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Abstract 
Randomness in the microstructure due to variations in microscopic 
properties and geometrical information is used to predict the sto-
chastically homogenised properties of cellular media. Two stochas-
tic problems at the micro-scale level that commonly occur due to 
fabrication inaccuracies, degradation mechanisms or natural heter-
ogeneity were analysed using a stochastic homogenisation method 
based on a first-order perturbation. First, the influence of Young's 
modulus variation in an adhesive on the macroscopic properties of 
an aluminium-adhesive honeycomb structure was investigated. 
The fluctuations in the microscopic properties were then combined 
by varying the microstructure periodicity in a corrugated-core 
sandwich plate to obtain the variation of the homogenised proper-
ty. The numerical results show that the uncertainties in the mi-
crostructure affect the dispersion of the homogenised property. 
These results indicate the importance of the presented stochastic 
multi-scale analysis for the design and fabrication of cellular solids 
when considering microscopic random variation. 
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1 INTRODUCTION 

Applications of cellular materials in various areas have been increasing in recent decades; these ap-
plications are not limited to functional uses but also include structural uses. Designing a microstruc-
ture to obtain certain desired macroscopic properties in cellular materials is a new approach that 
was recently introduced to the structural engineering mechanics field due to the abundant research 
into multi-scale modelling. Numerous studies are available on multi-scale analysis in the context of 
the approximation of an effective elastic constant of heterogeneous media; these studies are  based  
on periodic homogenisation theory  (Bensoussan et al.  1978,  Sánchez-Palencia  1980,  Guedes  and 
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Figure 1   Corrugated-core sandwich plate. (a) Perfectly periodic microstructure with unit cell Y. (b) Misaligned microstructure with unit 

cell Y. 
 
