×H

!
 (3) 

 
δ!"k!"

! + δ!"k!"
!∗ T,!"

! + ρ!(𝔛 + τ!𝔛) 
= −δ!"k!"

! T,!"
! + β!"

! T! Åδ!"u!,!
! + τ! + δ!" u!,!

!  
+ρ!c! δ!"T! + τ! + δ!"τ! + δ!" T!  

(4) 



M.  A. Fahmy / Stress waves in functionally graded anisotropic thin film/substrate structures      389 

 

Latin American Journal of Solids and Structures 11 (2014) 386 - 409 
 

where σ!" is the mechanical stress tensor, τ!" Maxwell’s electromagnetic stress tensor, u!!  is the 
displacement, T! is the reference temperature, T! is the temperature, C!"#$!  and β!"!  are respectively, 
the constant elastic moduli and stress-temperature coefficients of the anisotropic medium, 
ℵ = 1 + ν!

!
!!

 is the viscoelastic material constant, ν! is the viscoelastic relaxation time, µμ! is the 
magnetic permeability, h is the perturbed magnetic field, ω is the uniform angular velocity, 
k!"
! k!"

! = k!"
! , k!"!

!
− k!!! k!!! < 0    are the thermal conductivity coefficients, k!"

!∗  (k!"!∗ =

k!"
!∗ , k!"!∗

!
− k!!!∗ k!!!∗ < 0 ) is the second order tensor of new material constants associated with the 

GN theories, ρ! is the density, c! is the specific heat capacity, τ is the time, τ!, τ!, τ! are the relaxa-
tion times, Å is a unified parameter which introduced to consolidate all theories into a unified sys-
tem of equations,   𝔛 is the heat source and t! are the tractions defined by t! = σ!"n!, d and h are 
the thickness of the substrate and film respectively and δ!! (α, j = 1, 2) is the Kronecker delta. 

A superposed dot denotes differentiation with respect to the time and a comma followed by a 
subscript denotes partial differentiation with respect to the corresponding coordinates. 

For functionally graded materials, the parameters C!"#$! , β!"! , µμ!, ρ!, k!"!  and k!"!∗  are space de-
pendent. In this paper, the material is functionally graded along the 0x direction. Thus, we replace 
these quantities by C!"#$! f(x), β!"! f(x), µμ!f(x), ρ!f(x), k!"! f(x) and k!"!∗ f(x) where C!"#$! , β!"! , µμ!, ρ!, k!"!  
and k!"!∗  are assumed to be constants; i = 1, 2 represents the parameters in film and substrate, re-
spectively, and f(x) is a given nondimensional function of space variable x. We take f x = x + 1 ! 
where m is a dimensionless constant.  

Then the equations (1)-(4) become 
 

σ!",! + τ!",! − ρ! x + 1 !ω!x! = ρ! x + 1 !u!!  (5) 
 

σ!" = x + 1 ! C!"#$
! ℵu!,!

! − β!"
! (T! − T! + τ!T!)  (6) 

 
τ!" = µμ! x + 1 ! h!H! + h!H! − δ!"(h!H!)  (7) 

 
δ!"k!"

! + δ!"k!"
!∗ T,!"

! + ρ!(𝔛 + τ!𝔛) 
= −δ!"k!"

! T,!"
! + β!"

! T! Åδ!"u!,!
! + τ! + δ!" u!,!

! + ρ!c! x + 1 ! δ!"T! + τ! + δ!"τ! + δ!" T!  (8) 

 
Equations (5)-(8) can be reduced to the governing equations of different theories of generalized 

magneto-thermo-viscoelasticity in a rotating anisotropic FG thin film/substrate structure as follows: 
(I) LS: j = 1, Å = 1 and τ! = τ! = 0 
(II) GL: j = 1, Å = 1 and τ! = 0 
(III) GN III: j = 2, Å = 0 and τ! = 0 
Notice that there are two special cases of the GN III theory type, may be obtained by setting 

k!"
! → 0 and k!"!∗ → 0, respectively. To obtain the GN theory type II, from the equations of the GN 

III theory, we set k!"! → 0. When k!"!∗ → 0 the equations of the GN III theory reduce to the GN 
theory type I. 
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2.1  Initial and boundary conditions 

The lower surface of the structure is irradiated by the laser power and temperature of the upper 
surface of the structure is supposed to be thermal insulation, so that the boundary conditions at 
these two surfaces can be written as 
 

k!
∂T!(0, z, τ)

∂x
= Γ!ν T ω z ψ τ  (9) 

 
T! d + h, z, τ = T! (10) 

 
where Γ! is the incident laser power density, ν T  is the optical absorptivity of the film, ω z  and 
ψ(τ) are the spatial and temporal distribution of the laser pulse.  

