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Abstract 
The main goal of this study is to further expand the ES-MITC3 for analyzing the buckling characteristics of functionally 
graded porous (FGP) variable thickness (VT) plates with sinusoidal porous distribution. The ES-MITC3 was developed 
to improve the accuracy of classical triangular elements (Q3) and overcome the locking phenomenon while still 
ensuring flexibility in discretizing the structural domain of the Q3. The first-order shear deformation theory (FSDT) 
in combination with ES-MITC3 is used due to its simplicity and effectiveness. The Pasternak foundation (PF) is a 
two-parameter model with springer stiffness (𝑘𝑘1) and shear stiffness (𝑘𝑘2) that describes the foundation reaction as 
a function of the deflection and its Laplacian. The accuracy and performance of the proposed formulation are 
verified through comparative examples. Moreover, a comprehensive analysis has been undertaken to scrutinize the 
effects of geometric parameters and material properties on the buckling of FGP VT plates. 
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Nomenclature 
IGA Isogeometric analysis 
FEM Finite element method 
TSDT Third-order shear deformation theory 
HSDT Higher-order shear deformation theory 
FSDT First-order shear deformation theory 
FGM Functionally graded material 
FGP Functionally graded porous 
ES Exact solution 
BCs Boundary conditions 
MCST Modified couples stress theory 
TBT Timoshenko beam theory 
EF Elastic Foundation 
PF Pasternak foundation 
DOF Degrees of freedom 
Q3 The triangular element 
ES-MITC3 The mixed interpolation of the tensorial components technique for the three-node triangular element (MITC3) combined with the edge-based 

smoothed finite element method (ES-FEM) 

1 INTRODUCTION 

The functionally graded porous (FGP) is a special form of the functionally graded materials (FGMs) (Ramu and 
Mohanty 2014; Saha and Maiti 2012; Wu et al. 2007; Javaheri and Eslami 2002; Zenkour 2005; Shariat and Eslami 2007; 
Thai and Choi 2012; Reddy et al. 2013; Thinh et al. 2016; Do and Tran 2023) with the appearance of pores inside, these 
pores can be distributed randomly or according to the law according to human intention. Despite the presence of many 
internal pores, FGP also exhibits impressive mechanical characteristics, including lightweight, exceptional energy 
absorption capabilities, and remarkable heat resistance properties. Several notable examinations have been conducted 
to analyze the mechanical behaviour of FGP structures, some of which include: Kim et al. (2019) used an exact solution 
(ES) to study the mechanical behaviour of FGP microplates based on modified couples stress theory (MCST). Chen et al. 
(2015) used Timoshenko beam theory (TBT) to study the buckling of FGP beams. Rezaei and Saidi (2016) analyzed the 
vibration of porous-cellular plates using Carrera unified formulation. Li et al. (2018) studied the nonlinear response of 
FGP plates based on both the Galerkin and the fourth-order Runge–Kutta methods. Wu et al. (2018) examined the 
dynamic behaviour of FGP plates using finite element method (FEM). Thang et al. (2018) used an ES to analyze the 
buckling of FGP plates, etc. Furthermore, readers can find the results of mechanical behavior analysis of FGP structures 
in available documents (Pham et al. 2022; Vu et al. 2023; Tran and Le 2023; Pham et al. 2023; Nguyen et al. 2023; 
Do et al. 2023; Nguyen et al. 2022; Tran et al. 2021). 

Variable thickness (VT) structures are extensively employed in a wide range of high-performance surfaces, ranging 
from aerospace to civil engineering and many other engineering fields. The utilization of such structures plays a pivotal 
role in optimizing structural weight, thereby enhancing the material's load-bearing capacity to its maximum potential. 
Research on this structure can include some typical works such as Eisenberger and Alexandrov (2003) used the 
Kantorovich method to investigate the buckling of VT isotropic plates. Jalali et al. (2010) applied the pseudo-spectral 
method to analyze the buckling of the FGM VT circular sandwich plates. Benlahcen et al. (2018) based on ES to analyze 
the buckling of FGM VT plates. Bouguenina et al. (2015) examined the thermal buckling of FGM VT plates using an ES. 
Moreover, Zenkour (2018) studied the mechanical bending of VT plates employing Navier’s solution. Banh-Thien et al. 
(2017) used isogeometric analysis (IGA) to examine the buckling of VT nanoplates. 

Exploring the mechanical performance of structures resting on EF, most researchers tend to utilize either Winkler 
foundation Winkler (1867) or Pasternak foundation Pasternak (1954). For example, Fazzolari (2018) used an ES to analyze 
the buckling of FGP beams. Xiang et al. (1994) also used an ES for the free vibration analysis of Mindlin plates. 
Omurtag et al. (1997) based on FEM to study the free vibration of the Kirchhoff plates. Matsunaga (2000) employed an 
ES based on HSDT to study the buckling of plates. Thai and Kim (2013) calculated the buckling of FGM plates by using an 
ES based on third-order shear deformation theory (TSDT) and so on. 

To enhance the convergence and precision of traditional triangular elements, researchers have integrated the 
original mixed interpolation of the tensorial components technique for the three-node triangular element (MITC3) Lee 
and Bathe (2004) with the edge-based smoothed finite element method (ES-FEM) Liu et al. (2009), resulting in the newly 
introduced ES-MITC3 (Chau-Dinh et al. 2017; Pham et al. 2018; Pham et al. 2020; Pham-Tien et al. 2018; Nguyen-Thoi 
2020). The outcomes of our current investigation illustrate that the ES-MITC3 exhibits the following notable advantages: 
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(1) The ES-MITC3 effectively mitigates the occurrence of transverse shear locking, even when the thickness-to-length 
ratio of the structures reaches as low as 10−8 Chau-Dinh et al. (2017); (2) The ES-MITC3 exhibits superior accuracy when 
compared to conventional triangular element. 