Kikuchi 1990), specifically in the scope of fibre-reinforced composites (Terada et al. 2000, Matsuda 
et al. 2003) and cellular materials, such as honeycomb (Guedes and Kikuchi 1990), plate-fin (Tsuda 
et al. 2010) and wafer-fin structures (Saha et al. 2007). In addition to periodic microstructure, one 
study has demonstrated the accuracy of homogenisation theory even for random microstructures by 
comparison with experimental results from porous media (Takano et al. 2003, 2010). Moreover, the 
homogenisation method was also widely used in the field of biomechanics for such applications as 
determining the homogenised elastic constants of cortical (Parnell et al. 2006) and trabecular bones 
(Hollister et al. 1994). However, these studies, which characterise the mechanical properties of in-
homogeneous materials, assume that the cells have a periodically regular array and the mechanical 
property of a constituent is consistent throughout the volume; or, in short, the microstructures were 
treated in a deterministic sense. Unfortunately, randomness occurs at the micro-scale level. 
 It is well understood that the mechanical properties of heterogeneous materials depend on the 
microscopic properties of their constituents. Because the microscopic properties have been obtained 
primarily by experiments and the results have been statistically evaluated, the mechanical macros-
copic properties demonstrate some variance. The variance in the experimental results is even grea-
ter for more complex microstructures, such as bone, in which the Young's modulus was found to be 
in the range of approximately 1-20 GPa (trabecular) or 5-26 GPa (cortical) (Guo 2001). Random 
variation in the microscopic properties in engineering materials can result from defects that occur 
during the fabrication or degradation effects, such as the existence of inclusions and microcracks in 
the adhesive bonding of multi-joint materials.  
 Conversely, the dispersion of the macroscopic properties is also tightly linked to the randomness 
in the geometry of the microstructure. Due to fabrication inaccuracies, most cellular materials have 
non-periodic structures with practically random spatial arrangements. In some cases, the micros-
tructure, which resembles a corrugated-core sandwich plate, is not necessarily fabricated in a per-
fectly aligned position, as illustrated in Fig. 1(a). The microstructures may have randomly misalig-
ned layers, as depicted in Fig. 1(b). Matsuda et al. (2011) investigated this problem using determi-
nistic homogenisation theory applied to non-linear time-dependent elastic-viscoplastic materials. 
The random misalignment of the internal structure was found to affect the viscoplastic properties 
both macroscopically and microscopically. The degradation mechanism of the component material is 
also one factor that contributes to the uncertainty of the periodicity in the microstructure. In the 
case of a honeycomb structure, there are frequent deviations from the regular structure caused by 
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the process in which the individual cells nucleate and grow naturally. Then, new rearrangements 
take place when the cells impinge on one another. Finally, the cells have a dispersion of size and 
vary in the number of edges per cell (Gibson and Ashby 1997). Therefore, the uncertainties in the 
microstructure that affect the macroscopic properties of the heterogeneous materials can be classi-
fied into two major factors: microscopic properties and geometrical information.  
 The randomness and various uncertainty factors that exist in the microstructure demonstrate 
the necessity of estimating the macroscopic properties in a stochastic nature. A few computational 
schemes of stochastic homogenisation have been introduced in recent years based on perturbation 
(Koishi et al. 1996, Kaminski and Kleiber 2000) and spectral (Jardak and Ghanem 2004, Xu and 
Graham-Brady 2005) methods for specific problems. For instance, Kaminski and Kleiber (1996) 
used a stochastic finite element perturbation-based method (Kleiber and Tran 1992) to investigate 
the uncertainties associated with structural interface defects in fibre-reinforced composites by consi-
dering the variation in the Young's modulus in a plane stress condition. Xu and Graham-Brady 
(2005) evaluated the global and local behaviour of random elastic media based on the concept of a 
stochastic representative volume element (SRVE). Determining the size of the representative volu-
me elements (RVEs) to incorporate the random field into the microstructure of heterogeneous ma-
terials (Ostoja-Starzewski 1998, Gitman et al. 2005) is another approach that was introduced to 
investigate the stochastic response in a multi-scale problem. Most of the methods, however, focus on 
a matrix-inclusion model, whereas, to our knowledge, no one has performed a stochastic process 
when considering cellular materials. 
 In this study, we applied a stochastic homogenisation analysis to predict the dispersion of the 
homogenised properties of three-dimensional (3D) cellular media in which the microstructure is 
modelled to have a random variation in the microscopic properties and geometrical information. 
Our approach is based on the concept of the first-order perturbation proposed by Koishi et 
al.(1996), which was later developed by Sakata et al.(2008). Koishi et al.(1996) and Sakata et 
al.(2008) demonstrated the validity of the theoretical formulation by comparing this formulation 
with a stochastic finite element method and using a Monte Carlo simulation, respectively. However, 
both researchers tested the numerical algorithm using a fibre-reinforced composite. Therefore, it is 
critical to adapt the stochastic process considering cellular materials and to incorporate various 
uncertainty factors into these processes.    
 
2 OUTLINE OF STOCHASTIC HOMOGENISATION USING A FIRST-ORDER PER-

TURBATION 

Consider a unit cell Y representing an inhomogeneous solid material. This cell could contain various 
types of random microstructures, such as fibres, particles, or polycrystalline or porous materials. 
The effective elastic properties or homogenised properties of the representative structure can be 
obtained using classical homogenisation theory. However, because of the random nature in the mi-
crostructure, the homogenised properties DH could be influenced by the uncertain parameters, such 
as the morphology of the microstructure A, the material types M and the volume fraction V as well 
as the variables geometrical information X and mechanical properties of constituents D. This rela-
tionship can be summarised in eq. (1).    
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 ( )( )iiii ,A,V,MF DXDH =  (1)  

 
where i is the number of constituent materials and F is a function of DH. If we apply this method 
to porous or cellular materials, i in eq. (1) can be neglected. The formulation of the homogenised 
properties of cellular solids can be generalised in eq. (2). 
 
 ( )( )DXDH ,A,V,MF=  (2)  

  
If we assume that the mechanical properties of constituent D have a small random fluctuation, the 
stochastic microscopic property response is written as the sum of the deterministic term D* and a 
stochastic term that is denoted by α.  
 
