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Abstract

Scaling arguments based on a balance between viscous drag and restoring Brownian forces
are used in order to generate a nonlinear dumbbell model with finite spring correction and
a drag correction for a dilute polymer solution. The microstructure coupled equations leads
to the most commonly Oldroyd-like constitutive equation. We show that the investigated
model is able to capture generalized nonlinear response of viscoelastic fluids. The approach
is used to investigate the nonlinear response of an elastic liquid under strong extensional
flows. We characterize the nonlinear effect of the fluid in terms of an extensional viscosity
that is found to be a function of three relevant parameters of the problem: Deborah number,
the macromolecule extensibility (or anisotropy) and the macromolecule volume fraction.
We verify the predictions of the model with Batchelor’s calculation of extensional viscosity
based on a slender body theory for suspensions composed of long rigid rods. The analysis
may explain from a phenomenological point of view why few ppms of macromolecules of high
molecule weight or a small concentration of long fibers may produce drastic changes in the
pressure drop of robust turbulent flows. In addition, the proposed analysis may be useful for
direct computer simulations of turbulent flows in the presence of macromolecule .
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1 Introduction

The addition of small amounts of polymer to a fluid can drastically enhance the extensional
viscosity of the solution while just slightly affecting the shear viscosity [7,8]. The large increase
in the extensional viscosity of dilute polymer solutions reduces the pressure drop in flows through
porous media, observed by [5], and the drag in turbulent pipe flow, observed by a vast number
of work e.g. [1,2,10,13]. For polymer melts, the measurements of the extensional properties have
been carried out at either constant deformation rates or constant stresses, and steady state have
been reported. For polymer solutions, however it is only recently that the technique of filament
stretching at constant extension rates, that has been introduced by [14], allowed comparable
extensional viscosity measurements.
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Due to the important role of the extensional viscosity in these and many other flow phe-
nomena, it is of great interest to be able to measure the extensional viscosity of dilute polymer
solutions. However, it is difficult to create a well defined extensional flow field for dilute poly-
mer solutions and so difficult to develop models describing the behavior of the macromolecules
in the flow. The rheological properties of polymer solutions are strongly dependent upon the
concentration regime of the polymer under study. In semi-dilute and concentrated systems, en-
tanglement effects can have a predominant role in defining the behavior of the system. In dilute
solutions, the rheological properties of the system are a reflection of the mechanical properties
of the individual polymer chains and the number of chains in the bulk solution. However, even
in such dilute systems, the mechanical properties of the individual chains and, hence, the bulk
solution are strongly dependent on the type of flow. In shear flow, the mechanical properties
change gradually with the shear rate while in extensional flow the variations can be relatively
sharp. Close to the critical strain rate, a coil stretch transition occurs where the coil quickly
reaches its full stretched state. Such stretching significantly increases the hydrodynamic volume
of the polymer chain, which leads to an increase in the extensional viscosity of the solution.

The rheological behavior of the common Oldroyd constitutive equation is well-known e.g. [4].
In steady simple shear flow, the effective viscosity is constant, the first-normal-stress difference
increases quadratically with shear-rate, and there is no second-normal-stress differences. In
steady pure straining motion, the extensional viscosity increases with strain-rate, becoming
infinite at the finite critical Deborah number (De ∼ 1).

To understand the physics in this constitutive equation for elastic liquids, it is helpful to look
at a micro-structural model which leads to an Oldroyd-like-constitutive equation. Rather than
studying the rheological performance and mathematical structure of the coupled flow equations,
we retreat to some physical model of the microstructure which generates the constitutive equa-
tion. In this article, it is considered a bead-and-spring model of polymer solutions. The simplest
version of the bead-and-spring model (i.e. dumbbell model) was introduced by [9] and discussed
in details by [7] and [11] with a finite spring correction, i.e. a FENE (i.e. finitely extensible
non-linear elastic ) model. The original empirical FENE spring force was first proposed for
dumbbells by [15].

