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Abstract 
This paper presents an enhanced version of the Artificial Rabbit Optimization (ARO) algorithm designed for 
identifying structural damage in bridge structures. The original ARO draws inspiration from survival observed 
in wild rabbits. However, it demands a substantial investment of computational time. Therefore, in this paper, 
the Improved ARO (IARO) algorithm incorporating elements of the Grey Wolf Optimizer (GWO) through 
hybridization, is employed to deal with optimization problems. The central concept of this approach involves 
infusing predator-hunting characteristics into the prey-rabbit during the hunting process, thereby enabling 
more effective predator evasion. The proposed method is evaluated through a series of simulations related 
to two real bridges: a simple supported beam structure and a steel truss bridge. The results show a significant 
improvement in accuracy and efficiency in determining structural damage while considering factors such as 
damage location, severity, and computation time. These findings underscore the potential of the proposed 
approach for real-world applications in structural health monitoring and damage detection. 
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1 INTRODUCTION 

Structural Health Monitoring (SHM) represents a stimulating field dedicated to the ongoing assessment of structural 
conditions in entities like bridges, buildings, and infrastructure, with the primary aim of guaranteeing their safety and 
dependability (Barreto et al., 2021; Jahangiri et al., 2016; Marques et al., 2018). In recent years, notable progress has been 
made in advancing SHM systems and technologies, driven by the growing imperative of infrastructure maintenance and 
safety. However, the field confronts various challenges, encompassing the amalgamation of diverse sensor technologies, 
streamlined data processing, and accurate interpretation of monitoring data. To surmount these challenges, 
methodologies, and technologies have been devised to process and analyze the extensive data amassed by SHM systems. 
The utilization of vibration sensors, which exhibits the capability to discern and quantify shifts in frequencies, thereby 
facilitating the discernment of structural damages. These sensors assume a pivotal role in capturing dynamic behaviors, 
thereby enabling the early detection of potential concerns, and facilitating proactive strategies for maintenance and repair. 
The combination of vibration characteristics, such as frequencies, mode shapes, and damping ratio, with other technologies 
as followed metaheuristic algorithms has shown great potential in the field of damage identification. Changes in these 
characteristics can indicate the presence of damage. Vibration-based damage identification relies on analyzing changes in 
the dynamic response of a structure to detect and locate damage (Das et al., 2016; Gordan et al., 2017; Ngoc-Nguyen et al., 
2022; Rajenderan and Jayaguru, 2022). 

Optimization algorithms offer significant benefits across a wide range of disciplines. They adeptly identify optimal or 
nearly optimal solutions through systematic exploration of search spaces, outperforming exhaustive search approaches. These 
algorithms can manage problems of varying magnitudes and intricacies, display adaptability across diverse domains and 
effectively address expansive optimization issues. They exhibit the capacity to flexibly modify strategies, operators, and 
parameters to accommodate shifting problem dynamics, ensuring efficacy in practical scenarios. Notably versatile, 
optimization algorithms find application in multiple domains, serving as potent tools for intricate predicaments in engineering, 
logistics, finance, and machine learning. For example, (Yıldız et al., 2019) proposed the hybrid Harris Hawks-Nelder-Mead 
optimization (H-HHONM) for design and manufacturing problems. The results compared with some other algorithms showed 
that H-HHONM is an effective optimization approach for optimizing both design and manufacturing problems. In the research 
(Zhang et al., 2019), the authors used a colony optimization algorithm to find the route optimization problem. The findings 
indicated that decrease in the total logistics expenses and a reduction in carbon emissions. (Liu et al., 2013) introduced a new 
approach to solving processing plans by considering the machining constraints and goal of Ant Colony Optimization (ACO). The 
computational outcomes demonstrated that the ACO algorithm outperforms the other three algorithms including Tabu Search 
(TS), Simulated Annealing (SA), and Genetic Algorithm (GA). An optimization algorithm namely honey-bee mating used for 
resolving educational timetabling problems (Sabar et al., 2012). In certain instances, the proposed approach outperforms 
alternative methods, showcasing its potential as a promising solution. 