 ( )α+= 1*DD  (3)  
 
Next, by taking this fluctuation into account, the homogenised property is formulated as a function 
of α. If this function is approximated in expanded form, then the approximation of the homogenised 
property is written as   
 

 ( ) ( ) ( ) …+++= 2210 αDαDD HHHHD  (4)  
 
Applying the first-order perturbation method to this calculation and assuming that the stochastic 
variable α is normally distributed with a mean value of zero, the expected value (Exp) and variance 
(Var) of the homogenised property are computed in eq. (5) and (6), respectively (Koishi et al. 
1996). 
 

                                   [ ] ( )0xp HH D=Ε D  
 

(5)  
 

 [ ] ( ) ( ) [ ]α,αDD HHH covVar 11=D  (6)  
 
The order of '0' determines the deterministic term, whilst '1' corresponds to the first-order differen-
tial for the stochastic variation α at α = 0. cov[α,α] represents the covariance of α. The derivations 
of the above equations are based on the assumption that only one random variable was considered. 
However, the present formulation can also be adopted for more than one random variable.   
 Using the perturbation-based stochastic homogenisation method, the coefficient of variance 
(COV) should generally be smaller than approximately 0.15 (Kaminski and Kleiber 2000). This 
result means that the present method is not applicable to problems with great variation in the in-
put variables. Moreover, in the first-order perturbation, the approximation of the variance is largely 
influenced by the value of the stochastic variable. Considering the fluctuations of the microscopic 
properties, approximation using a first-order perturbation can result in accurate results for the 
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Young's modulus variation, but estimations using the Poisson's ratio variation require higher order 
expansions (Sakata et al. 2008). Furthermore, higher order approximation does not always improve  

 
Figure 2   (a) Periodic microstructure. (b) Unit cell Y with a hexagonal honeycomb structure and a thickness of 1.8 mm. (dimensions in 

mm). 
 
the accuracy of the stochastic estimation especially for Young’s moduli that exhibit variations (Sa-
kata et al. 2008). Therefore, in this paper, to evaluate the influence of the uncertainties in cellular 
media microstructure on the dispersion of homogenised properties, we employed a first-order, per-
turbation-based stochastic homogenisation method. 
 
3 GENERALISED RANDOMNESS PROBLEMS IN CELLULAR SOLID MICROSTRUC-

TURES 

There are two main uncertainty factors that have a major influence on the stochastically homogeni-
sed properties of cellular materials, as described by eq. (2). In this paper, we evaluate randomness 
problems in microstructures that are caused by the uncertainty regarding the mechanical properties 
of the constituent and the geometrical information. For the first problem, the uncertainties that 
arise due to microscopic properties were applied to adhesive honeycomb-structured material. Then, 
in the next problem, the fluctuation in microscopic properties was combined with uncertainty in the 
geometry due to variation in the periodicity in a corrugated-core plate sandwich. We used a voxel 
element type to discretise the finite element model in all analyses.  
 
3.1  Fluctuation of the microscopic properties in adhesive materials 

Defects within the adhesive materials due to fabrication inaccuracies (i.e., a poor heat treatment 
process and inclusions of foreign bodies) and degradation or environmental effects (voids, porosities 
or cracks) normally affect the mechanical properties of bulk adhesive. Consider the periodic micros-
tructure of a stacked-plate aluminium honeycomb, as shown in Fig. 2. The variation in the micros-
copic properties was assumed to originate in the adhesive joint. The constituent materials of the 
aluminium and adhesive were applied as an isotropic material. The fluctuation was defined as only 
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existing in the Young's modulus, whilst the Poisson's ratio is deterministic. Therefore, the stochas-
tic response of the Young's modulus E  in the adhesive is written as follows: 
 
 ( )α+= 10EE  (7)  

 
Figure 3   (a) Periodicity setup for the misaligned microstructure. (b) Probability of a misalignment d. (c) Three-dimensional model of the 

unit cell with a corrugated-core. (dimensions in mm). 
 
where E0 is the deterministic Young's modulus of the adhesive. The mechanical properties of the 
adhesive and aluminium are taken as follows: Eadh=2.2 GPa with standard deviation 0.033 GPa, 
νadh=0.35, Ealu=70 GPa and νalu=0.3 (the Young's modulus and the Poisson's ratio, respectively). 
 
