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Abstract 

With the development of science and technology in recent decades, numerous optimization algorithms have 
emerged and been successfully applied in various fields. Particle swarm optimization (PSO) is a well-
established evolutionary algorithm commonly used for optimization tasks. However, similar to other 
evolutionary algorithms, PSO has two main limitations that can hinder its performance. The first limitation is 
premature convergence, which can result in suboptimal solutions. The second limitation is the high 
computational time since PSO employs all particles in the swarm for each iteration. To overcome these 
limitations, in this work, we propose coupling a reduction model technique, specificially, Orthogonal 
Diagonalization (OD) with a hybrid algorithm combining Genetic Algorithm (GA) and PSO, termed HGAPSO-
OD. To evaluate the effectiveness of the proposed approach, a large-scale railway bridge, calibrated based on 
field measurements, is used as a case study. The results demonstrate that HGAPSO-OD not only increases the 
accuracy but also reduces computational time of GA and traditional PSO. 
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1 INTRODUCTION 

Structural Health Monitoring (SHM) is an interdisciplinary field that has gained significant attention in recent years 
due to its inherent potential to safeguard the safety, reliability, and sustainability of civil infrastructure, aerospace 
structures, mechanical systems, and so on (Jahangiri et al., 2016; YiFei et al., 2023). SHM entails the continuous 
monitoring of structures through the synergistic utilization of sensing, data analysis, and decision-making techniques to 
comprehensively assess their condition, proactively detect any damage, and accurately predict their remaining useful 
life. The timely and precise information provided by SHM regarding structural integrity and performance empowers 
proactive maintenance and management strategies, thereby engendering heightened safety measures, diminished 
maintenance costs, and optimized operational efficiency (L. Ho Viet et al, 2022; Nguyen-Ngoc et al., 2023). 

Over the past few decades, SHM has witnessed significant advancements in various aspects, including data 
acquisition, sensor technologies, predictive modeling, and decision-making algorithms (Khatir et al., 2022; Tran-
Ngoc et al., 2023; Việt, Hoàng Việt, H et al.,2023). These advancements have served as a catalyst for the emergence and 
adoption of diverse SHM approaches and methodologies, spanning from conventional methods like visual inspection and 
manual monitoring to cutting-edge techniques that leverage advanced sensors, wireless communication, and machine 
learning algorithms. These advancements have not only widened the scope and applicability of SHM but have also 
presented novel prospects and complexities for researchers and practitioners in the field (Mostafa and Tawfik, 2016; 
Nguyen et al., 2021; Ngoc Long Nguyen et al, 2023; Tran-Ngoc et al., 2020a). 

As a flexible optimization tool that operates autonomously without relying on gradient information and possesses 
ease of use, the metaheuristic algorithm has found diverse applications in various scenarios, as evidenced by extensive 
research efforts in recent years (Gholipour et al., 2013; Shahriari et al., 2016). This has led to the development of multiple 
high-performance algorithms that have been extensively utilized for Structural Health Monitoring (SHM), including PSO 
(Kennedy and Eberhart, 1995), Cuckoo Search (Yang and Deb, 2014), Differential Evolution (DE) (Das and Suganthan, 
2010), Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), Dynamic Invasive Weed Optimization (DIWO) (Kenane et al., 
2021), Enhanced Sine Cosine Algorithm (ESCA) (Chen et al., 2020), Moth Flame Optimization (MFO) (Mirjalili, 2015), Salp 
Swarm Algorithm (SSA) (Mirjalili et al., 2017), and so on. 

Although PSO has been commonly applied for many fields, this algorithm still suffers from notable limitations, as it 
heavily relies on the efficacy of the initial particle populations. Since initial particles generate suboptimal results, it may 
result in the inability to identify the optimal solution, leading to failure in achieving the desired outcome. Another 
constraint of PSO lies in the significant computational time required, as the algorithm utilizes all particles in the swarm 
for each iteration, resulting in high computational cost. 