By incorporating these parameters into the objective function of the metaheuristic algorithm, the algorithm 
searches for the optimal combination of damage locations and severities that best match the observed vibration data 
such as Particle Swarm Optimization (PSO) (Gökdağ and Yildiz, 2012; Kang et al., 2012; Nguyen-Ngoc et al., 2021); 
Teaching Learning Based Optimization (TLBO) (Ahmadi-Nedushan and Fathnejat, 2022; Shahrouzi and Sabzi, 2018); Slime 
Mould Algorithm (SMA) (Ngoc-Nguyen et al., 2023), Artificial Hummingbird Algorithm (AHA) (Ngoc et al., 2023); Marine 
Predator Algorithm (MPA);…Besides, many hybrid metaheuristic algorithms combined with neural networks (Hoàng 
Việt et al., 2023; Su Fen et al., 2023) have also been applied to fault diagnosis, Feedforward Neural Networks and Marine 
Predator Algorithm (MPAFNN) (Ho et al., 2021b); Grey Wolf Optimizer and Artificial Neural Networks (GWOANN) (Ho 
Viet et al., 2022); Particle Swarm Optimization-Gravitational Search Algorithm (PSOGSA); Feedforward Neural Network-
Particle Swarm Optimization and Gravitational Search Algorithm (FNN-PSOGSA) (Ho et al., 2021a). 

In recent years, a novel metaheuristic algorithm called Artificial Rabbit Optimization (ARO) has been successfully 
applied in numerous fields. This algorithm, introduced by Wang (Wang et al., 2022), draws inspiration from the inherent 
behaviors of rabbit species, encompassing their foraging tendencies and predator evasion strategies. ARO has been 
conducted by various researchers in their investigations. For instance, (Alsaiari et al., 2023) merged ARO with a multi-layer 
perceptrons (MLP) model to predict the water efficiency of different configurations of solar stills (SSs). Another study 
(Alamir et al., 2023) introduced a modified ARO approach, infused with principles from quantum mechanics, showcasing its 
efficacy in solving energy management (EM) problems by optimizing benefits and reducing time consumption. Furthermore, 
(Samal et al., 2023) effectively employed ARO to address economic load dispatch challenges. Despite the notable 
achievements highlighted in the aforementioned research, ARO does present certain limitations. Notably, it entails a 
relatively extensive computational timeframe and exhibits a moderate level of precision in its outcomes. Given the 
significant values of random coefficients within the algorithm, we propose a refinement to ARO in this study. This involves 
incorporating the foraging strategy from the Grey Wolf Optimizer (GWO) algorithm (Mirjalili et al., 2014), with the aim of 
enhancing outcomes during the computational phase of ARO. 
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Nevertheless, it is commonly acknowledged that this algorithm still contains fundamental shortcomings. First, the 
computational intricacies stemming from amalgamating multiple vibration traits with metaheuristic algorithms can prove 
substantial, particularly when dealing with extensive structures. Furthermore, the task of selecting optimal optimization 
parameters and performing a crucial objective function that effectively encapsulates the interplay between vibration 
characteristics and damage variables demands careful consideration and domain-specific expertise. Therefore, this study 
introduces an innovative avenue for resolving structural damage identification predicaments by harnessing an enhanced 
version of the ARO (IARO). This methodology is applied to tackle the damage identification concerns associated with the 
My Thanh 1 bridge and the Cua Rao truss bridge. Certainly, the study offers noteworthy contributions: 

• Introduction of an enhanced optimization algorithm referred to as IARO. This advancement integrates the hunting 
tactics of grey wolves, consequently enhancing the balance between exploration and exploitation. This increase not 
only strengthens the algorithm's recovery capabilities but also minimizes the risk of getting stuck in local optimization. 

• Demonstration of the efficiency and precision of the proposed approach via two compelling case studies. Firstly, 
the methodology is applied to a prevalent bridge type commonly found in the Southeastern provinces of Vietnam – 
the reinforced concrete girder bridge. Secondly, the efficacy of the developed algorithm is gauged through its 
application to a series of truss bridge scenarios. The practical assessment in these diverse scenarios underscores the 
method's effectiveness across varying structural contexts. 