We present scaling arguments based on a balance between viscous drag and a restoring
Brownian force which lead to a time dependent partial differential equation for the conformation
tensor of the macromolecule. In particular, this tensor gives an explicit information about the
internal structure of the fluid. We then describe a highly anisotropic fluid flow with a nonlinear
spring model which gives a finite limit of macromolecule extension and a nonlinear damper
in the way suggested by [11]. The present analysis has been attractive because deformable
particles almost always become rod-like in shape when greatly deformed by the bulk flow, and
this anisotropy may act as a stabilizing factor even in the flow of very dilute polymer solution.
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2 Dimensional analysis

Dilute polymer solutions (no overlapping of the macromolecules) behavior can be idealized as
being a polymer chain composed of two beads representing drag forces, linked to a Hookean
spring representing elastic forces (see figure 1). This configuration bead-and-spring is called
a dumbbell e.g. [4]. In this model, a macromolecule is composed of N rigid segments (each
corresponding to an individual monomers) of length δ, with each individual monomer randomly
oriented with respect to the adjoining segments. The equilibrium configuration distribution of
the macromolecule is then given by a random walk of N steps, each of length δ. In this model,
the mean end-to-end distance of the polymer, a is proportional to N1/2δ as required by the
central limit theorem, which is smaller than the length of the polymer chain by a factor of
N1/2. In figure (1a), the vector r between the centres of the two beads represents the end-to-end
distance of the polymer molecule.

δ

r

r

(a) (b)

Figure 1: Sketch of a polymer molecule. (a) The elastic dumbbell model and (b) Polymer
configuration corresponding a chain of N individual manometer randomly orientated.

In a flow, the distribution of polymer configurations will be affected by the local velocity
gradient. In an extensional flow the difference in the fluid velocity acting on the two halves of
the polymer will cause the molecule to extend. The extension is opposed by Brownian motion
which tend to restore the equilibrium distribution.

Let us examine the equilibrium condition between Brownian and viscous forces and consider,
for instance, the simplest linear Hookean spring for modelling the restoring Brownian force. We
express the elastic force as being FB = Gr, where G denotes the spring constant given by
G = 3KT/a2 e.g. [6]. Here, a denotes the equilibrium length of the macromolecule (i.e. a typical
value of |r| = r for the elastic regime where a linear spring model makes sense.), K is the
Boltzmann constant and T the absolute temperature.

The hydrodynamic interactions between the molecule and the solvent is represented by the
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viscous drag on the beads. So, in a dumbell model, the viscous force is defined as the force
exerted over an isolated spherical particle of ratio a by the solvent with viscosity µ. For a low
Reynolds number, the expression is given by the Stokes law, namely, FV = 6πµadr/dt. At
the thermodynamic equilibrium state, the balance between the viscous and the restoring forces
acting on the macromolecule leads to

dr

dt
=

G

Cv
r, (1)

where Cv = 6πµa. Integrating equation (1) fort he initial condition r(0) = r0, one obtains:

r(t) = r0 exp
(

t

τ

)
, (2)

where τ = Cv/G = 2πµa3/KT denotes the relaxation time of an extended macromolecule to the
randomly-coiled state. Since N is equal to the molecular weight of the polymer (M) divided by
the molecular weight of a single monomer (Mi), N = M/Mi it results that the macromolecule
relaxation time is proportional to M3/2.

2.1 Physical parameters of the flow system

In defining the Reynolds number, Re, for a polymer solution, we need to define carefully what
is meant by the viscosity µ, since both shear and extensional viscosity vary with shear-rate.
Conventionally, µ is taken to be the shear viscosity in the limit of small shear rates. Most
polymeric fluids are highly viscous and so we consider the limit where Re is small. The flow of a
fluid with density ρ and viscosity µ flowing through a body of length scale a with velocity scale
uc, Re is defined as Re = ρuca/µ.

In the context of elastic liquids, a fundamental parameter is the Deborah number, defined
as the ratio of the relaxation time and a characteristic time of the flow, i.e. De = τ/tf , where
τ denotes the relaxation time of the polymer. The relaxation time measures the ability of
the macromolecules to recoil to their equilibrium condition after stretching. The flow time
scale tf is defined as the ratio of a velocity uc and a length a, characteristics of the flow.
De << 1 means weak flow and the fluid behaves closely to a Newtonian fluid. In this limit,
Brownian motion prevents the polymer from becoming highly extended and the macromolecule
distribution remains close to the randomly coiled distribution. We denote this limit as being
the elastic regime, with r ∼ a. For large values of Deborah (i.e. De ∼ 1), however, the flow
is strong enough to overcome the Brownian relaxation and so the polymer may become greatly
extended, so that the mean end-to-end distance becomes large compared to its values in the
randomly-coiled distribution, i.e. r À a. This second regime will correspond to the anisotropic
limit of the macromolecule. For strong flows, De ∼ 1, the macromolecule stretching produces
anisotropy in the flow and non-linear effects as normal-stress-difference.