Through analysis of the above documents, it can be seen that it can be seen that previous studies on buckling of structures 
mainly used analytical methods and classical FEM with constant thickness. Therefore, the achieved results are limited by the 
complex geometric model and boundary conditions. In addition, there has been no prior investigation into the buckling of FGP 
VT plates located on a PF using the ES-MITC3. This is what motivates us to do this work. To validate the accuracy and reliability 
of the proposed method, we thoroughly compare our numerical findings with those derived from existing methodologies. 
Then, this study delves into the comprehensive exploration of the impact of input parameters on the buckling of FGP VT plates. 
The obtained results are expected to contribute to the general understanding of the buckling of FGP VT plates. 

2 THEORETICAL FORMULATION 

2.1 FGP material 

The mechanical properties of FGP plates following the rule of mixed are defined by Chen et al. (2015): 

𝑃𝑃(𝑧𝑧) = [(𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑚𝑚)𝑉𝑉𝑐𝑐(𝑧𝑧) + 𝑃𝑃𝑚𝑚] �1 − Ωcos � 𝜋𝜋𝜋𝜋
ℎ(𝑥𝑥,𝑦𝑦)

��  (1a) 

with 

𝑉𝑉𝑐𝑐(𝑧𝑧) = � 𝜋𝜋
ℎ(𝑥𝑥,𝑦𝑦)

+ 0.5�
𝑝𝑝

 with 𝑧𝑧 ∈ �− ℎ(𝑥𝑥,𝑦𝑦)
2

; ℎ(𝑥𝑥,𝑦𝑦)
2

�  (1b) 

where 𝑃𝑃(𝑧𝑧) stands for elastic modulus 𝐸𝐸(z), Poisson’s ratio 𝜐𝜐(z); symbols 𝑚𝑚 and 𝑐𝑐 represent the metal and ceramic 
constituents; 𝑉𝑉𝑐𝑐(𝑧𝑧) is the volume fraction of ceramic; 𝑝𝑝 is the power-law index; and Ω denotes the maximum porosity value. 

2.2 Pasternak foundation 

In this study, the FGP plate resting on EF following Pasternak's model is determined by Pasternak (1954): 

𝓡𝓡 = 𝑘𝑘1𝑤𝑤(𝑥𝑥,𝑦𝑦) − 𝑘𝑘2 ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2
�  (2) 

with 𝑘𝑘1 is springer stiffness and 𝑘𝑘2 is shear stiffness. The negative sign in front of the second term indicates that the 
shear resistance is opposite to the direction of curvature. This means that when the deflection is concave upward, the 
shear resistance is downward, and vice versa. The negative sign also ensures that the total foundation reaction is zero 
when there is no deflection. 

2.3 Mindlin plate theory 

In accordance with FSDT, the displacement field of FGP plates is expressed by Ramu and Mohanty (2014): 

�
𝑢𝑢 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥,𝑦𝑦) + 𝑧𝑧𝜃𝜃𝑥𝑥(𝑥𝑥,𝑦𝑦)
𝑣𝑣 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥,𝑦𝑦) + 𝑧𝑧𝜃𝜃𝑦𝑦(𝑥𝑥,𝑦𝑦)

𝑤𝑤 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑤𝑤0(𝑥𝑥,𝑦𝑦) 
  (3) 

in which 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝜃𝜃𝑥𝑥, 𝜃𝜃𝑦𝑦 are unknown displacements. 
The strain field is defined by 

𝜺𝜺 =

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑥𝑥𝑦𝑦
𝛾𝛾𝑥𝑥𝜋𝜋
𝛾𝛾𝑦𝑦𝜋𝜋⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧

𝑢𝑢,𝑥𝑥
𝑣𝑣,𝑦𝑦

𝑢𝑢,𝑦𝑦 + 𝑣𝑣,𝑥𝑥
𝑤𝑤,𝑥𝑥 + 𝑢𝑢,𝜋𝜋
𝑤𝑤,𝑦𝑦 + 𝑣𝑣,𝜋𝜋⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧

𝑢𝑢0,𝑥𝑥
𝑣𝑣0,𝑦𝑦

𝑢𝑢0,𝑦𝑦 + 𝑣𝑣0,𝑥𝑥
𝑣𝑣0.𝑥𝑥 + 𝜃𝜃𝑥𝑥
𝑤𝑤0,𝑦𝑦 + 𝜃𝜃𝑦𝑦 ⎭

⎪
⎬

⎪
⎫

+ 𝑧𝑧

⎩
⎪
⎨

⎪
⎧

𝜃𝜃𝑥𝑥,𝑥𝑥
𝜃𝜃𝑦𝑦,𝑦𝑦

𝜃𝜃𝑥𝑥,𝑦𝑦 + 𝜃𝜃𝑦𝑦,𝑥𝑥
0
0 ⎭

⎪
⎬

⎪
⎫

;  (4) 
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Eq. (4) may be re-written by 

𝜺𝜺 = �
𝜺𝜺1
𝜺𝜺2� = �𝜺𝜺𝑚𝑚 + 𝑧𝑧𝜿𝜿

𝜸𝜸 � ;  (5) 

The stress-strain relations are determined following Hooke’s law as follows: 

⎩
⎪
⎨

⎪
⎧
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥𝑦𝑦
𝜏𝜏𝑥𝑥𝜋𝜋
𝜏𝜏𝑦𝑦𝜋𝜋⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
𝑄𝑄11 𝑄𝑄12 0 0 0
𝑄𝑄21 𝑄𝑄22 0 0 0