In sum, the study showcases a unique optimization technique, IARO, accentuating its advantages through very 
realistic case studies in distinct bridge types. The paper consists of four main sections: it begins by introducing the 
research problem and proposing the methodology. Section 2 presents the fundamentals of the ARO algorithm and its 
enhancement through the foraging strategy of the GWO. The applied subjects encompass two types of structures: simply 
supported reinforced concrete beams and steel truss bridges. The final section comprises the conclusion. 

2 IMPROVED OPTIMIZATION ALGORITHM 

2.1 Artificial Rabbit Optimization (ARO) 

The ARO algorithm draws its inspiration from two survival tactics that wild rabbits employ. These strategies enhance 
the rabbits' chances of survival when confronted by predators. The first tactic involves the rabbits consuming grass near 
their nests, minimizing the risk of detection (Figure 1). The second strategy (Figure 2), termed “random hiding,” entails 
relocating rabbits to various nearby burrows, thereby augmenting their concealment. The algorithm's mathematical 
interpretation is constructed in these two tactics, incorporating their principles in a complex manner. Additionally, a 
crucial factor of the algorithm involves the transition between exploration and exploitation modes, determined by the 
rabbit's energy degradation coefficient. 
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In which ( )+


1xP t : new-updated position of the artificial rabbit at the time ( )+1t , ( )


yP t  is the old location of the thx  
rabbit at the time t ; nPop : Total population number of artificial rabbits, q : variable numbers of the problem, and
Iteration : the maximum number of iterations considered. LR : the length the rabbit has run during the deviation feeding 
with MV  is a mapping vector; 1 2,c c : random parameters between [ ]0,1 , 1s : standard normal distribution. 
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Figure 1 Exploration 

 
Figure 2 Exploitation 

Within their safe environment, rabbits utilize deceptive strategies by constructing imitation burrows that resemble 
their genuine burrow. They employ a random selection process to determine their hiding location, further enhancing 
their survival prospects against various predators. The formulation of this process, where the thx  rabbit creates the thy  
burrow, is expressed as equation (4): 
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The concealment parameter is denoted as h , gradually decreases from 1 to 1 / Iteration  in a linear manner 

throughout the iteration process, incorporating random perturbations , ( )x yBR t


 represents a randomly chosen burrow 
for the rabbit to seek safety from danger among m burrows are created. The mathematical expression for the rabbit's 
random hiding behavior is indicated as equation (6) below: 
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 is the random selection of a burrow for the specific intent of finding a hiding spot. Following 

the successful completion of both the deviation feeding and c phase, the position of the thx  rabbit is calculated using 
equation (8): 
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Energy degradation coefficient: the initial phases typically prioritize exploration, while the later stages focus more 
on exploitation. However, the ARO algorithm incorporates a search strategy inspired by the energy degradation 
coefficient observed in rabbits. As the energy of the rabbits gradually decreases over time, the algorithm simulates the 
shift from exploration to exploitation by introducing a coefficient E , which controls the transition: 

( ) [ ]4
4

1
4 1 ln ; 0;1

t
E t c

T c
 = − ∈ 
 

 (9) 

2.2 Improved Artificial Rabbit Optimization (IARO) 

Although ARO has demonstrated effectiveness in addressing mathematical and engineering optimization problems, 
it has certain limitations. One of these shortcomings is the potential to become trapped in a local minimum, resulting in 
less accurate optimization outcomes. To overcome this issue, this study proposes an enhanced ARO algorithm by 
incorporating the hunting instinct of grey wolves from GWO to regulate the exploration or exploitation switch of ARO. In 
the original algorithm, the switch is determined by the energy degradation coefficient representing the loss of energy of 
the rabbit over time and indicates a transition from foraging to hiding for the rabbit. However, this approach may lead 
to the early-stage omission of global optima. In the proposed IARO, a new switching mechanism (Figure 3) is introduced 
based on the predatory behavior of grey wolves. In the wild, wolves circulate their prey until they are within a certain 
proximity for an attack. This instinct is applied to the artificial rabbit, enabling it to recognize predators within a specific 
radius, denoted as U . As long as the distance between the rabbit and the predator remains larger than this defined 
radius, the rabbit considers itself safe and continues foraging. 