3.2  Misalignment of the corrugated-core sandwich plate microstructure 

Generally, corrugated-core sandwich plates are fabricated in a randomly aligned position rather 
than in a perfectly aligned position, as shown in Fig. 1. The red dotted box indicates the unit cell 
Y. Therefore, when analysing the randomness behaviour in the microstructure, such laminate mi-
salignment should be considered. Accordingly, in this problem, the fluctuation in microscopic pro-
perties was combined with a random variation in the misaligned microstructure to obtain an expec-
tation and a dispersion of the homogenised properties in the corrugated-core sandwich plate.  
  Figure 3(a) illustrates the misaligned position of the corrugated-core unit cell. This process was 
repeated for N layers in axis-2. Each unit cell with width w has a misalignment l distance in axis-1. 
Considering the whole substructures, the Y-periodic boundary condition holds in line AB and EF, 
BC and DE and AD and CF. Then, this periodicity was extended to three dimensions along the 
axis-3 direction.  Let d=l/w be the misalignment ratio for this problem. Although d should be ran-
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domly misaligned, we assumed that d was determined by the probability function f(d), as shown in 
Fig. 3(b). In this function, the probability of d decreased when d increased, and f(d) = 0 at d=0.5. 
The total probability Pr is the integration of f(d) with respect to d, where it is equal to 1. We take 
di as discrete variables; then, the stochastically homogenised property corresponding to each d is 
written as DH

i. Therefore, by considering the probability of d (denoted as Prd), the effective sto-
chastically homogenised property DH(eff.) is computed as follows. 
 

 
( ) ( ) ( ) H

i
H
i

eff.H DDD
i

n

i
di

d
i Prdddf

i

∑∫ ≈=  (8)  

  
The 3D unit cell was divided into eight node-voxel elements, as shown in Fig. 3(c). A base metal 
with a corrugated core microstructure was assumed to be an isotropic material with a random va-
riation in the Young's modulus; this is the same formulation described in problem 3.1. To simplify 
the problem, the Poisson’s ratio was set as deterministic. The microscopic material constants used 
were E=130 GPa with a standard deviation of 1.95 GPa and ν = 0.3. 
 
4 COMPUTATIONAL IMPLEMENTATION 

Based on deterministic homogenisation theory, the geometrical information X in eq. (2) is replaced 
by the characteristic displacement χ and is written as   
 

 ( )( ) ∫ ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂−==

Y

H dY
y

ID
Y

D,A,V,MFD χχ 1  (9)  

 
where |Y| is the volume of the unit cell Y. Then, this equation is discretised using finite element 
methods as 
 

 ∫ ∫−=
Y Y

y
H dYDB

Y
dYD

Y
D χ11  (10)  

 
where χ is the solution of the microscopic equation and is written in the following linear algebraic 
form. 
 

 ( ) dYDBdYDBB
FK

Y

klkl

Y

T

klkl

∫∫ =
=

χ
χ

 (11)  

 
Because the random fluctuations arise in the microscopic property D, the stiffness matrix K and 

vector Fkl are approximated using a first-order perturbation. 
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When the random quantities are inserted into K and Fkl in eq. (11), the linear algebraic equa-

tion should be rewritten. Therefore, χ is also expressed in an approximate form. 
 

 ( ) ( )αχχχ 10 klklkl +≈  (14)  

 
By equating the order of α, the solution of the zeroth and first orders of χ is calculated as 
 

 ( ) [ ] ( )0100 klkl FK −=χ  (15)  
 
and 
 

 ( ) [ ] ( ) ( ){ }011101 klklkl χKFK −= −χ  (16)  
 

Finally, the zeroth and first orders of the stochastic variation of the homogenised properties can 
be calculated by equating the order of α, as written in eq. (17) and (18), respectively.  

 

 
( ) ∫ ∫−=

Y Y
y dYχBD

Y
dYD

Y
0000 11HD

 
 

(17)  
 

 ( ) ( )∫ ∫ +−=
Y Y
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Table 1   The expected value and the variance of the stochastically homogenised property of the honeycomb structure. 
 