These two functions can be written as 
 

ω z = exp −
z!

a!!
 (11) 

 
ψ τ =

τ
τ!
exp −

τ
τ!

 (12) 

 
where a! is the radius of the pulsed laser spot, τ! is the rise time of the laser pulse. 

Thermal insulation is applied at the z direction, so that 
 

k
∂T(x, 0, τ)

∂n
= k

∂T(x, a, τ)
∂n

 (13) 

 
Continuity conditions for the temperature, heat flux, displacement and traction at the interface, 

are as follows 
 

T! x, z, τ
!!!

= T! x, z, τ
!!!

 (14a) 
 

q! x, z, τ
!!!

= q! x, z, τ
!!!

 (14b) 
 

u!
! x, z, τ

!!!
= u!

! x, z, τ
!!!

 (15a) 
 

t!! x, z, τ !!!
= t!! x, z, τ !!!

 (15b) 
 

The remaining initial and boundary conditions for the current problem are assumed to be writ-
ten as 
 

u!
! x, z, 0 = u!

! x, z, 0 = 0        for         x, z ∈ R ∪ C 
 

(16) 
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u!
! x, z, τ = Ψ! x, z, τ       for           x, z ∈ C! (17) 

 
t!! x, z, τ = Φ! x, z, τ       for         x, z ∈ C!, τ > 0,                    𝐶 = C! ∪ C!, 

C! ∩ C! = ∅ (18) 

 
T! x, z, 0 = T! x, z, 0 = 0      for         x, z ∈ R ∪ C (19) 

 
q! x, z, τ = h x, z, τ       for         𝑥, 𝑧 ∈ 𝐶2, 𝜏 > 0,                  𝐶 = 𝐶1 ∪ 𝐶2, 𝐶! ∩ 𝐶! = ∅ (20) 
 

               For simplicity in the numerical implementation of DRBEM below, we will drop the su-
perscript i 

 
3 NUMERICAL IMPLEMENTATION  

Making use of (6) and (7), we can write (5) as follows 
 

L!"u! = ρu! − D!T + D!" + ΛD!"# − ρω!x! = f!" (21) 
 

Where L!" = D!"#
!
!!!

,D!"# = C!"#$ℵε, ε =
!
!!!

,D!" = µμH!!
!
!!!

+ δ!"Λ
!
!!!
,Λ = !

!!!
, 

D! = −β!"
!
!!!

+ δ!"Λ + τ!
!
!!!

+ Λ !
!!

, f!" = ρu! − D!T + D!" + ΛD!"# − ρω!x! . 

The field equations can now be written in operator form as follows 
 

L!"u! = f!" (22) 
 

L!"T = f!" (23) 
 
where the operators L!" and f!" are defined in equation (21), and the operators L!" and f!" are de-
fined as follows: 
 

L!" = δ!"k!" + δ!"k!"
∗ ∂

∂x!
∂
∂x!

 (24) 

 
f!" = −δ!"k!"T,!" + ρc x + 1 ! δ!"T + τ! + δ!"τ! + δ!" T + T!β!" Åδ!"u!,! + τ! + δ!" u!,!    

−ρ(𝔛 + τ!𝔛) 
(25) 

 
Using the weighted residual method (WRM), the differential equation (22) is transformed into 

an integral equation 
 

(L!"u! − f!")u!"
∗

!

dR = 0 (26) 
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Now, we choose the fundamental solution u!"∗  as weighting function as follows 
 

L!"u!"
∗ = −δ!"δ x, ξ  (27) 

The corresponding traction field can be written as 
 

t!"
∗ = C!"#$ℵu!",!