A second important dimensionless parameter is the extensibility of the polymer, L, defined
as being the ratio of the full stretched length (` = Nδ ) to the average length corresponding to
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the end-to-end distance in the randomly coiled state of the macromolecule, a, i.e. L = Nδ/a. In
the present work, while Deborah can be interpreted as a measure of the polymer elasticity on the
flow, L will denote a measure of the flow anisotropy created by the macromolecule orientation.
We will examine the effect of both contribution to the flow.

The final dimensionless group is a measure of the effective volume fraction of the macro-
molecule evaluated at the randomly coiled state, namely φ = 4πa3n/3, where n is the number
of molecules, Nm per unit of volume , i.e. n = Nm/V . For the solution to be dilute, φ must
be much less than unit, therefore the polymer contribution to the fluid stress will be negligible
unless the polymer become highly extended.

3 Mathematical model

The balance equations are the conservation of mass and of momentum

∇ · u = 0, ∇ ·Σ = 0 (3)

where inertia is neglected.

3.1 Material description

In general, the stress tensor for an elastic liquid is given by the following constitutive equation

Σ = −pI + σ (4)

with the deviatoric stress σ given by

σ = 2µs(φ, γ̇)D + σB, (5)

where p is the mechanical pressure, I is the unit tensor, µs(φ, γ̇) is the shear viscosity as a
function of the volume fraction, φ, and the shear rate, γ̇, σB is the elastic stress contribution
due to the presence of macromolecules and D is the rate of the strain tensor, D = (∇u+∇uT )/2.

The macroscopic behavior of a dilute solution of macromolecules is obtained by averaging a
property for a singe molecule over a large ensemble of identical molecules. We then derive an
equation for σB which correlates the average microscopic behavior of macromolecules with the
macroscopic response of the fluid.

3.2 Nonlinear Stress-Rate of Strain relation

Since we are treating with dilute polymer solutions, the shear viscosity may be considered as
being a linear function of the volume fraction only, i.e. µs(φ, γ̇) ≈ µ(1+cφ). For a dilute aqueous
solution of polyacrylamide-PAMA, the best fitting constant is found to be c = 1.4× 104 [2].
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Now, the non-Newtonian average contribution stress due to the macromolecules is given
by a volume average over a volume V sufficiently large to contain a meaningful number of
macromolecules, that is

σB = lim
V→∞

1
V

∫ V

0
σBdx = n〈σB〉, (6)

where 〈〉 represents an ensemble average.
According to the scaling analysis presented in §1, the elastic restoring force can be written

as

FB = Gr, (7)

and the associated stress tensor for one macromolecule is given by the dyadic σB = Grr. Taking
the average over Nm macromolecules within a sufficiently large volume V, one obtains

〈σB〉 = G

(
1

Nm

Nm∑

s=1

rr

)
. (8)

Since n = Nm/V , σB = n〈σB〉 = nG〈rr〉.
We define the conformation tensor or the moment of inertia tensor of the deformable macro-

molecule as being

B(t) = 〈rr〉 =
1

Nm

Nm∑

s=1

rr. (9)

Note that B is, by definition, a symmetric and positive definite tensor.
Rewriting Eq. (5) in terms of the conformation tensor leads to:

σ = 2µs(φ)D + nGB(t). (10)

3.3 Conformation Time Evolution

The closure problem of the constitutive equation, Eq. (10), requires a time evolution equation
for the conformation tensor B(t). Turning back to the scaling analysis given in §(2), the balance
between elastic and viscous forces gives

6πµa
dr
dt

+ Gr = 0. (11)