0 0 𝑄𝑄66 0 0
0 0 0 𝑄𝑄55 0
0 0 0 0 𝑄𝑄44⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑥𝑥𝑦𝑦
𝛾𝛾𝑥𝑥𝜋𝜋
𝛾𝛾𝑦𝑦𝜋𝜋⎭

⎪
⎬

⎪
⎫

  (6) 

in which 

𝑄𝑄11 = 𝑄𝑄22 = 𝐸𝐸(𝜋𝜋)
1−𝜈𝜈(𝜋𝜋)2

;𝑄𝑄12 = 𝑄𝑄21 = 𝜐𝜐(𝜋𝜋)𝐸𝐸(𝜋𝜋)
1−𝜈𝜈(𝜋𝜋)2

; 

𝑄𝑄44 = 𝑄𝑄55 = 𝑄𝑄66 = 𝐸𝐸(𝜋𝜋)
2(1+𝜈𝜈(𝜋𝜋))

.  (7) 

The force and moment resultants are defined by: 

�𝑁𝑁𝑥𝑥 𝑁𝑁𝑦𝑦 𝑁𝑁𝑥𝑥𝑦𝑦�
𝑇𝑇 = 𝑨𝑨𝜺𝜺𝑚𝑚 + 𝑩𝑩𝜿𝜿;  (8a) 

�𝑀𝑀𝑥𝑥 𝑀𝑀𝑦𝑦 𝑀𝑀𝑥𝑥𝑦𝑦�
𝑇𝑇 = 𝑩𝑩𝜺𝜺𝑚𝑚 + 𝑪𝑪𝜿𝜿;  (8b) 

{𝑄𝑄𝑥𝑥𝜋𝜋 𝑄𝑄𝑦𝑦𝜋𝜋}𝑇𝑇 = 𝑨𝑨𝑠𝑠𝜸𝜸.  (8c) 

with 

(𝑨𝑨,𝑩𝑩,𝑪𝑪) = ∫ �
𝑄𝑄11 𝑄𝑄12 0
𝑄𝑄21 𝑄𝑄22 0

0 0 𝑄𝑄66
� (1, 𝑧𝑧, 𝑧𝑧2)𝑑𝑑𝑧𝑧ℎ(𝑥𝑥,𝑦𝑦)/2

−ℎ(𝑥𝑥,𝑦𝑦)/2 ;  𝑨𝑨𝑠𝑠 = ∫ �𝑄𝑄55 0
0 𝑄𝑄44

� 𝑑𝑑𝑧𝑧.ℎ(𝑥𝑥,𝑦𝑦)/2
−ℎ(𝑥𝑥,𝑦𝑦)/2   (9) 

Note that, all the matrices in Eq. (9) are influenced by the thickness variation profile. As a result, the integration 
limits are contingent upon the specific positions of points across the plate. 

2.4 Finite element formulation 

The generalized displacements at any point 𝒖𝒖𝑒𝑒 = �𝑢𝑢𝑗𝑗𝑒𝑒 , 𝑣𝑣𝑗𝑗𝑒𝑒 ,𝑤𝑤𝑗𝑗𝑒𝑒 ,𝜃𝜃𝑥𝑥𝑗𝑗𝑒𝑒 ,𝜃𝜃𝑦𝑦𝑗𝑗𝑒𝑒 �
𝑇𝑇

 of the element ψ𝑒𝑒 is defined by Lee and 
Bathe (2004): 

𝒖𝒖𝑒𝑒 (𝒙𝒙) = ∑

⎣
⎢
⎢
⎢
⎡
𝑁𝑁𝐼𝐼(𝑥𝑥) 0 0 0 0

0 𝑁𝑁𝐼𝐼(𝑥𝑥) 0 0 0
0 0 𝑁𝑁𝐼𝐼(𝑥𝑥) 0 0
0 0 0 𝑁𝑁𝐼𝐼(𝑥𝑥) 0
0 0 0 0 𝑁𝑁𝐼𝐼(𝑥𝑥)⎦

⎥
⎥
⎥
⎤

𝒅𝒅𝑗𝑗𝑒𝑒
𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1 =∑ 𝑵𝑵(𝒙𝒙)𝒅𝒅𝑗𝑗𝑒𝑒
𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1   (10) 

where 𝑛𝑛𝑛𝑛𝑒𝑒 is the total of nodes; 𝑵𝑵(𝒙𝒙) is the shape function matrix; and 𝒅𝒅𝑗𝑗𝑒𝑒 = �𝑢𝑢𝑗𝑗𝑒𝑒 , 𝑣𝑣𝑗𝑗𝑒𝑒 ,𝑤𝑤𝑗𝑗𝑒𝑒 ,𝜃𝜃𝑥𝑥𝑗𝑗𝑒𝑒 ,𝜃𝜃𝑦𝑦𝑗𝑗𝑒𝑒 �
𝑇𝑇

are the nodal-DOF 
associated with the jth node of ψ𝑒𝑒. 
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The membrane bending strains of MITC3 by Lee and Bathe (2004) is: 

𝜺𝜺𝑚𝑚𝑒𝑒 = [𝑩𝑩𝑚𝑚1
𝑒𝑒 𝑩𝑩𝑚𝑚2

𝑒𝑒 𝑩𝑩𝑚𝑚3
𝑒𝑒 ]𝒅𝒅𝑒𝑒 = 𝑩𝑩𝑚𝑚 

𝑒𝑒 𝒅𝒅𝑒𝑒  (11a) 

𝜿𝜿𝑒𝑒 = [𝑩𝑩𝑏𝑏1
𝑒𝑒 𝑩𝑩𝑏𝑏2

𝑒𝑒 𝑩𝑩𝑏𝑏3
𝑒𝑒 ]𝒅𝒅𝑒𝑒 = 𝑩𝑩𝑏𝑏 

𝑒𝑒 𝒅𝒅𝑒𝑒  (11b) 

The smoothing domains ψ𝑘𝑘 is established based on the edges of Q3 such that ψ = ⋃ ψ𝑘𝑘 𝑛𝑛𝑘𝑘
𝑘𝑘=1 and ψ𝑖𝑖

𝑘𝑘 ∩ ψ𝑗𝑗
𝑘𝑘 = ∅ for 𝑖𝑖 ≠ 𝑗𝑗. 