∗ n! (28) 
 

The thermoelastic traction vector can be written as follows 
 

t! =
t!

x + 1 ! = ℵ C!"#$u!,! − β!"(T − T! + τ!T) n! (29) 

 
Applying integration by parts to (26) using the sifting property of the Dirac distribution, with 

(27), (28) and (29), we can write the following elastic integral representation formula 
 

u! ξ = u!"
∗ t! − t!"

∗ u! + u!"
∗ β!"Tn!

!

dC − f!"u!"
∗ dR

!

 (30) 

 
The fundamental solution T∗ of the thermal operator L!", defined by 

 
L!"T∗ = −δ x, ξ  (31) 

 
By implementing the WRM and integration by parts, the differential equation (23) is trans-

formed into the thermal reciprocity equation 
 

L!"TT∗ − L!"T∗T dR = q∗T − qT∗ dC
!!

 (32) 

 
Where the heat fluxes are independent of the elastic field and can be expressed as follows: 

 
q = −k!"T,!n! (33) 

 
q∗ = −k!"T,!

∗n! (34) 
 

By the use of sifting property, we obtain from (32) the thermal integral representation formula 
 

T ξ = q∗T − qT∗ dC
!

− f!"T∗dR
!

 (35) 

 
The integral representation formulae of elastic and thermal fields (30) and (35) can be combined 

to form a single equation as follows 
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u!(ξ)
T(ξ) = −

t!"
∗ −u!"

∗ β!"n!
0 −q∗

u!
T + u!"

∗ 0
0 −T∗

t!
q dC − u!"

∗ 0
0 −T∗

f!"
−f!"

dR
!!

 (36) 

 
It is convenient to use the contracted notation to introduce generalized thermoelastic vectors and 

tensors, which contain corresponding elastic and thermal variables as follows: 
 

U! =
u!                a = A = 1, 2, 3  
T                    A = 4                                    

 (37) 
 

Τ! =
t!                a = A = 1, 2, 3  
q                    A = 4                                     (38) 

 

U!"∗ =

u!"∗                 d = D = 1, 2, 3; a = A = 1, 2, 3
0                      d = D = 1, 2, 3;A = 4                              
0                      D = 4; a = A = 1, 2, 3                              
−T∗              D = 4;A = 4                                                                    

 (39) 

 

T!"∗ =

t!"∗                 d = D = 1, 2, 3; a = A = 1, 2, 3
−u!

∗             d = D = 1, 2, 3;A = 4                                  
0                    D = 4; a = A = 1, 2, 3                              
−q∗            D = 4;A = 4                                                                    

 (40) 

 
u!
∗ = u!"

∗ β!"n! (41) 
 

Using the contracted notation, the thermoelastic representation formula (36) can be written as: 
 

U! ξ = U!"∗ Τ! − T!"U! dC − U!"∗ S!dR
!!

 (42) 

 
The vector S! can be written in the split form as follows 

 
S! = S!! + S!! + S!! + S!! + S!! + S!! + S!! (43) 

 
where 

 

S!! =
ρω!x!                  a = A = 1, 2, 3

ρ(𝔛 + τ!𝔛)          A = 4                                  
 (44) 

 
S!! = ω!"U!                  with        ω!" =

−D!                              A = 1, 2, 3; F = 4
0                                  otherwise                   (45) 

 

S!! = δ!"k!"
∂
∂x!

∂
∂x!

− cρ x + 1 !δ!" δ!"U!    with    δ!" =
1        a = A = 4; F = 4
0        otherwise                           (46) 
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S!! = −cρ x + 1 ! τ! + δ!"τ! + δ!" δ!"U! (47) 

 

S!! = − D!" + ΛD!"# ℧U!       with    ℧ = 1                  a = A = 1, 2, 3; f = F = 1, 2, 3
0                                                otherwise                                                 (48) 

 
S!! = −T!Åδ!"β!"εU! (49) 

 

S!! = ℲU!                              with        Ⅎ =
ρ                                                                                      A = 1, 2, 3;   F = 1, 2, 3,
−T!β!" τ! + δ!" ε                                        A = 4; f = F = 4  (50) 

 
The thermoelastic representation formula (36) can also be written in matrix form as follows: 
 

S! =
ρω!x!