 
Figure 3 Flowchart of IARO algorithm 

However, once the predator approaches closer than the defined threshold, the rabbit becomes alert and initiates 
random hiding. This switching mechanism (Figure 4) is mathematically expressed in equation (11) below: 

( ) 52U t cθ θ= × × −
  

 (10) 
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In which, 5c  is a stochastic variable in the range [ ]0,1 , θ


 represents a parameter subject to gradual reduction from an 
initial value of 2 to a terminal value of 0. The application of these parameters in equation (10) contributes to a 
diversification of update strategies. It achieves this by implementing the algorithm with dynamic characteristics, thereby 
averting entrapment in local optima during the exploration phase. Moreover, it optimizes the precision of algorithmic 
convergence and enhances the adaptability of the stochastic concealment phase. 

: 1

: 1

Exploration Deviation feedingif U
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Exploitation Contingent concealingif U

 >= 
<

 (11) 

 
Figure 4 Switching mechanism 

3 STRUCTURAL DAMAGE DETECTION USING IARO 

3.1 Case study 1 – a supported simple beam bridge 

In the first case study, My Thanh 1 bridge (Figure 5) is used for damage identification. The bridge is located at 
Km1526+033, QL1 in Ninh Thuan province, Vietnam, and consists of two lanes with a width of 11,0m. The main structure 
uses the simple reinforced-concrete inverse T-beam (Figure 6) with a length is 12m. Some components of the bridge such 
as abutments and parapets are built of concrete. In the southern regions of Vietnam, this type of bridge structure is 
frequently employed due to its simplicity in construction, quick implementation, coordinated production, and suitability 
for the local terrain, machinery, and cost considerations. More specifically, it is utilized for traversing areas where canals, 
creeks, small rivers, and streams are situated. 

 
Figure 5 My Thanh 1 bridge (Ninh Thuan province) 
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Figure 6 Cross section of the beam 

By using the Stabil toolbox (François et al., 2021) that runs on the MATLAB program platform, a Finite Element 
Model (FE) of the bridge was created for dynamic characteristic analysis of the structure. The FE model consists of 
25 nodes (24 nodes of structures, 1 reference node – Node 50) and 23 elements (Figure 7). The boundary conditions of 
the bridge include one fix bearing and one movable bearing. Geometric and material properties of beam elements are 
used in (Ngoc et al., 2023). 

 

Figure 7 FE model of My Thanh 1 bridge 

Two damaged cases have been assumed to evaluate the feasibility and effectiveness of the proposed algorithm 
IARO, attributed to the decrease in stiffness of the considered damaged element: single damage case and multiple 
damage case. In a single damage scenario (C1-1), the elastic modulus of only one element number 12 decreases by 23.7% 
of its original stiffness. In multiple damages scenario (C1-2), simulating multiple damaged elements case: the elastic 
modulus of elements number 12, 14, and 16 are reduced to 23.7%, 36.9%, and 30.1% of the original values respectively. 
The objective function is used to solve the problem as shown in equation (12): 

( )
( )
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( )( )
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2 1
1
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T T
d d FEM FEMd

n f f
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t f
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In which n  is the number of frequencies and corresponding mode shapes; FEMf  and FEMϕ  are the frequencies and 
positions of the nodes in mode shapes to determine the damage; df  and dϕ  are the frequencies and positions of the 
nodes in mode shapes of the damaged structure; The symbol T  represents the transpose matrix. The results are 
compared with the original algorithms of ARO using the same input parameters as the population of 1000nP =  and 
maximum iterations 100MaxIt = . Below are the outcomes obtained after executing the algorithm for each 
hypothetical scenario. 
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Figure 8 Best fitness so far in case study 1 (1) 

Based on the outcomes presented in Figure 8 after 100 iterations, a distinct trend emerges. In both scenarios, the 
convergence performance of the ARO algorithm exhibits relatively modest progress, with minimal observable variations. 
Conversely, for the IARO approach, there is a considerable result. The best fitness value for IARO demonstrates a 
tendency to gradually decrease and approach proximity to the optimal value within the initial 30 iterations. 
Subsequently, this value stabilizes as the iterations progress towards completion. 