An edge-based smoothing domain ψ𝑘𝑘 for the inner edge 𝑘𝑘 is formed by connecting two end-nodes of the edge to the centroids 
of adjacent MITC3 as shown in Fig 1. 

 
Figure 1 The smoothing domain ψ𝑘𝑘 . 

Using the edge-based smooth technique by Liu et al. (2009), the smoothed membrane, bending and shear strains 
𝜺𝜺�𝑚𝑚𝑘𝑘 ,𝜿𝜿�𝑘𝑘 ,𝜸𝜸�𝑘𝑘 can be defined by 

𝜺𝜺�𝑚𝑚𝑘𝑘 = ∫ 𝜺𝜺𝑚𝑚 𝛷𝛷𝑘𝑘(x)dψ,ψ𝑘𝑘  (12a) 

𝜿𝜿�𝑘𝑘 = ∫ 𝜿𝜿 𝛷𝛷𝑘𝑘(x)dψ,ψ𝑘𝑘   (12b) 

𝜸𝜸�𝑘𝑘 = ∫ 𝜸𝜸 𝛷𝛷𝑘𝑘(x)dψ,ψ𝑘𝑘  (12c) 

where 𝛷𝛷𝑘𝑘(x) is a smoothing function with∫ 𝛷𝛷𝑘𝑘(x)dψ = 1ψ𝑘𝑘 . 
In this article, the constant smoothing function is used Liu et al. (2009): 

𝛷𝛷𝑘𝑘(x) = �
1
𝐴𝐴𝑘𝑘

 x ∈ ψ𝑘𝑘

0 x ∉ ψ𝑘𝑘
 (13) 

with 𝐴𝐴𝑘𝑘 is the area of the smoothing domain ψ𝑘𝑘. 
Now, the stiffness matrix of the FGP plate is determined by Liu et al. (2009): 

𝐊𝐊�𝑝𝑝 = ∑ 𝐊𝐊�𝑒𝑒𝑘𝑘
𝑛𝑛𝑠𝑠ℎ
𝑘𝑘

𝑘𝑘=1  (14) 

where 𝐊𝐊� 𝑒𝑒
𝑘𝑘 is defined by 

𝑲𝑲�𝑒𝑒𝑘𝑘 = ∫ �𝑩𝑩�𝑘𝑘𝑇𝑇 �𝑨𝑨 𝑩𝑩
𝑩𝑩 𝑪𝑪�𝑩𝑩

�𝑘𝑘 + 𝑩𝑩�𝑠𝑠𝑘𝑘𝑇𝑇𝑨𝑨𝑠𝑠𝑩𝑩�𝑠𝑠𝑘𝑘� 𝑑𝑑ψ =ψ𝑘𝑘 𝑩𝑩�𝑘𝑘𝑇𝑇 �𝑨𝑨 𝑩𝑩
𝑩𝑩 𝑪𝑪�𝑩𝑩

�𝑘𝑘 𝐴𝐴𝑘𝑘 + 𝑩𝑩�𝑠𝑠𝑘𝑘𝑇𝑇𝑨𝑨𝑠𝑠𝑩𝑩�𝑠𝑠𝑘𝑘𝐴𝐴𝑘𝑘 (15) 
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in which the strain-displacement matrix 𝑩𝑩�𝑘𝑘𝑇𝑇 is determined by Nguyen-Thoi (2020): 

𝑩𝑩�𝑘𝑘𝑇𝑇 = �𝑩𝑩�𝑚𝑚𝑗𝑗
𝑘𝑘 𝑩𝑩�𝑏𝑏𝑗𝑗𝑘𝑘 � (16) 

The geometric stiffness matrix of the FGP plate is determined by Pham et al. (2020): 

𝐊𝐊�𝑔𝑔 = ∑ 𝐊𝐊�𝑔𝑔𝑒𝑒𝑘𝑘
𝑛𝑛𝑠𝑠ℎ
𝑘𝑘

𝑘𝑘=1  with 𝐊𝐊�𝑔𝑔𝑒𝑒 = ∫ �𝒀𝒀�𝑖𝑖𝑇𝑇𝑵𝑵�𝒀𝒀�𝑖𝑖 �𝑑𝑑ψψ𝑘𝑘   (17) 

where 

𝑵𝑵� = �
𝑁𝑁�𝑥𝑥 𝑁𝑁�𝑥𝑥𝑦𝑦
𝑁𝑁�𝑥𝑥𝑦𝑦 𝑁𝑁�𝑦𝑦

� (18) 

with 

(𝑁𝑁�𝑥𝑥 ,𝑁𝑁�𝑦𝑦 ,𝑁𝑁�𝑥𝑥𝑦𝑦 ) = ∫ (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑥𝑥𝑦𝑦 )𝑑𝑑𝑧𝑧ℎ(𝑥𝑥,𝑦𝑦)
−ℎ(𝑥𝑥,𝑦𝑦)  (19) 

and 𝒀𝒀�𝑖𝑖 is presented by Pham et al. (2020). Note that, Eq. (19) is integrated as Eq. (9). 
The stiffness foundation matrix is determined by Nguyen-Thoi (2020): 