ρ(𝔛 + τ!𝔛)
+ −D!T

0 + − D!" + ΛD!"# u!
0

+ δ!"k!"
∂
∂x!

∂
∂x!

− ρc x + 1 !δ!"
0
T  

−ρc x + 1 ! τ! + δ!"τ! + δ!"
0
T − T!Åδ!"

0
β!"u!,!

+
ρu!

−T!β!" τ! + δ!" u!,!
 

(51) 

 
Our task now is to implement the DRBEM. To transform the domain integral in (42) to the 

boundary, we approximate the source vector S! in the domain as usual by a series of given tensor 
funtions f!"

!  and unknown coefficients α!
!  

 

S! ≈ f!"
! α!

!
!

!!!

 (52) 

 
Thus, the thermoelastic representation formula (42) can be written in the following form 

 

U! ξ = U!"∗ T! − T!"∗ U! dC − U!"∗ f!"
! dR

!

!

!!!!

α!
!  (53) 

 
By applying the WRM to the following inhomogeneous elastic and thermal equations: 

 
L!"u!"

! = f!"
!  (54) 

 
L!"T! = f!"

!  (55) 
 
where the weighting functions are chosen to be the elastic and thermal fundamental solutions u!"∗  
and T∗. Then the elastic and thermal representation formulae are similar to those of Fahmy (2012a) 
within the context of the uncoupled theory and are given as follows 
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u!"
! ξ = u!"

∗ t!"
! − t!"

∗ u!"
!

!

dC − u!"
∗ f!"

! dR
!

 (56) 

 

T! ξ = q∗T! − q!T∗

!

dC − f!T∗dR
!

 (57) 

 
The dual representation formulae of elastic and thermal fields can be combined to form a single 

equation as follows 
 

U!"
! ξ = U!"∗ T!"

! − T!"∗ U!"
! dC

!

− U!"∗ f!"
! dR

!

 (58) 

 
With the substitution of (58) into (53), the dual reciprocity representation formula of coupled 

thermoelasticity can be expressed as follows 
 

U! ξ = U!"∗ T! − T!"∗ U! dC
!

+ U!"
! ξ + T!"∗ U!"

! − U!"∗ T!"
! dC

!

!

!!!

α!
!  (59) 

 
To calculate interior stresses, (59) is differentiated with respect to ξ! as follows 

 

∂U! ξ
∂ξ!

= − U!",!
∗ T! − T!",!

∗ U! dC
!

+
∂U!"

! ξ
∂ξ!

− T!",!
∗ U!"

! − U!",!
∗ T!"

! dC
!

!

!!!

α!
!  (60) 

 
According to the steps described in Fahmy (2012b), the dual reciprocity boundary integral equa-

tion (59) can be written in the following system of equations 
 

ζu − ηt = ζU − η℘ α (61) 
 

The technique was proposed by Partridge et al. (1992) can be extended to treat the convective 
terms, then the generalized displacements U! and velocities U! are approximated by a series of ten-
sor functions f!"

!  and unknown coefficients γ!
!  and γ!

!  
 

U! ≈ f!"
! (x)γ!

!
!

!!!

 (62) 

 

U! ≈ f!"
! (x)γ!

!
!

!!!

 (63) 
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The gradients of the generalized displacement and velocity can be approximated as follows 
 

U!,! ≈ f!",!
! (x)γ!

!
!

!!!

 (64) 

 

U!,! ≈ f!",!
! (x)γ!

!
!

!!!

 (65) 

 
These approximations are substituted into equations (45) and (49) to approximate the corre-

sponding source terms as follows 
 

S!! = S!"
!,!

!

!!!

γ!
!  (66) 

 

S!! = −T!Åδ!"β!"ε S!"
!,!

!

!!!

γ!
!  (67) 

 
where 
 

S!"
!,! = S!"f!",!

!  (68) 
 

S!"
!,! = S!"f!",!

!  (69) 
 

The same point collocation procedure described in Gaul et al. (2003) can be applied to (52), (62) 
and (63). This leads to the following system of equations 

 
S = Jα,                      U = J!γ,                    U = J!γ (70) 

 
Similarly, the application of the point collocation procedure to the source terms equations (46), 

(47), (48), (50), (66) and (67) leads to the following system of equations 
 

S! = δ!"k!"
∂
∂x!