To deal with the shortcomings and increase the effectiveness of traditional PSO, in this paper, an efficient hybrid 
approach, denoted as GAPSO, which combines GA with mutation and crossover capabilities, along with PSO, is used to 
effectively address optimization challenges. Additionally, we employ OD technique to rearrange the particle positions 
and selectively update only the particles with the most promising solutions for subsequent iterations, resulting in a 
significant reduction in computational cost. HGAPSO-OD exhibits several distinctive features, including the application of 
GAPSO increase the effectivess of PSO, the use of a single guide for updating particle velocities instead of both local best 
and global best, and the updating of only the velocity and position of the best particles in each iteration. 

To evaluate the efficacy of the HGAPSO-OD, a railway bridge exhibiting both single and multiple damages is utilized 
as a case study. Furthermore, careful consideration is given to the impact of various factors, including the effect of noise. 

2 METHODOLOGY 

PSO is highly dependent on the quality of the initial populations, as the positions of the initial particles play a crucial 
role in determining the success of the optimization process. When the initial particle positions are distant from the global 
best solution, it can pose challenges in identifying the most optimal solution. To mitigate this limitation of PSO, a hybrid 
approach has been proposed by integrating PSO with GA (Tran-Ngoc et al., 2020a), where in GA is employed to generate 
improved next generations of particles after each iteration, aiming to enhance the optimization performance. In this 
research paper, OD is also employed to arrange the optimal local positions of particles in the form of a matrix, and only 
those particles that own superior solutions (located on the diagonal line of the OD matrix) are selected for subsequent 
iterations. The population of particles (denoted as “ n  “) is divided into two distinct groups: the active group consists of 
b  elements, and the passive group consists of ( n b− ) elements. This division is based on the optimal solutions of elements 
after each iteration. The active group consists of the particles that yield better solutions, while the passive group includes 
the results of the remaining particles (Tran-Ngoc et al., 2020b). 
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The algorithm employed in this study is based on the premise that only the active group is updated during 
subsequent iterations, while the passive group remains unchanged due to their insignificant contributions to the search 
for the optimal solution. This approach effectively reduces the model's dimensionality and computational time. In each 
iteration, particles from the active group are used to construct a matrix (referred to as “ B  “), followed by the 
determination of an OD matrix (denoted as “ F ”). The objective function (referred to as “ ( )U∅ ”) is then applied to reduce 
the discrepancies between the calculated and actual results. The overall process of searching for the optimal solution 
using the combined approach of OD and GAPSO is outlined as follows: 

Step 1: In the first step, the parameters of particles such as their initial position ( 0U ) and velocity ( 0V ) are given as 

00 0 0
1 2[ , ,..., ];nU u u u=   (1) 

00 0 0
1 2[ , ,..., ];nV v v v=   (2) 

n  indicates the population of particles. 
Step 2: The optimal local solutions within the populations are determined by evaluating the objective function ( )U∅  

and subsequently arranged in ascending order can be presented as 
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yf  and yf  introduce calculated and measured natural frequencies. moden , and y  denote the number of modes, and the 
modal order, respectively. 

Step 3: The best parents are chosen for crossover and mutation processes and used for the next iteration, which 
can be obtained as 

0
_ max[ ]global best UG =   (5) 

Step 4: Repeat the process from step 2 to step 3 until termination criteria is satisfied. 
Step 5: Creating a matrix 1T  that is comprised of the optimal solutions of particles, where each row represents the 

optimal solution of an individual particle, derived from the outcomes obtained in step 4. The matrix 1T  can be written as 

*1 ( )[ ]j
n mT U=   (6) 

m  are the number of uncertain parameters. 
Step 6: A square matrix B  with the size b b×  is developed by using the matrix 1T , can be presented as 

1 21: ; 2 : For q b q b= =  

( )1 1 11, (1, )B q T q=   (7) 

1 1 1( ,1) (1, )B q T q=   (8) 

2 1 1 2 1( , ) ( , )B q q T q q=   (9) 

End  
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1 2 : For q b=  

1 2 1 1( , ) (1, )B q q B q=   (10) 

1 2 1 2 1( , ) ( , )B q q B q q=   (11) 

End  

Step 7: Orthogonal diagonalization matrix F  is given as 

1 * *F M B M−=   (12) 

Matrix M  and matrix F  consist of eigenvectors and the eigenvalues of matrix B , respectively. 
Step 8: The search areas of particles can be written as 