𝑲𝑲𝑓𝑓 =∑ 𝑲𝑲𝑓𝑓𝑒𝑒𝑛𝑛𝑘𝑘
𝑘𝑘=1   (20a) 

with 

𝑲𝑲𝑓𝑓𝑒𝑒 = 𝑘𝑘1 ∫ 𝐍𝐍𝜕𝜕T𝐍𝐍𝜕𝜕dψ𝑒𝑒 + k2 ∫ ��∂𝐍𝐍𝑤𝑤
∂x
�
T
�∂𝐍𝐍𝑤𝑤
∂x
� + �∂𝐍𝐍𝑤𝑤

∂y
�
T
�∂𝐍𝐍𝑤𝑤
∂y
��dψ𝑒𝑒ψ𝑛𝑛ψ𝑛𝑛

 (20b) 

Apply the principle of minimum total potential energy, the equation to determine the critical force 𝑃𝑃𝑐𝑐𝑐𝑐 as follows: 

��𝐊𝐊�𝑝𝑝 + 𝑲𝑲𝑓𝑓 � + 𝑃𝑃𝑐𝑐𝑐𝑐𝐊𝐊�𝑔𝑔 � = 0 (21) 

The BCs in this study are defined by 
Simply supported (S): 

𝑢𝑢0 = 𝑤𝑤 = 𝜑𝜑𝑥𝑥 = 0 at 𝑦𝑦 = 0, 𝑦𝑦 = 𝑏𝑏 or 𝑣𝑣0 = 𝑤𝑤 = 𝜑𝜑𝑦𝑦 = 0 at 𝑥𝑥 = 0, 𝑥𝑥 = 𝑎𝑎 

Clamped (C): 

𝑢𝑢0 = 𝑤𝑤 = 𝜑𝜑𝑥𝑥 = 𝜑𝜑𝑦𝑦 = 0 at 𝑦𝑦 = 0, 𝑦𝑦 = 𝑏𝑏 or 𝑣𝑣0 = 𝑤𝑤 = 𝜑𝜑𝑥𝑥 = 𝜑𝜑𝑦𝑦 = 0 at 𝑥𝑥 = 0, 𝑥𝑥 = 𝑎𝑎. 

3. Verification 

To facilitate the numerical survey process, the dimensionless formulas are introduced by 

𝑃𝑃𝑐𝑐𝑐𝑐𝑖𝑖∗ = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎2

𝐸𝐸𝑚𝑚ℎ3
;𝐾𝐾1 = 𝑘𝑘1𝑎𝑎4

𝐷𝐷
;  𝐾𝐾2 = 𝑘𝑘2𝑎𝑎2

𝐷𝐷
 with 𝐷𝐷 = 𝐸𝐸𝑚𝑚ℎ3

12(1−𝜈𝜈𝑚𝑚2 )
  (22) 

and the mechanical properties of FGP plates are listed in Table 1. 
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Table 1 The mechanical properties of component materials. 

Materials Elastic modulus (GPa) Mass density (kg/m3) Poisson’s ratio 

Al2O3 380 3800 0.3 
Al 70 2707 0.3 

Firstly, consider the SSSS FGM (Al/Al2O3) constant-thickness plate with material properties as shown in Table 1. The 
obtained dimensionless critical load 𝑃𝑃𝑐𝑐𝑐𝑐∗  of FGM plates are shown in Table 2. It can be observed that the results of the ES-MITC3 
converge at the mesh size of 18 × 18 and are close to those of Thai and Kim (2013). The error in the results comes from the 
fact that we use FEM based on FSDT while Thai and Kim (2013) used an exact solution based on TSDT. Additionally, the value 
of the obtained results is smaller than those of their study. From here, we will use a mesh size of 18 × 18 for the next examples. 

Secondly, let us consider the SSSS isotropic VT plate with ℎ = ℎ0(1 + α 𝑦𝑦
𝑏𝑏

). The dimensionless critical load is given by 
𝑃𝑃𝑐𝑐𝑐𝑐∗∗ = 12𝑃𝑃𝑐𝑐𝑐𝑐𝑏𝑏2/(𝜋𝜋2𝐸𝐸ℎ03) and listed in Table 3. It can be seen that the gained results are in good agreement with those of 
Banh-Thien et al. (2017) using the first-order IGA and Eisenberger and Alexandrov (2003) employed the Kantorovich method. 
The obtained results also show the effectiveness of the proposed method compared to the state-of-the-art numerical method 
(IGA). From the above two examples, the accuracy and performance of the proposed method can be confirmed. 

Table 2 The convergence of critical load of SSSS square FGM plates (Ω = 0). 

(𝑲𝑲𝟏𝟏,𝑲𝑲𝟐𝟐) Method Mesh size 
p 

0 0.5 1 2 5 10 
(0,0) Present 12 × 12 16.9775 11.571 9.4069 7.6759 6.2244 5.324 

14 × 14 16.9579 11.5545 9.3907 7.6608 6.2132 5.3161 
16 × 16 16.946 11.5443 9.3805 7.6512 6.2061 5.3112 
18 × 18 16.9381 11.5375 9.3737 7.6447 6.2013 5.3080 
20 × 20 16.9381 11.5375 9.3737 7.6447 6.2013 5.3080 

Thai and Kim (2013) 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 
(100,10) Present 12 × 12 19.1946 13.789 11.5857 9.7572 8.2014 7.3051 

14 × 14 19.1799 13.777 11.5729 9.7426 8.1897 7.2988 
16 × 16 19.1711 13.7697 11.565 9.7333 8.1823 7.2949 
18 × 18 19.1655 13.765 11.5597 9.727 8.1772 7.2924 
20 × 20 19.1655 13.765 11.5597 9.727 8.1772 7.2924 

Thai and Kim (2013) 21.3379 14.8823 12.0985 10.0224 8.7947 8.2122 

Table 3 Comparison of critical load of SSSS VT plates. 