 
 

Each order of DH is applied to eq. (5) and (6) to obtain the expected value and the variance of 
the homogenised property. 
 
5 RESULTS AND DISCUSSION 

5.1  Influence of the microscopic property variation 

Table 1 shows the results of the expectation and the variance of the homogenised properties of the 
hexagonal honeycomb structure considering the fluctuation of the Young’s modulus in the adhesive 
material. The greatest expected value was found at DH

3333. DH
1111 has the greatest variance. In a 

first-order perturbation approach, the results are influenced by the stochastic variable α. Next, to 
evaluate the influence of α on the stochastically homogenised properties, we tested the model with -
0.25≤ α ≤  0.25. The relationship of the six diagonal components of the stochastically homogenised 
property matrix and the stochastic variable α is shown in Fig. 4. Figure 4 confirmed that the rela-
tionship between homogenised properties and α in case of microscopic property variation is linear. 
This result suggests that the first-order perturbation method gives an accurate estimation in the 
case that the homogenised property is a linear function of the stochastic variable.  
 Because we used a first-order perturbation, the expected value obtained is equal to the determi-
nistic value of the homogenised property. However, the capability of illustrating the dispersion of 
the macroscopic property is an advantage of this algorithm. Using a higher order expansion may 
improve the accuracy of the results for multi-phase materials. However, for porous or cellular mate-
rials, the first-order approximation is sufficient for the problem of Young's modulus fluctuation 
because the higher order of the derivative will result in a microscopic property matrix that equals 
zero. Even Sakata et al.(2008) demonstrated the accuracy of the first-order expansion of stochastic 
estimation by comparing this estimation with the Monte-Carlo simulation result for a fibre-
reinforced composite and by considering the Young's modulus variation in the fibre or matrix. From 
these results, it appears fair to claim that the present method is capable of characterising the ran-
dom variations at a microscopic level without having to use the computationally costly Monte-Carlo 
simulation.  
 

Expected value (GPa)

DH
1111 DH

1122 DH
1133 DH

2222 DH
2233 DH

3333 DH
2323 DH

3131 DH
1212

1.5426 1.0832 0.7976 15.0524 4.8497 19.8111 5.8703 1.0012 0.1297

Variance (×10-4 GPa2)

DH
1111 DH

1122 DH
1133 DH

2222 DH
2233 DH

3333 DH
2323 DH

3131 DH
1212

0.9911 0.2134 0.1972 0.5132 0.1298 0.1158 0.0012 0.2218 0.0012
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Figure 4   Relationship between the six diagonal components of the stochastically homogenised property matrix and the stochastic variable 

α for the hexagonal honeycomb structure. 
 
5.2  Effect of variation in the microstructure periodicity 

Figure 5(a-c) shows the effect of the misaligned corrugated-core microstructure along axis-2 on the 
stochastically homogenised Young's moduli. In this figure, the red line indicates the expected value, 
whilst the blue dotted line represents the standard deviation. The misaligned position reduced the 
homogenised property of DH

1111, DH
2222 and DH

3333 at d=0.1. However, the increase of d from 0.2 
to 0.4 increased the stiffness of DH

2222 to a value greater than that without misalignment when d 
reaches 0.3. In other words, these results suggest that the appropriate misalignment in the corruga-
ted-core microstructure has strengthened the homogenised property in axis-2. However, the homo-
genised properties in DH

1111 and DH
3333 were not sensitive to the increase in d.  

 Moreover, the influence of misaligned microstructure on DH
1122, DH

1133 and DH
2233 is shown in 

Fig. 6(a-c). The figure implies a pattern similar to Fig. 7, in which DH
1122 and DH

1133 were almost 
not affected over the increment of d, but DH

2233 increased when d increased. In the same manner, 
Fig. 7(a-c) shows the effects on DH

2323, DH
3131 and DH

1212. Although DH
2323 shows the same 

trend as DH
2222 with respect to the d increment, the increasing rate was less than that of the latter. 