*min ( )[ ]lower n mU U=   (13) 

*max ( )[ ]upper n mU U=   (14) 

Step 9: The velocity and position of particles are updated as 

1( 1)
1 2( ) * ( ) * *( ( ) ( )) * *( ( ) ( ))j jjj j

bestbestV i i rand U i U i rand W iV i Uµ α α++ = + − + −   (15) 

( 1) ( 1)( ) ( ( ) ( ));jj ji U i V iU + += +   (16) 

( 1)( ( ))j
upperIf i UU + >   (17) 

( 1) ( ) *j
lower lowerU i U rand U+ = +   (18) 

( 1)( ( ))j
lowerIf i UU + <   (19) 

( 1) ( ) *j
lower lowerU i U rand U+ = +   (20) 

The variables 1α  and 2α  are indicative of the factors associated with cognition learning and social learning, 
respectively, while the term 'rand' signifies random numbers that fall within the range of 0 to 1. Additionally, the 

parameter µ  denotes the inertia weight, while ( )bestW i  and 
1( )j

bestU i+
 refer to the global best and local best of element i , 

respectively. j  and 1j +  represent the iterations at time j  and 1j + . lowerU , and upperU  are lower and upper bounds of 
search areas of particles. 

Step 10: The local best solution for each element is chosen, and the subsequent global best solution is determined 
based on the evaluation of the objective function ( )U∅ , which can be presented as 

( 1) ( )( ( ) ( )j jI U Uf ∅ ∅+ <   (21) 

1 1( 1) ( 1)( ) ( );  j jj j
best bestUU U U∅ ∅
+ ++ += =   (22) 

1 1( ) ( )  ( ) ( );  j jj j
best bestO w U Uther ise U U∅ ∅
+ += =   (23) 

Step 11. Repeating the process steps 5-10 until termination criteria are satisfied. 
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Step 12: The iteration is completed, and the best solution can be calculated as 

( )( ) min ( )k
best UW∅ ∅=   (24) 

( )k
bestW U=   (25) 

k  indicates thk  iteration; [0, ]tk N∈ ; tN  is the number of iterations. 

3 DESCRIPTIONS OF THE BRIDGE 

The Nam O bridge, located in the central region of Vietnam, serves as a critical link for railway traffic between the 
North and South regions. It has been in operation since 1950 and has been subjected to constant heavy train loads with 
high frequency. Over time, the bridge has experienced degradation due to defects in certain truss members, leading to 
reduced stiffness. Despite these issues, the bridge is still capable of carrying out its intended function under the designed 
loads. The bridge is comprised of four spans, each of which has a nearly equal length of 75m. Truss members are 
connected to each other by truss joints, and these truss joints are linked by bolts. The spans are supported by U-shaped 
abutments and solid piers, which are commonly utilized in railway bridges. Roller and pin bearings are employed to 
provide support for the spans. The main structural elements of the bridge include upper and lower chords, vertical and 
diagonal chords, upper and lower wind bracings, struts, and stringers. Detailed dimensions of these truss members can 
be found in the reference provided by (Tran-Ngoc et al., 2018). The layout of the bridge is illustrated in Figure 1 (Tran-
Ngoc et al., 2018). 

 
Figure 1 Nam O Bridge 

4 FINITE ELEMENT MODEL (FEM) 

To predict structural dynamic behavior, and compare it with that obtained from measurement, a FEM of Nam O 
bridge was built by using the MATLAB (see Figure 2). 
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Figure 2 The FEM of Nam O Bridge. 

The following specifications outline the FEM: 

•  The bridge is represented by 137 nodes and 227 elements, utilizing 9 different section types of truss members 
(Tran-Ngoc et al., 2018). 

•  The key structural components, such as lower chords, upper chords, diagonal chords, vertical chords, struts, lower 
wind bracings, upper wind bracings, and stringers are modeled using three-dimensional (3D) beam elements. These 
elements have six degrees of freedom at each node, encompassing translations in the x , y , and z  directions, as 
well as rotations around the x , y , and z  axes. The element incorporates the principles of Timoshenko beam theory, 
encompassing shear-deformation impacts. It offers choices for both unrestricted and restricted warping 
possibilities. Additionally, the transverse girders of the deck system are modeled using beam elements. 