𝛂𝛂 

a/b 

0.5 0.7 0.9 

Eisenberger and 
Alexandrov 

(2003) 

Banh-
Thien et al. 

(2017) 
Present 

Eisenberger and 
Alexandrov 

(2003) 

Banh-
Thien et al. 

(2017) 
Present 

Eisenberger and 
Alexandrov 

(2003) 

Banh-
Thien et al. 

(2017) 
Present 

0.125 7.4645 7.4621 7.4625 5.4199 5.4194 5.4198 4.8413 4.8428 4.8418 
0.25 8.7633 8.7531 8.7601 6.3891 6.3869 6.3885 5.7165 5.7224 5.7203 
0.5 11.6112 11.5687 11.5989 8.5741 8.5627 8.5738 7.7111 7.7327 7.7198 

0.75 14.7942 14.6953 16.6987 11.0979 11.0657 11.0889 10.046 10.0858 10.0683 
1 18.3175 18.1368 18.2981 13.973 13.9017 13.9865 12.7381 12.7877 12.7524 

4 NUMERICAL RESULTS AND DISCUSSION 

4.1 Buckling analysis of FGP plate with linear variable-thickness in both x-, y- directions 

In this section, let us consider an FGP plate with linear VT in both x-, y- directions in the coordinate system as shown 
in Fig .2a. 
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Figure 2 The model of the FGP with different rules of VT. 

Firstly, Fig. 3 presents the first six buckling mode shapes of the SSSS FGP (ℎ0 = a/45, ℎ1 = ℎ2 = a/65, a is fixed) 
with thickness varies both the x- and y-direction: ℎ(𝑥𝑥) = ℎ1 + ℎ0−ℎ1

𝑎𝑎
(𝑎𝑎 − 𝑥𝑥),ℎ(𝑦𝑦) = ℎ2 + ℎ0−ℎ2

𝑏𝑏
(𝑏𝑏 − 𝑦𝑦), respectively. 

The remaining parameters are p = 1,Ω = 0.1,𝐾𝐾1 = 100, and 𝐾𝐾2 = 10. It can be observed that the mode shape of the 
FGP plate is not symmetrical due to the non-uniform thickness of the plate. The maximum deflection values of the mode 
shape travel to the position of a smaller thickness. 

 
Figure 3 The first six buckling mode shapes of the SSSS VT FGP plate (top view). 

Secondly, the simultaneous influence of foundation stiffness (𝐾𝐾1,𝐾𝐾2) on the critical load of the CCCC FGP VT plate 
is displayed in Fig. 4 and Table 4. In this study, the 𝑎𝑎/𝑏𝑏 ratio gets values 𝑎𝑎/𝑏𝑏 = 0.5, 1, 1.5, 2 with remaining parameters 
as ℎ0 = 𝑎𝑎/50, ℎ1 = ℎ2 = 𝑎𝑎/75,𝑝𝑝 = 0.5, and Ω = 0.5. It can be seen that the foundation increases the FGP plate 
stiffness, thus making the dimensionless critical load larger. Moreover, the figures also indicate that the shear layer 
provides better support than the spring layer. Besides, with the same material parameters and BCs, the FGP plate with 
smaller areas will be stiffer resulting in a higher critical load corresponding to 𝑎𝑎/𝑏𝑏 = 2, 1.5, 1, 0.5, as expected. 
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Figure 4 The simultaneous effect of foundation stiffness (𝐾𝐾1,𝐾𝐾2) on the critical load of FGP VT plates. 

Table 4 The critical load of the CCCC FGP VT rectangular plate. 

a/b 𝑲𝑲𝟏𝟏 
𝑲𝑲𝟐𝟐 

0 2 4 6 8 10 

0.5 0 2.7548 2.9898 3.2232 3.4552 3.686 3.9156 
20 2.8792 3.1138 3.3468 3.5785 3.8088 4.038 
40 3.0022 3.2363 3.4689 3.7001 3.9301 4.1588 
60 3.1235 3.3572 3.5894 3.8201 4.0496 4.2779 
80 3.2430 3.4763 3.708 3.9384 4.1674 4.3952 

100 3.3608 3.5936 3.8248 4.0547 4.2832 4.5105 
1 0 5.6378 5.9344 6.2269 6.5154 6.800 7.0808 

20 5.7255 6.0193 6.309 6.5947 6.8765 7.1545 
40 5.8109 6.1018 6.3888 6.6717 6.9507 7.2259 
60 5.8939 6.1821 6.4662 6.7463 7.0226 7.2951 
80 5.9746 6.26 6.5413 6.8186 7.0922 7.3621 

100 6.0530 6.3355 6.6140 6.8887 7.1596 7.4269 
1.5 0 10.1041 10.3888 10.6714 10.9519 11.2305 11.5073 

20 10.1392 10.4233 10.7052 10.9852 11.2632 11.5395 
40 10.1741 10.4575 10.7388 11.0182 11.2957 11.5715 
60 10.2087 10.4915 10.7722 11.0511 11.328 11.6033 
80 10.2431 10.5253 10.8055 11.0837 11.3602 11.6349 

100 10.2773 10.5589 10.8385 11.1162 11.3921 11.6664 
2 0 15.9689 16.2580 16.5454 16.8311 17.1153 17.3981 

20 15.9896 16.2783 16.5654 16.8509 17.1349 17.4174 
40 16.0101 16.2986 16.5855 16.8707 17.1544 17.4366 
60 16.0307 16.3189 16.6054 16.8904 17.1739 17.4558 
80 16.0511 16.3391 16.6254 16.9101 17.1933 17.4750 