 
Figure 9 Location and damage level of C1-1 

Analyzing the outcomes illustrated in Figure 9 for scenario C1-1, a distinct contrast becomes evident between the 
performance of IARO and ARO. Notably, the IARO algorithm stands out with superior results, successfully pinpointing the 
precise location of damage at element 12. Impressively, it accomplishes this with a minimal error rate of just 1,041%. 
On the other hand, ARO's performance falls short in comparison, exhibiting less accurate determinations for various 
damage locations. Most notably, the error recorded at the presumed damaged element reaches a substantial 28,189%. 

 
Figure 10 Location and damage level of C1-2 
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Reviewing the outcomes garnered from the scenario involving multiple damaged elements, IARO continues to 
shine with remarkable efficacy in precisely pinpointing both the location and extent of damage. Even at its maximum 
calculated error rate, which reaches 2,034%, IARO's performance remains commendable. Noticeably, this error 
occurs at element position 12, as depicted in Figure 10. Conversely, ARO persists in yielding inaccurate results, 
struggling to exactly identify the correct damage location and severity, further emphasizing the advantage of IARO's 
superior performance. 

 
Figure 11 Computational time 

Turning attention to the assessment of calculation time, as elucidated in Figure 11, an interesting trend appears 
across both scenarios. In both instances, IARO requires the shortest calculation time, demonstrating swiftness 
without compromising accuracy. Furthermore, the IARO algorithm consistently delivers precise outcomes 
pertaining to damage location and assessment, further solidifying its position as an efficient and effective solution 
in these scenarios. 

In assessing the efficacy of the algorithm in damage detection problem, we examine positions analogous to 
those in cases C1-1 and C1-2 within smaller levels. Notably, for a structural configuration exhibiting singular 
damage (C1-3), The decrease in elastic modulus is recorded at 7.6%. Furthermore, in instances of multiple 
damages within the structure (C1-4), the residual stiffness values of individual elements are delineated as 92.4%, 
95.2%, and 93.7%, respectively. 

 
Figure 12 Best fitness so far in case study 1 (2) 

Examining Figure 12's convergence chart reveals that the ARO algorithm's convergence values exhibit minimal 
changes across 100 iterations. In stark contrast, the proposed algorithm demonstrates a noteworthy trend of consistently 
decreasing toward value of fitness function, surpassing the performance of the original algorithm. 
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Figure 13 Location and damage level of C1-3 

 
Figure 14 Location and damage level of C1-4 

The outcomes depicted in Figure 13 and Figure 14 show that even when confronted with damage levels below 10%, 
the proposed algorithm consistently excels in accurately identifying damage locations across both scenarios. Specifically, 
the calculated error level in case C1-3 is only 0.201%, demonstrating the algorithm's precision. Meanwhile, in case C1-4, 
the largest error registers at 5.179% for element 14, while the smallest error is 0.898% for element 16. This imperfect 
identification is attributed to the algorithm's tendency to prioritize uniform determination of damage levels across 
elements, especially in structures with multiple damaged locations. Furthermore, it's important to note that the 
constrained number of iterations can also effect on the obtained results. 

 
Figure 15 Computational time 

The computation time (Figure 15) further indicates the efficiency and rapidity of the proposed algorithm, revealing 
a 4% decrease compared to the ARO algorithm in case C1-3 and an impressive reduction (about 20%) in case C1-4. 

To consider the effect of the case of smaller stiffness reduction in different positions, such as near the bearings, we 
have also included the case of stiffness reduction of about 10%. The results are shown in Figure 16 - Figure 19. 

• The structure has only 1 damaged element (C1-5): Element 1 reduces by 10%. 