Now, multiplying both sides of Eq. (11) by r, subtracting the rigid body translation and
adopting a frame of reference rotating and deforming with the macromolecule, after averaging,
one obtains:
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3πµa
δB
δt

+ GB−KT I = 0. (12)

Here δ/δt is the upper convective time derivative or the Oldroyd derivative that is material frame
indifferent. It is simply the rate of change of B seen by an observer translating and deforming
with the macromolecule

δB
δt

=
DB

Dt
−∇u ·B −B · ∇uT , (13)

Now, writing Eq. (12) in terms of the Oldroyd derivative given by Eq. (13) and after
rearranging the equation, we find

DB

Dt
= ∇u ·B + B · ∇uT − 2

τ

[
B− (a2/3)I

]
, (14)

where D/Dt denotes the translational material derivative. Here, the first term on the right-hand
side in equation (14) represents the stretching of the macromolecule by the flow and the second
term represents the relaxation of the polymer due to Brownian motion.

It is important to note that few algebraic manipulation, taking the Oldroyd derivative of the
stress Eq. (10) and using the microstructure equation (12), show that the pair of constitutive
equation given by Eqs. (10) and (14), reduces to the most common Oldroyd-B fluid [4], namely:

σ̂ + λ
δσ̂

δt
= 2µ(φ)

(
D + λ

δD

δt

)
, (15)

with σ̂ = σ − nKTI and the material constant λ = τ/2.
In this work, we will keep the form of a pair of constitutive equations in order to explore the

explicit dependence of the microstructure given by the behavior of the second moment tensor B.

3.4 An equivalent non-linear Dumper-and-Spring model.

A dumbbell model with a drag correction and a non-linear spring force which gives a finite limit
to the spring extension is considered. A Hookean spring may produce unlimited elongation of
the dumbbell. Such a behavior is not only unrealistic but can also lead to numerical difficulties
as unlimited values for the stress tensor. These difficulties can, at least partially, be eliminated
by limiting the extensibility of the macromolecule [11]. Changing the linear spring law to one
with a finite extension, i.e. Gf(r), yields a dumbbell-FENE model, where f(r) is the nonlinear
spring law. Actually, the correct spring law for a random-chain model was proposed by [6] as
being f(r) = (`/3r)F−1(r/`), where F (z) = coth(z)−1/z is the Langevin function. Because this
law is difficult to work mathematically, we use instead a simpler law with the same qualitative
behavior such as first proposed by [15],

f(r) =
l2

l2 − r2
with r2 = tr(B). (16)
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Note that, as r tends to the rigid fibre limit `, the polymer reaches its limits of maximum
extensibility, whereas in the case of small distortions of the macromolecules r ∼ a (i.e. randomly-
coiled state), f(r) ∼ 1 (i.e. linear spring law would be appropriated). In addition, the FENE
dumbbell model described above needs also to take account of the variation in the hydrodynamic
drag for r ∼ `. In this respect, this model is strictly valid only for small values of r. As the
polymer expands, the size of the object on which the frictional force of the fluid acts increases.
The viscous drag increases with the largest linear dimension and so the size of the beads should
increase roughly with r = tr(B)1/2 [7].

After incorporating into the model the corrections discussed above, the constitutive equations
for the stress tensor and the conformation tensor are written, respectively, as

σ = 2µs(φ)D + nGf(r)B(t), (17)

dB

dt
= ∇u ·B + B · ∇uT − 2af(r)

τ [tr(B)]1/2

[
B− (a2/3)I

]
. (18)

Eqs. (17) and (18) can be made dimensionless with appropriate scales. Using uc and a as the
reference speed and the reference length respectively, the flow is characterized by the Deborah
number De = 2πµa2uc/KT ; for a simple shearing motion with shear rate γ̇ the characteristic
velocity is uc = aγ̇, whereas for a pure extensional flow with rate of strain ε̇, uc = aε̇. As
mentioned before, the other parameters of interest are the particle volume fraction φ and the
extensibility of the polymer, L = `/a. The dimensionless constitutive equations expressed in
terms of the stress σ̃ and the conformation tensor B̃ of the polymer are respectively

σ̃ = µ̃(φ)D̃ +
9φf(R)