100 16.0716 16.3592 16.6452 16.9297 17.2126 17.4941 
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Thirdly, the effect of material parameters (𝑝𝑝,Ω) on critical load of the SCSC FGP variable thickness square plate with 
parameters 𝑎𝑎/𝑏𝑏 = 1, ℎ0 = 𝑎𝑎/30, ℎ1 = ℎ2 = 𝑎𝑎/45,𝐾𝐾1 = 50, and 𝐾𝐾2 = 5 is presented in Fig. 5. Observing that the critical 
load of the FGP plate depends on both the power-law index p and the maximum porosity Ω. Specifically, the ceramic-rich 
plate will be harder, leading to a larger critical load. Moreover, the critical load decreases rapidly in the (0-2) range and 
changes little when p is greater than 2. Besides, the pores reduce the plate stiffness thereby reducing the critical load, as 
expected. In addition, Table 5 further lists the first six critical loads of square FGP VT square plates with input parameters: 
𝑎𝑎/𝑏𝑏 = 1, ℎ0 = 𝑎𝑎/25, ℎ1 = ℎ2 = 𝑎𝑎/40,𝐾𝐾1 = 75, and 𝐾𝐾2 = 15. 

 
Figure 5 The effect of material parameters on buckling of the SCSC FGP VT square plate. 

Table 5 The first six critical load of square FGP VT square plates. 

Critical load 𝑷𝑷𝒄𝒄𝒄𝒄𝟏𝟏∗  𝑷𝑷𝒄𝒄𝒄𝒄𝟐𝟐∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  

BCs SSSS 

Ω = 0, 𝑝𝑝 = 0 5.7044 7.9811 10.0891 12.904 13.7395 17.9827 

Ω = 0.1,𝑝𝑝 = 1 3.7483 5.0558 6.0108 7.1815 7.5182 9.5504 

Ω = 0.2,𝑝𝑝 = 2 3.2508 4.2839 5.1417 5.8262 6.0967 7.5113 

Ω = 0.3, 𝑝𝑝 = 4.5 3.0356 3.934 4.7652 5.2638 5.4955 6.6151 

Ω = 0.5, 𝑝𝑝 = 9.5 2.7715 3.495 4.2488 4.6364 4.7871 5.5411 

BCs SCSC 

Ω = 0, 𝑝𝑝 = 0 9.9597 11.6684 16.527 19.5379 21.8406 25.4488 

Ω = 0.1, 𝑝𝑝 = 1.5 5.2514 5.9171 7.9955 9.0897 10.2156 11.6418 

Ω = 0.3,𝑝𝑝 = 2 4.6811 5.2336 6.9822 7.8401 8.8388 9.976 

Ω = 0.4, 𝑝𝑝 = 4.5 4.1672 4.6184 6.0655 6.7179 7.6034 8.4581 

Ω = 0.5,𝑝𝑝 = 9 3.8733 4.2656 5.5366 6.0815 6.8982 7.5818 

4.2 Buckling analysis of FGP plate with parabolic variable thickness in x-direction 

In this study, an FGP parabolic VT plate with ℎ = ℎ(𝑥𝑥) = ℎ0 �1 + �𝑥𝑥
𝑎𝑎
�
2
� in x-direction is considered (see Fig. 2b). 

Firstly, Fig. 6 shows the first six buckling mode shapes of the SSSS FGP VT plate (ℎ0 = a/25 𝑎𝑎 is fixed). The remaining 
parameters are 𝑝𝑝 = 0.5,Ω = 0.3,𝐾𝐾1 = 50, and 𝐾𝐾2 = 10. It can be seen that the mode shape of the FGP VT plate is 
deflected to the left in the x-direction, as expected. 
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Figure 6 The first six buckling mode shapes of the FGP VT square plate. 

Secondly, the simultaneous effect of material parameters (𝒑𝒑,𝜴𝜴) on the buckling of the SCSC VT FGP rectangular plate is 
displayed in Fig. 7 and Table 6. In this study, the remaining parameters as 𝒉𝒉0 = 𝒂𝒂/𝒄𝒄𝟔𝟔, 𝒉𝒉𝟏𝟏 = 𝒂𝒂/𝟕𝟕𝒄𝒄,𝑲𝑲𝟏𝟏 = 𝟕𝟕𝒄𝒄,𝒂𝒂𝒂𝒂𝒅𝒅 𝑲𝑲𝟐𝟐 = 𝟏𝟏𝒄𝒄, 
and the 𝒂𝒂/𝒃𝒃 ratio takes values 0.𝒄𝒄,𝟏𝟏,𝟏𝟏.𝒄𝒄,𝟐𝟐. It can be seen that the increase in 𝒑𝒑 and/or 𝜴𝜴 reduces the critical load of the 
FGP plate, as expected. Besides, the impact of 𝒑𝒑 on the critical load is more pronounced than that of 𝜴𝜴. 

 
Figure 7 The simultaneous effect of foundation stiffness (𝑝𝑝,Ω) on the buckling of FGP VT plates. 



Buckling analysis of functionally graded porous variable thickness plates resting on Pasternak foundation 
using ES-MITC3 

Truong Thanh Nguyen et al. 