• The structure has 3 damaged elements (C1-6): Elements 1,2 and 3 reduced by 10%, 11% and 9% respectively. 
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Figure 16 Best fitness so far in case study 1 (3) 

 
Figure 17 Location and damage level of C1-5 

 
Figure 18 Location and damage level of C1-6 

 
Figure 19 Computational time 
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Figure 16 to Figure 19 show a similarity of the results obtained in the previous four cases, particularly evident in the 
results for cases C1-5 and C1-6. Significantly, the proposed algorithm exhibits a convergence starting at a relatively low point 
and undergoes a substantial reduction within 100 iterations when compared to the original algorithm. This value signifies a 
low error in the objective function, reflecting a high degree of detecting accuracy. Furthermore, IARO accurately identifies 
damaged locations located closer to the supports, with the largest error for both cases not exceeding 1.939%. In terms of 
computation time, the proposed algorithm maintains its efficiency, demonstrating a faster processing speed. 

3.2. Case study 2 – a truss bridge 

Cua Rao Bridge depicted in Figure 20 is a steel warren bridge purposed for railway transportation. It is situated at 
the Km360+450 mark on the North-South railway line in Vietnam. Given its intricate location and the need for rapid 
completion, the construction technique employed was prefabrication (Figure 21). The project to build the bridge began 
in 2012 and encompasses these structural elements: two basic steel truss spans, each spanning 66.4 meters, and one 
simple steel beam span measuring 34 meters in length. 

 
Figure 20 Cua Rao bridge 

 
Figure 21 Sensors used for measurements 
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The initial finite element model (Figure 22) of a truss span is constructed with 53 truss joints and 143 elements 
representing the structural components. The geometric characteristics of these elements were computed based on field 
measurements of practical dimensions. The boundary conditions of the model were simulated using bearing supports. 
Additionally, due to the exclusive use of steel as the primary material throughout the beam, material parameters such 
as the elastic modulus 𝐸𝐸 = 2.00x1011 𝑁𝑁/𝑚𝑚𝑚𝑚2, Poisson's ratio µ = 0.3, and density 𝑊𝑊 = 7850𝑘𝑘𝑘𝑘/𝑚𝑚3 were used. 
Following on-site measurement results, the updating of parameters including the elastic modulus of individual elements 
and the stiffness of the bearings was executed. Ultimately, a model closely resembling reality was obtained. 

 
Figure 22 FE model of Cua Rao bridge 

Assuming scenarios of damage with an update model similar to the case study 1 for 16 elements in the bottom 
chord components, for the case of the bridge structure where only one element is damaged (C2-1), the elastic modulus 
of element number 4 is reduced by 28.36%. In situations where multiple damaged elements appear within the structure 
(C2-2), the elastic modulus of elements number 1, 2, and 3 decrease by 33.55%, 30.48%, and 28.36% respectively. The 
objective function used for case study 2 is like case study 1 and is shown in equation (12). Given the increased complexity 
of the structure compared to Case study 1, to achieve meaningful results and ensure effective comparisons, the input 
parameters for algorithm execution are set as follows: a population size of 𝑛𝑛𝑛𝑛 = 300 and a maximum of 200 iterations. 

 
Figure 23 Best fitness so far in case study 2 (1) 

The convergence values obtained from Figure 23 serve to highlight a positive outcome: within the context of the 
more complicated structural configuration explored in case study 2, the IARO method still consistently exhibits a notably 
superior convergence rate as compared to the ARO approach. Remarkably, the convergence speed and value of the ARO 
approach remain almost constant throughout the entirety of the process. In the C2-1 case, convergence is effectively 
achieved by the 150th iteration, and this state of convergence is sustained until the computation reaches its objective 
function. Conversely, in the C2-2 scenario, convergence stabilizes, even though there exists the potential for enhanced 
results through a higher iteration count. Nonetheless, the predetermined iteration count within this configuration 
effectively ensures precise diagnostic results. 
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Figure 24 Location and damage level of C2-1 

 
Figure 25 Location and damage level of C2-2 

In Figure 24 and Figure 25, it becomes evident that the outcomes generated by the ARO algorithm are marked by a 
notable deficiency in accurately discerning the locations of damaged components. Additionally, the extent of damage is 
not accurately assessed. Significantly, this discrepancy is more pronounced in complex structural configurations 
characterized by a multitude of elements exhibiting diverse attributes. On the contrary, the IARO algorithm exhibits 
remarkable efficacy, particularly in scenarios involving intricate structural types. In these cases, the IARO algorithm 
successfully pinpoints the precise locations of damage, all the while maintaining a degree of damage assessment error 
of less than 2%. This robust performance underscores the IARO algorithm's ability to excel, especially when dealing with 
the challenges posed by complex structural configurations. 