∂
∂x!

− ρc x + 1 !δ!" δ!"U (71) 

 
S! = −cρ x + 1 ! τ! + δ!"τ! + δ!" δ!"U (72) 

 

S! = − D!" + ΛD!"# ℧U!       with    ℧ = 1                  a = A = 1, 2, 3; f = F = 1, 2, 3
0                                                otherwise                                                 (73) 
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S! = AU (74) 
 

S! = ℬ!γ (75) 
 

S! = −T!Åδ!"β!"εℬ!γ (76) 
 

Solving the system (70) for α, γ and γ yields 
 

α = J!!S                      γ = J′!!U                        γ = J′!!U (77) 
 

Now, the coefficients α can be expressed in terms of nodal values of the unknown displacements 
U, velocities U and accelerations U as follows: 
 

α = J!! S! + ℬ!J!!!U + δ!"k!"
∂
∂x!

∂
∂x!

− ρc x + 1 !δ!" δ!" − T!Åδ!"β!"εℬ!J!
!! U

+ A − cρ x + 1 ! τ! + δ!"τ! + δ!" δ!" U  
(78) 

 
where A and ℬ! are assembled using the submatrices Ⅎ  and ω!" respectively. 

An implicit-implicit staggered algorithm was proposed and implemented for use with the 
DRBEM for solving the generalized magneto-thermoviscoelastic equations which may now be writ-
ten in a more convenient form after substitution of Eq. (78) into Eq. (61) as follows: 

 
MU! + Γ U! + KU! = ℚ

!
 (79) 

 
Χ T! + Α T! + Β T! = ℤU! + ℝU! +   Ϝ (80) 

 
where 
 
V = η℘− ζU J!!, Γ = V k!"!

!
!!!

!
!!!

− c!ρ!δ!" δ!" − T!Åδ!"β!"! εℬ!J′!! , 

K = ζ+ Vℬ!J′!!, ℚ = ηT+ VS!, Χ = −ρ!c! x+ 1 ! τ! + δ!"τ! + δ!" , 
M = VA, Β = δ!"k!"! + δ!"k!"!∗ , ℤ = β!"! T! τ! + δ!" , 
ℝ = β!"! T!Åδ!", Ϝ = −ρ!(𝔛+ τ!𝔛), Α = δ!"k!"!

∂
∂x!

∂
∂x!

− ρ!c! x+ 1 !δ!". 

 
where V,  M , Γ and K represent the volume, mass, damping and stiffness matrices, respectively, 
U!,U!,U!,T! and ℚ represent the acceleration, velocity, displacement, temperature and external force 
vectors, respectively, Α, Β and Ϝ are respectively the capacity and conductivity matrices and the 
nodal source vector, Χ is a vector of new material constants proposed by Green and Lindsay (1972) 
and  ℤ and ℝ are coupling matrices. 
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In many applications, the coupling terms ℤU!!!!  and ℝU!!!!  that appear in the heat conduction 
equation and which are induced by the effect of the strain rate are negligible. Therefore, it is easier 
to predict the temperature than the displacement. Because the solution of the problem is close to 
the uncoupled solution. Hence the equations (79) and (80) lead to the following coupled system of 
differential-algebraic equations (DAEs): 
 

MU!!!! + Γ U!!!! + KU!!!! = ℚ!!!
!"

 (81) 
 

Χ T!!!! + Α T!!!! + Β T!!!! = ℤU!!!! + ℝU!!!! + Ϝ (82) 
 

where ℚ!!!
!"

= ηT!!!
!" + VB! and T!!!

!"  is the predicted temperature. 
Integrating Eq. (79) with the use of trapezoidal rule and Eq. (81), we obtain 

 

U!!!! = U!! +
∆τ
2

U!!!! + U!! = U!! +
∆τ
2

U!! +M
!!

ℚ!!!
!"

− Γ U!!!! − KU!!!!  (83) 

 

U!!!! = U!! +
∆τ
2

U!!!! + U!! = U!! + ∆τU!! +
∆τ!

4
U!! +M

!!
ℚ!!!
!"