2De
B̃, (19)

dB̃
dt̃

= ∇̃ũ · B̃ + B̃ · (∇̃ũ)T − 2f(R)

De[tr(B̃)]1/2

(
B̃− I

3

)
, (20)

where σ̃ = aσ/µuc, µ̃ = µs/µ, µ is the solvent viscosity, B̃ = rr/a2, R = r/a and the spring
function in terms of the dimensionless quantities R and L is given by f(R) = L2/(L2−R2). By
examining the right-hand side term in equation (20), it becomes clear that for large Deborah,
the contribution for the polymer relaxation is negligible compared to the contribution of the
first term responsible for the stretching of the polymer. One can see that this is possible only if
one considers high relaxation time macromolecule compared to the time scale of the flow. The
above pair of constitutive equations should be a reasonable approximation for describing flows
of very dilute polymer solutions such as those used in turbulent drag reduction.
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4 Results

4.1 Two asymptotic limits of the fluid system

A physical interpretation of the role of the anisotropy and the elasticity on a flow due to the
presence of additives can be gained by examining two limiting cases of equation (20) for steady
extensional flows. In a steady uniaxial extensional with strain-rate ε̇ the velocity field is given
by, u = (ε̇x1,−1

2 ε̇x2 − 1
2 ε̇x3) with the dimensionless extensional viscosity being calculated as

µe

µ
=

2σ̃11 − σ̃22 − σ̃33

6
. (21)

In the above equation, we denote by 1, 2 and 3 the streamwise, transverse and spanwise direc-
tions, respectively. The definition for µe given in equation (21) is normalized by using Trouton’s
viscosity which corresponds to the extensional viscosity of a Newtonian fluid experimenting a
steady extensional flow, µe/µ = 3.

4.1.1 The elastic regime

In the case of elastic limit, when f(R) = 1, De ¿ 1 and R ∼ 1, the governing equation (20) of
B evolution reduces simply to

dB̃11

dt̃
= 2

[(
1− 1

De

)
B̃11 +

1
3De

]
,

dB̃22

dt̃
=

2
3De

−
(

1− 2
De

)
B̃22, B̃33 = B̃22. (22)

The stationary solution of equation (22) gives B11 = (1 −De)−1/3 and B22 = 2(De + 2)−1/3.
A prediction of the extensional viscosity for this elastic limit is obtained by inserting B̃11 and
B̃22 into the stress equation (19) and using (21), which yields

µe/µ = µs +
3φ

2
(De + 2)−1(1−De)−1. (23)

Thus, at leading order

µe/µ = µ∗ +
3
8
φDe, (24)

where µ∗ = µs + 3φ/4 represents a modified shear viscosity as a function of the particle volume
fraction. The result indicates that in a dilute polymer solution for which φ ¿ 1 under weak flow
(De ¿ 1), the Non-Newtonian contribution O(φDe) on the extensional viscosity is a negligible
effect and the behavior of dilute polymer solutions in this regime is approximately Newtonian
and so is of less interest.

4.1.2 The anisotropic regime

Provide that R ∼ L À 1, in the steady extensional flow, the extension of the macromolecule
may be considered predominantly in the 11 - direction. At high Deborah numbers (i.e. strong
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flows, De ∼ 1), B̃11 will be of order L2, whereas B̃22 and B̃33 will be of order one. Making the
approximations R2 = tr(B̃) ≈ B̃11 and ∇̃ũ · B̃ = B̃ · (∇̃ũ)T ≈ B̃11e1e1, and taking the trace of
equation (20) reduces it to

dR

dt
= R− 2f(R)

R2De
(R2 − 1). (25)

Define the equilibrium extension of the macromolecule, RL, as being the saturated value of R

for De ∼ 1. Then RL satisfies

RL − 2f(RL)
R2

LDe
(R2

L − 1) = 0 (26)

At equilibrium, the component of the dimensionless non-Newtonian stress in the 11-direction
given by equation (19) corresponds to the magnitude of the dimensionless extensional viscosity,
namely

µe

µ
=

9φ

2De
R2

Lf(RL) =
9φ

2
R5

L

R2
L − 1

. (27)

The result indicates that, in the limit of highly extended polymer, the extensional viscosity is
independent of the polymer relaxation time (i.e. the Deborah number), and when RL tends
to L À 1 (i.e. the rigid fibre limit) the extensional viscosity is proportional to φL3, having the
same scaling predicted by slender body theory for the extensional viscosity of a suspension of
rigid rods [3].