 
Figure 26 Computational time 

Analyzing case C2-1 as depicted in Figure 26, it's apparent that both algorithms required around 1070 seconds to 
reach convergence. However, a distinct distinction emerges in the case of C2-2. Here, the IARO algorithm accomplishes 
both the identification of damage location and extent within the same timeframe of approximately 1070 seconds. 
In contrast, the ARO algorithm not only demanded a lengthier computation period to conclude the process but also 
produced imprecise outcomes. This disparity in both efficiency and accuracy reinforces the superiority of the IARO 
approach, especially when contrasted against the limitations of the ARO algorithm. 

As the first case, to consider the effect of the case of smaller stiffness reduction for elements are closer to the 
supports, we have also included the case of stiffness reduction of about 10%. The results are shown below. 
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• The bridge has only 1 damaged element (C2-3): Element 1 reduces by 10%. 

• The bridge has 3 damaged elements (C2-4): Elements 1,2 and 3 reduced by 10,11 and 9% respectively. 

 
Figure 27 Best fitness so far in case study 2 (2) 

Looking at the convergence chart in Figure 27 shows that the ARO algorithm's convergence values change mildly 
over 200 iterations. In contrast, the proposed algorithm shows a clear trend of steadily decreasing toward the fitness 
function value, performing better than the original ARO algorithm. 

 
Figure 28 Location and damage level of C2-3 

 
Figure 29 Location and damage level of C2-4 
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Even at its maximum calculated error rate of 5.679%, IARO's performance remains impressive. This error occurs at 
element position 2, as shown in Figure 28. Reviewing the outcomes from the situation involving three damaged elements 
in Figure 29, the IARO algorithm continues to perform remarkably well in accurately pinpointing both the location and 
extent of damage. On the other hand, the ARO algorithm continues to produce inaccurate results, struggling to correctly 
identify the damage location and severity. This further emphasizes IARO's superior performance with maximum error in 
detecting the damaged element is only 0.039%. 

 
Figure 30 Computational time 

Examining the chart presented in Figure 30, it is evident that the proposed algorithm requires a longer duration than 
the original algorithm to finalize the diagnosis process. In C2-3, this time difference amounts to 11.6%, while in case C2-4, 
it reaches approximately 21%. The primary factor contributing to this problem is attributed to the complex structure, 
random parameters, and the occurrence of the phase entering a local optimum from loop 25. Despite these challenges, 
the proposed algorithm maintains precision in assessing the stiffness reduction level of the element under the 
assumption of an initial condition. 

4 CONCLUSIONS 

This study undertakes a comprehensive evaluation of IARO in addressing structural damage identification problems. 
The investigation encompasses two distinct structural configurations: a simple reinforced-concrete beam and a steel 
truss bridge. The primary objective is to ascertain the algorithm's efficacy in contrast with the original ARO algorithm. 
The outcomes of the evaluation underscore the superiority of IARO in comparison to ARO. IARO consistently excels in 
accurately pinpointing both the location and severity of damage across single and multiple damage scenarios. The 
maximum error rate observed stands at only 2.03% in case study 1 and 1.64% in case study 2. Additionally, IARO achieves 
this heightened performance while significantly minimizing computational costs when compared to primary algorithms, 
all while maintaining a competitive convergence speed. These findings corroborate the prowess of IARO in optimizing 
structural damage identification processes. Importantly, IARO demonstrates its potential to enhance the current 
landscape of SHM systems, positioning it as a valuable tool for advancing structural integrity assessment. 
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