− Γ U!!!! − KU!!!!  (84) 

 
From Eq. (83) we have 

 

U!!!! = Υ!! U!! +
∆τ
2

U!! +M
!!

ℚ!!!
!"

− KU!!!!  (85) 

 
where Υ = I + ∆!

!
M
!!
Γ  

Substituting from Eq. (85) into Eq. (84), we derive  
 

U!!!! = U!! + ∆τU!!  

+
∆τ!

4
U!! +M

!!
ℚ!!!
!"

− Γ Υ!! U!! +
∆τ
2

U!! +M
!!

ℚ!!!
!"

− KU!!!! −∗ KU!!!!  (86) 

 
Substituting U!!!!  from Eq. (85) into Eq. (81) we obtain 

 

U!!!! = M
!!

ℚ!!!
!"

− Γ Υ!! U!! +
∆τ
2

U!! +M
!!

ℚ!!!
!"

− KU!!!! − KU!!!!  (87) 

 
Integrating the heat equation (80) using the trapezoidal rule, and Eq. (82) we get 

 

T!!!! = T!! +
∆τ
2

T!!!! + T!! = T!! +
∆τ
2

Χ
!!

ℤU!!!! + ℝU!!!! − Α T!!!! − Β T!!!! + Ϝ + T!!        (88) 
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T!!!! = T!! +
∆τ
2

T!!!! + T!!

= T!! + ∆τT!! +
∆τ!

4
T!! + Χ

!!
ℤU!!!! + ℝU!!!! − Α T!!!! − Β T!!!! + Ϝ  

(89) 

 
From Eq. (88) we get 

 

T!!!! = Υ!! T!! +
∆τ
2

Χ
!!

ℤU!!!! + ℝU!!!! − Β T!!!! + Ϝ + T!!  (90) 

 
where Υ = I + !

!
Α ∆τ Χ

!!
 

Substituting from Eq. (90) into Eq. (89), we have 
 

T!!!! = T!! + ∆τT!! +
∆τ!

4
T!! + Χ

!!
ℤU!!!! + ℝU!!!!  

−Α Υ!! T!! +
∆τ
2

Χ
!!

ℤU!!!! + ℝU!!!! − Β T!!!! + Ϝ + T!! − Β T!!!! + Ϝ  
(91) 

 
Substituting T!!!!  from Eq. (90) into Eq. (82) we obtain 

 
T!!!! = Χ

!!
ℤU!!!! + ℝU!!!!  

−Α Υ!! T!! +
∆τ
2

Χ
!!

ℤU!!!! + ℝU!!!! − Β T!!!! + Ϝ + T!! − Β T!!!! + Ϝ  
(92) 

 
Now, a displacement predicted staggered procedure for the solution of (86) and (91) is: 
(1) Predict the displacement field: U!!!

!" = U!!  
(2) Substituting for U!!!!  and U!!!!  from equations (83) and (81) respectively in Eq. (91) and 

solve the resulted equation for the temperature field 
(3) correct the displacement  field using the computed temperature field for the Eq. (86) 
(4) compute U!!!! , U!!!! , T!!!!  and T!!!!  from Eqs. (85), (87), (88) and (92) respectively. 

 
Table 1   Effects of temperature and magnetic field on the wave speed. 

 
Temperature (𝑇) Magnetic permeability  

(𝜇) 
Wave speed 

50 2 361 
40 4 355 
30 6 349 
20 8 343 
10 10 337 

 
To obtain the influence of temperature and magnetic field on the wave speed, we must consider 

the wave equation 
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𝜕!𝑢
𝜕𝑡!

= 𝑣!!
𝜕!𝑢
𝜕𝑥!

+
𝜕!𝑢
𝜕𝑧!

, 𝑣! =
ω
𝑘

 (93) 

 
where v! is the wave speed and k is a wave number. 
 

Table 2   Effect of anisotropy on the temperature and displacement components. 
 