Whilst DH
3131 and DH

1212 appeared almost constant, they were subjected to misalignment d.          
 Next, to investigate the effect of misalignment as a probability function, we calculated the rela-
tive error between the results of d=0 and with probability of d in the expected value and the stan-
dard deviation of the homogenised property. Table 2 displays the results of the relative error for the 
expected value and the standard deviation. The positive value of the percentage implies that the 
homogenised property was reduced due to misalignment behaviour in the microstructure. The ex-
pected value and variance of DH

1122 show the greatest difference compared with other components 
of the stochastically homogenised property matrix. Obviously, the significant effect of the misalign-
ment appeared in the stochastically homogenised property related to axis-2. It also appears that the  
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Figure 5   Influence of misalignment d on the stochastically homogenised property of (a) DH

1111, (b) DH
2222 and (c) DH

3333. 
 

stochastically homogenised property in axis-3 has less influence than the property in axis-1. There-
fore, by considering the probability of d, the misaligned corrugated-core microstructure reduced the 
expected value and the variance of homogenised properties.  
 The homogenised properties without the misalignment behaviour means the variation is only due 
to random microscopic properties. In order to investigate the influence of random geometry due to 
misalignment and of random Young’s modulus in the homogenised properties, the COV for both 
conditions was evaluated. It was found that the COV for misalignment variation (0.0154) is slightly 
higher than that for Young’s modulus variation (0.0150). Hence, it proves that the random geome-
try have much larger influence than the random microscopic properties to the homogenised proper-
ties.  
 
6 CONCLUSIONS 

To investigate the influence of random variation in the microstructure of a cellular medium, we 
employed a stochastic multi-scale algorithm using a first-order perturbation that could predict the  



766      K. S. Basaruddin et al. / Stochastic multi-scale analysis of homogenised properties considering uncertainties in cellular solid microstructures 

Latin American Journal of Solids and Structures 11 (2014) 755-769 
 

 
Figure 6   Influence of misalignment d on the stochastically homogenised property of (a) DH

1122, (b) DH
1133 and (c) DH

2233. 
 

dispersion of the macroscopic homogenised property. The numerical method was derived based on 
homogenisation theory and the stochastic finite element method.  
 Two stochastic problems have been analysed with respect to two major uncertainty factors, 
which are the microscopic properties and the geometrical information. The fluctuation of the 
Young's modulus of the adhesive was found to affect the dispersion of the homogenised property of 
an aluminium-adhesive honeycomb structure, which depends on the existence of the adhesive and 
its geometry. Next, the uncertainty that arises in the microscopic properties was combined with the  
varying periodicity of the unit cell in a corrugated-core sandwich plate. The misaligned position in 
the microstructure was found to have a significant influence on the homogenised property related to 
axis-2 (misaligned direction). This result suggests that an appropriate misalignment in the micros-
tructure could strengthen the macroscopic homogenised property and the influence of random mi-
salignment to the homogenised properties is much larger than that of random Young’s modulus.  
 Therefore, the results demonstrate the importance of this stochastic multi-scale analysis for the 
design and fabrication of cellular solids whilst considering microscopic random variations. In this 
study, more emphasis was put on the uncertainty of the microscopic properties and geometrical  
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Figure 7   Influence of misalignment d on the stochastically homogenised property of (a) DH

2323, (b) DH
3131 and (c) DH

1212. 
 

Table 2   Relative errors of the stochastically homogenised property between the corrugated core without misalignment and with a proba-
bility of misalignment. 

 

 
 

  
 

Relative error of the expected value

DH
1111 DH

1122 DH
1133 DH

2222 DH
2233 DH

3333 DH
2323 DH

3131 DH
1212

2.20% 10.54% 3.43% 6.55% 8.65% 2.29% 2.59% 1.57% 5.15%

Relative error of the standard deviation

DH
1111 DH

1122 DH
1133 DH

2222 DH
2233 DH

3333 DH
2323 DH

3131 DH
1212

1.56% 9.62% 2.78% 5.43% 7.67% 1.65% 1.94% 0.93% 4.48%
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information due to the variation in microstructure periodicity. Our future interests involve develo-
ping a stochastic process that considers other uncertainty factors in the geometric variation, such as 
the effects of the unit cell selection and the image-processing technique. 
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