Latin American Journal of Solids and Structures, 2024, 21(2), e524 12/15 

Table 6 The critical load of the SCSC FGP VT rectangular plate. 

a/b 𝒑𝒑 
𝛀𝛀 

0 0.1 0.2 0.3 0.4 0.5 

0.5 0 47.2858 45.6364 43.9859 42.3341 40.6807 39.0252 
2 19.6898 18.9784 18.2596 17.5319 16.7933 16.0408 
4 17.3742 16.8009 16.2219 15.6363 15.0427 14.4392 
6 16.5914 16.0688 15.5411 15.0072 14.466 13.9159 
8 16.0368 15.5492 15.0567 14.5582 14.0527 13.5386 

10 15.5678 15.1083 14.6439 14.1739 13.6971 13.2121 
1 0 64.8525 62.5773 60.3002 58.0208 55.7386 53.4527 

2 26.8777 25.8967 24.9055 23.9019 22.8831 21.8451 
4 23.681 22.8905 22.0922 21.2846 20.4658 19.6334 
6 22.5982 21.8777 21.15 20.4138 19.6673 18.9085 
8 21.8324 21.16 20.4807 19.7931 19.0957 18.3864 

10 21.1858 20.5519 19.9114 19.2629 18.6049 17.9355 
1.5 0 100.1082 96.5418 92.9711 89.3954 85.8132 82.2227 

2 40.9157 39.3794 37.8269 36.2547 34.6582 33.0315 
4 35.8961 34.6584 33.4083 32.1436 30.861 29.5569 
6 34.1879 33.0599 31.9204 30.7674 29.5981 28.4093 
8 32.9838 31.9309 30.8668 29.7897 28.6969 27.5852 

10 31.9712 30.9781 29.9743 28.9578 27.9263 26.8765 
2 0 148.3186 142.931 137.5344 132.1266 126.7048 121.2653 

2 59.736 57.4212 55.082 52.713 50.3075 47.8563 
4 52.1433 50.2806 48.3993 46.4959 44.5657 42.6032 
6 49.5414 47.8446 46.1305 44.3961 42.6373 40.8491 
8 47.7169 46.1328 44.532 42.9115 41.2675 39.5951 

10 46.1918 44.6971 43.1862 41.6563 40.1037 38.5236 

Thirdly, the effect of foundation stiffness (𝐾𝐾1,𝐾𝐾2) on critical load of the SSSS VT FGP square plate with parameters 
𝑎𝑎/𝑏𝑏 = 1, ℎ0 = 𝑎𝑎/45, ℎ1 = a/60,𝑝𝑝 = 4, and Ω = 0.4 is shown in Fig. 8. Observing that the supporting foundation makes 
the plate stiffer leading to the expected increase in critical load. In addition, the influence of the shear layer on critical 
loads is greater than that of the springer layer, as expected. Besides, Table 7 further gives the first six critical loads of 
square FGP VT square plates with input parameters: 𝑎𝑎/𝑏𝑏 = 1, ℎ0 = 𝑎𝑎/55,𝑝𝑝 = 10, and Ω = 0.2. 

 
Figure 8 The effect of foundation stiffness on buckling of the SCSC FGP VT plate. 
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Table 7 The first six critical load of square FGP VT plates. 

Critical load 𝑷𝑷𝒄𝒄𝒄𝒄𝟏𝟏∗  𝑷𝑷𝒄𝒄𝒄𝒄𝟐𝟐∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄∗  

BCs SSSS 
𝐾𝐾1 = 0,𝐾𝐾2 = 0 2.4207 3.9295 6.7648 8.7439 10.8023 12.1352 
𝐾𝐾1 = 100,𝐾𝐾2 = 0 3.2084 4.2674 6.8709 8.9505 10.8642 12.2871 
𝐾𝐾1 = 0,𝐾𝐾2 = 10 4.1183 5.189 7.7973 10.4311 11.8079 13.6353 
𝐾𝐾1 = 100,𝐾𝐾2 = 10 4.7254 5.7008 7.9049 10.6085 11.8695 13.7809 

 CCCC 
𝐾𝐾1 = 0,𝐾𝐾2 = 0 6.0813 7.2696 11.9995 14.7977 16.1446 17.0154 
𝐾𝐾1 = 50,𝐾𝐾2 = 0 6.343 7.3816 12.1214 14.8735 16.1884 17.069 
𝐾𝐾1 = 0,𝐾𝐾2 = 5 6.8505 7.8589 12.6061 15.5793 16.7132 17.6719 
𝐾𝐾1 = 50,𝐾𝐾2 = 5 7.0922 7.9795 12.736 15.6514 16.7551 17.7265 

5. Conclusion 

The primary objective of this study is to enhance the applicability of ES-MITC3 in the analysis of buckling behaviour 
for FGP VT plates supported by the Pasternak foundation. This combination of the FSDT and ES-MITC3 is chosen for its 
simplicity and performance. The work also presents the influence of parameters such as geometric dimensions, material 
properties, boundary conditions and changes in thickness rules on the buckling behaviour of FGP plates. The formulation 
and subsequent numerical findings lead to several key conclusions as outlined below: 

• ES-MITC3 is based on classical triangular elements, so it is easy to mesh elements even with complex geometries. 

• The increase of power-law index 𝑝𝑝 and/or Ω leads to the reduction of the FGP plate stiffness, thereby reducing the 
critical load. Besides, the influence of 𝑝𝑝 on the buckling of FGP plates is more significant than Ω. 

• The elastic foundation increases the FGP plate stiffness, leading to an increase in the critical load, as expected. 
Furthermore, the influence of shear stiffness 𝐾𝐾2 on the critical load is larger than the influence of springer stiffness 𝐾𝐾1. 

• The ES-MITC3, when applied in conjunction with the FSDT, is best suited for the analysis of thin to medium-thickness 
plates. In cases involving thick plates, it is advisable to pair the ES-MITC3 element with the HSDT for more accurate results. 

• The numerical results obtained from this study are anticipated to provide valuable insights for the calculation and 
design of FGP VT plates in practical engineering applications. 
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