Temperature (T) Displacement  𝑢! Displacement  𝑢! 
isotropic anisotropic isotropic anisotropic isotropic anisotropic 

50 44.3 0.0233 0.0208 0.0134 0.0105 
40 35.2 0.0194 0.0152 0.0117 0.0085 
30 26.4 0.0175 0.0137 0.0108 0.0069 
20 17.6 0.0169 0.0121 0.0096 0.0048 
10 7.8 0.0152 0.0109 0.0089 0.0037 

 
Thus, the results of numerical calculations of these effects in thin film/substrate structure are given 
in table 1. Also to show the effect of anisotropy on the results, calculations were performed for an 
isotropic thin film/substrate structure of Salamon (1995) and presented in table 2  
 
4 NUMERICAL RESULTS AND DISCUSSION  

Following Fahmy (2012c) monoclinic graphite-epoxy material was chosen as an anisotropic sub-
strate material for the purpose of numerical calculations, and the physical data for which is given as 
follows: 

Elasticity tensor 

C!"#$ =

430.1 130.4 18.2
130.4 116.7 21.0
18.2 21.0 73.6

0             0     201.3
0             0       70.1
0             0           2.4

0 0 0
0 0 0

201.3 70.1       2.4

19.8 −8.0       0      
−8.0 29.1 0    
  0 0   147.3    

 GPa 

Mechanical temperature coefficient 

β!" =
1.01 2.00 0
2.00 1.48 0
0 0 7.52

∙ 10!   N/Km! 

Tensor of thermal conductivity is 

k!" =
5.2 0 0
0 7.6 0
0 0 38.3

 W/km 

Mass density ρ = 7820  kg/m! and heat capacity c = 461 J/(kg  K) 
According to Rasolofosaon and Zinszner (2002) monoclinic North Sea sandstone reservoir rock 

was chosen as an anisotropic thin film material and physical data are as follows: 
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Elasticity tensor 

C!"#$ =

17.77 3.78 3.76
3.78 19.45 4.13
3.76 4.13 21.79

0.24             −0.28     0.03
0           0       1.13
0           0     0.38

0         0             0
0         0             0

0.03     1.13 0.38

8.30             0.66           0      
0.66         7.62     0    
  0                 0         7.77

 GPa 

Mechanical temperature coefficient 

β!" =
0.001 0.02 0
0.02 0.006 0
0 0 0.05

∙ 10!   N/Km! 

Tensor of thermal conductivity is 

k!" =
1 0.1 0.2
0.1 1.1 0.15
0.2 0.15 0.9

 W/km 

Mass density ρ = 2216  kg/m! and heat capacity c = 0.1 J/(kg  K), H! = 1000000  Oersted, 
µμ = 0.5 Gauss/Oersted, ℵ = 2, h = 2,     ∆τ = 0.0001. The numerical values of the temperature and 
displacement are obtained by discretizing the boundary into 120 elements (N! = 120) and choosing 
60 well spaced out collocation points (N! = 60) in the interior of the solution domain, refer to the 
recent work of Fahmy (2012d, 2013, 2013a, 2013b). 

The initial and boundary conditions considered in the calculations are 
 

at    τ = 0                            u! = u! = u! = u! = 0, T = 0 (93) 
 

at    x = 0                           !!!
!!
  = !!!

!!
= 0, !!

!!
= 0 (94) 

 
at    x = h + d                           !!!

!!
  = !!!

!!
= 0, !!

!!
= 0 (95) 

 
at    z = 0                           !!!

!!
= !!!

!!
= 0, !!

!!
= 0 (96) 

 
at    z = b                           !!!

!!
= !!!

!!
= 0, !!

!!
= 0 (97) 

 
where h and d are the thickness of the film and substrate respectively. 
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Figure 2   Variation of the temperature T through the structure thickness 

 
Fig. 2 shows that the temperature values near the bottom surface of the substrate for LS and GL 
theories through the structure thickness in the absence Ω = 0.0  of rotation are greater than those 
in the presence Ω = 0.5  of rotation while GN II and GN III theories show the opposite behavior 
near the bottom surface of the substrate. With a further increase in x, oscillatory patterns for both 
theories of generalized magneto-thermo-viscoelasticity (LS and GL) take place. 
Figs. 3-7 show the influence of the rotation on the displacements u!, u!  and thermal stresses 
σ!!, σ!", σ!!  through the structure thickness at τ = 0.02, z = 1. A comparison of the results is 

presented graphically for generalized theories of magneto-thermo-viscoelasticity in the presence 
Ω = 0.5  and absence Ω = 0.0  of rotation. 