Now, we can also use this calculation in order to estimate the Deborah number, DeL, corre-
sponding to the asymptotic limit RL → L for a given L À 1. Writing RL = cL, with c being a
constant very close to the unit and inserting this condition into equation (26), we obtain

DeL ∼ 1
c(1− c2)

L−1. (28)

Equation (28) yields DeL ≈ 0.6 for c = 0.99 and a typical value of L = 80. Therefore, in a
polymer solution for which φ ¿ 1 but φL3 > 1, the presence of polymer molecules will yield
a potentially strong effect due to the anisotropy produced by the highly extended particles in
flows with De ∼ 1.

4.2 Computer simulation results

In this section, we present numerical simulation results for the extensional viscosity as a func-
tion of the parameters: Deborah number, polymer volume fraction and the extensibility of the
macromolecule. The numerical integration of Eq. (20) was performed by using a fourth order
Runge-Kutta scheme. The time step was carefully controlled as a function Deborah number, i.e.
dt = min

{
10−3, 10−2De

}
to keep the integration accurate. The bulk stress is computed using

equation (19).
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Figure (2) depicts the response of the dimensionless extensional viscosity to a steady ex-
tensional flow for different values of the parameter De, L = 80 and φ = 200ppm. It is seen a
stationary state of the extensional viscosity for all Deborah number simulated. The insert shows
behaviour for values of De corresponding to the elastic regime. The results indicate that, for
a typical value of extensibility of a high molecular-weight chains, L = 80 corresponds to the
anisotropic regime of highly extended molecules. The stationary values of the relative exten-
sional viscosity µ̂e−µ∗ are approximately 106 order of magnitude greater than its magnitude in
the elastic regime for De = 0.55.

In contrast, the stationary value of the extensional viscosity shown in the inset of figure (2)
for De = 0.35 is almost indistinguishable from the corresponding Newtonian value µ∗ ≈ 1. In
this regime of De the polymer molecule does not give reliable stresses because the molecules are
only slightly distorted by the flow. This result is supported by the scaling discussed in §(4.1)
which has found the polymer contribution to the extensional viscosity O(φDe) for R ∼ 1 ¿ L

and φ ¿ 1. This is a clear indicative that only when the molecular distortion is large will the
polymer contribution to the bulk stress become significant, providing a strictly non-Newtonian
regime as predicted by the asymptotic limit (R → L) giving by (27).
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Figure 2: Dimensionless relative extensional viscosity µ̂e − µ∗ as a function of the dimensionless
time for Deborah ranging from 0.35 to 1, with L = 80 and φ = 200ppm. The insert show the
behavior of the extensional viscosity for the elastic limit (weak flows).

Figure (3) shows the dimensionless extensional viscosity as a function of Deborah number
for L = 3.5, 15, 25, 35 and a particle volume fraction φ = 200ppm. The numerical integration
results show that for De < 0.5 the dimensionless extensional viscosity depends on De and
is only weakly affected by L. The insert shows a comparison between the numerical results
and the elastic asymptotic solution given in (23) (solid curve) for the elastic behaviour of the
extensional viscosity with De < 0.15. The straight dashed line is strictly valid for De → 0. For
De ∼ 0.1, the entire elastic behavior of the extensional viscosity is accurately described by the
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approximation (23).
According to the analysis presented in §(4.1), the leading order dependence of µ̂e is (3/8)φDe.

We see, however, that the accuracy of this linear approximation is reasonable for values of
De < 0.05. The deviation of the elastic approximation shown in the insert of figure (3) for
increasing De from the numerical results are a manifestation of the transition of the anisotropy
caused by the extended molecules, clearly visible in (3) for D > 0.5.