 

 
Figure 3   Variation of the temperature u1  through the structure thickness 
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Fig. 3 shows that the values of the displacement u! near the bottom surface of the structure for the 
GL and GN III theories through the structure thickness in the absence of rotation are greater than 
those in the presence of rotation. Also, the effect of rotation may be negligible for the LS theory 
near the bottom surface of the structure. 
 

 
Figure 4   Variation of the temperature u2  through the structure thickness 

 
Fig. 4 shows that the values of the displacement u! near the bottom surface of the structure 
through-thickness for the LS theory in the absence of rotation are greater than those in the presence 
of rotation. But for GL theory the values of the displacement u! in the presence of rotation are 
greater than those in the absence of rotation. Also, the effect of rotation in the LS and GL theories 
is more pronounced than in GN II and GN III. With a further increase in x, oscillatory patterns for 
all theories of magneto-thermo-viscoelasticity (LS, GL, GN II and GN III) in the absence and pres-
ence of rotation take place. These oscillations in the thin film are less clear than in the substrate. 
Fig. 5 shows that the values of thermal stress σ!! near the bottom surface of the structure for the 
LS and GL theories in the absence of rotation are greater than those in the presence of rotation. 
The magnitude of the LS theory in the absence of rotation is higher than those in other theories in 
the absence and presence of rotation. With a further increase in x, oscillatory patterns for all theo-
ries of magneto-thermo-viscoelasticity (LS, GL, GN II and GN III) in the absence and presence of 
rotation take place. These oscillations are more clear in the absence of rotation than in the presence 
of rotation. 
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Figure 5   Variation of the thermal stress σ 11  through the structure thickness 

 

 
Figure 6   Variation of the thermal stress σ 12  through the structure thickness 

 
Fig. 6 shows that the values of thermal stress σ!" near the bottom surface of the structure for the 
GL, GN II and GN III theories in the absence of rotation are greater than those in the presence of 
rotation. But for LS theory in the presence of rotation are greater than those in the absence of rota-
tion. The magnitude of the GL theory in the absence of rotation is higher than those in other theo-
ries in the absence and presence of rotation. With a further increase in x, oscillatory patterns for all 
theories of magneto-thermo-viscoelasticity (LS, GL, GN II and GN III) in the absence and presence 
of rotation take place. These oscillations are more clear in the substrate for all theories than in the 
thin film. 
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Figure 7   Variation of the thermal stress σ 22  through the structure thickness 

 
Fig. 7 shows that the values of thermal stress σ!! near the bottom surface of the structure for the 
GL and GN III theories through the structure thickness in the absence of rotation are greater than 
those in the presence of rotation. Also, the effect of rotation on the thermal stress σ!! may be negli-
gible for the LS theory near the bottom surface of the structure. The magnitude of the LS theory in 
the presence of rotation is higher than those in other theories in the absence and presence of rota-
tion. With a further increase in x, oscillatory patterns for all theories of magneto-thermo-
viscoelasticity (LS, GL, GN II and GN III) in the absence and presence of rotation take place. The-
se oscillations are more clear in the substrate for all theories than in the thin film. It is seen that all 
the figures show that the rotation has a significant effect on the results at small x. Further, begin-
ning from some value of x, the dependences are characterized by oscillations with decreasing magni-
tudes.  
The present work should be applicable to any generalized magneto-thermo-viscoelastic deformation 
problem. The proposed technique in the present study was discussed in Fahmy [50] who solved the 
special case from this study in the context of the uncoupled problem. To achieve better efficiency 
than the technique described in Fahmy (2012d), we use the implicit-implicit algebraic augmentation 
procedure into a DRBEM code, which is proposed in the current study. 
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Figure 8   Variation of the temperature T through the structure thickness 

 
The example considered by Xu et al. (2003) may be considered as a special case of the current gen-
eral problem. In the considered special case, the results of the temperature T are plotted through 
the structure thickness in Fig. 8 to show the validity of the proposed method. It can be seen from 
this figure that the DRBEM results of the current study are in excellent agreement with the results 
obtained by the finite element method (FEM) of Xu et al. (2003).  
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