The result changes completely when the molecules are highly extended. In this case, the
anisotropy, which is always a very small contribution to the flow in the elastic regime, becomes
the dominant mechanism and the molecules behaves nearly as long fibres. In addition, the plot
shows that, for smaller L corresponding to polymer of low molecular-weight, the anisotropic
regime is gradually attained, whereas for higher L the extensional viscosity jumps from values
O(1) to O(102) for a typical L = 50. The transition to the anisotropic regime of the flow is
observed for De ≈ 0.6 at all L simulated. In this regime, the extensional viscosity is independent
of De and so achieved uniform values which depends only on L such as predicted by the asymp-
totic formula (27). This behavior of the extensional viscosity determined from the simulations
are in qualitative agreement with experiments carried out by [12].
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Figure 3: Dimensionless relative extensional viscosity µ̂e − µ∗ as a function Deborah number for
L = 3.5 (continuous line),15 (dashed line),25 (dotted line) ,35 (dashed-dotted line). A comparison
between analytical predictions and numerical simulation for the elastic regime is plotted in the
insert. Solid line represents the solution (23) and the dashed line the leading order approximation,
(3/8)φDe.

The dimensionless relative extensional viscosity as a function of anisotropic parameter φL3 for
Deborah numbers ranging from De = 0.6 to De = 2.0 is presented in Figure (4). Several values
of L were computed with φ = 200ppm, 250ppm, 300ppm, 350ppm and 400ppm. The observed
linear φL3 dependence of the extensional viscosity was previously shown by Batchelor’s theory
of elongated particles suspended in a Newtonian solvent (Batchelor, 1970) for rigid rods. The
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asymptotic limit corresponding to the macromolecule conformation R → L for strong flows
was described in §(4.1). In the case of very dilute solutions considered here, the observed linear
dependence between µe and φL3 shown in (4) may be attributed to the anisotropy introduced by
the molecule long-fibre shape like, corresponding to the fully extended molecule configurations
by the flow. A final important result is shown in the insert of figure (4). It is seen that for
De ∼ 1, variations in the extensional viscosity with De are not noticeable and all results collapse
to the straight line (9/2)φL3, according to (27). Since re-orientation of the extended molecules
induced by hydrodynamic interactions are extremely small in very dilute suspension and polymer
relaxation at the time scale of a strong flow has a negligible effect when De ∼ 1, we speculate that
the anisotropy may be the key factor behind the observed attenuation of flow instabilities in the
presence of such additives. In addition, there is certainly the possibility that, even for very dilute
polymer solutions such as those used in turbulent drag, reduction of the polymer contribution
to the total stress should be a strong contribution to the flow compared to the contribution from
the solvent, if the molecules are in the anisotropic regime R → L. Experimental studies are
unavailable for a quantitative comparison with the predictions presented in this article.
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Figure 4: Dimensionless relative extensional viscosity µ̂e − µ∗ as a function of the anisotropic
parameter φL3, for different values of De. The values of concentration used were 200, 250, 300,
350 and 400ppm with L ranging form 70 to 80. Points + De = 0.6; × De = 0.8; open diamonds:
De = 1.0; open circles De = 1.2; solid squares: De = 1.4; open triangle De = 1.6; solid circles:
De = 1.8; open squares: De = 2.0. The fully anisotropic regime for 5 values of De > 1 is shown
in the insert.

5 Final remarks

In this article, we have generated a pair of constitutive equations to describe anisotropic fluids
through scaling arguments based on a balance between viscous drag and restoring Brownian
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forces. The physics involved in the constitutive equations of elastic liquids has been better
understood. We have shown theoretical results for extensional viscosity in terms of Deborah
number De, the volume fraction φ and the extensibility of the polymer L. The studies have re-
vealed that, once Deborah number reaches an critical value around Dec = 1, the macromolecules
behave closely to rigid fibres capturing the same scaling given by viscous slender body theory
of rigid rods. That is µε/µ ∼= φL3, regardless of Deborah number.

In this nonlinear flow regime, the macromolecule elasticity becomes irrelevant and the flow
depends mainly on the anisotropy produced by the alignment of the highly stretched macro-
molecules with the flow. The present studies have suggested that this anisotropy should greatly
dominates retardation or elastic effect in strong flows like turbulence. Thus, close to the rigid
rod limit, the anisotropy produced by the extended macromolecule would be the key mechanism
to explain dilute polymer solution yielding turbulent drag reduction.
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