•  The global coordinate system assigns the X -axis along the bridge's longitudinal direction, the Z -axis perpendicular 
to the river flow direction (transverse direction), and the Y -axis in the vertical direction. The left main truss 
corresponds to the downstream side, while the right main truss corresponds to the upstream side. These trusses 
depict the side view of the bridge. 

• The bearings are modeled using spring elements. 

From FEM, the natural frequency of the first five modes is obtained as shown in Table 1, which is used as objective 
functions to identify structural damage. 

Table 1 The natural frequencies from the FEM. 

Mode order Numerical model (Hz) 

1 1.45 
2 3.10 
3 3.27 
4 4.66 
5 6.55 

5 DAMAGE DETECTIONS 

5.1 Single damage 

Three distinct locations of damage are investigated, specifically damage in proximity to the bearing (referred to as 
damage scenario D1), damage at a quarter length span (referred to as damage scenario D2), and damage near the center 
of the beam (referred to as damage scenario D3). These damage locations are located at elements 1009, 1015, and 1021, 
respectively, and have a damage rate of 50%, as illustrated in Figure 3. Damage is created by reducing the stiffness of the 
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elements. For example, damage rate of 50% means the stiffness of the element has decreased by 50% compared to its 
initial state. Subsequently, a comparative analysis of the accuracy of various algorithms, including GA, PSO, and HGAPSO-
OD, is performed to assess the performance of these algorithms in detecting single damages. In the case of GA, a 
population size of 50 is employed and a real-coded approach is utilized with crossover and mutation operators set at 0.8 
and 0.1, respectively. Regarding PSO and HGAPSO-OD, a population size of 50 is employed along with learning factors 1α  
and 2α  set to 2. For both PSO and HGAPSO-OD, the inertia weight parameter ( µ ) is set at 0.3. The search process is 
considered complete when the number of iterations reaches 200 or when the fitness discrepancy between two 
consecutive iterations is less than 510− . 

 
Figure 3 Single damages – damage scenario D1 to D3. 

 
Figure 4 The accuracy of three used algorithms (D1). 

Table 2 Damage detection using GA, PSO, and HGAPSO-OD for single element damage (Element 1009) – damage scenario D1. 

Elements Real damaged GA PSO HGAPSO-OD 

1000 0.00 0.96 0.00 0.00 
1003 0.00 0.61 0.00 0.00 
1009 0.60 0.83 0.00 0.60 
1012 0.00 0.71 0.00 0.00 
1015 0.00 0.89 0.00 0.00 
1018 0.00 0.84 0.00 0.00 
1021 0.00 0.82 0.00 0.00 
1024 0.00 0.51 0.00 0.00 

Time (second)  93.167 92.078 73.721 
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Figure 5 The accuracy of three used algorithm (D2) 

Table 3 Damage detection using GA, PSO, and HGAPSO-OD for single element damage (Element 1015) – damage scenario D2. 

Elements Real damaged GA PSO HGAPSO-OD 

1000 0.000 0.931 0.002 0.001 
1003 0.000 0.461 0.002 0.019 
1006 0.000 0.914 0.002 0.001 
1009 0.000 0.834 0.002 0.001 
1012 0.000 0.958 0.002 0.001 
1015 0.600 0.956 0.002 0.598 
1018 0.000 0.945 0.002 0.002 
1021 0.000 0.386 0.001 0.001 

Time (second)  96.695 95.864 76.802 

 
Figure 6 The accuracy of three used algorithm (D3) 

Table 4 Damage detection using GA, PSO, and HGAPSO-OD for single element damage (Element 1021) – damage scenario D3. 

Elements Real damaged GA PSO HGAPSO-OD 

1000 0.000 0.977 0.002 0.001 
1003 0.000 0.353 0.002 0.001 
1006 0.000 0.935 0.002 0.001 
1009 0.000 0.739 0.002 0.001 
1012 0.000 0.566 0.002 0.001 
1015 0.000 0.970 0.002 0.001 
1018 0.000 0.761 0.002 0.001 
1021 0.600 0.964 0.002 0.596 

Time (second)  96.317 94.156 94.156 
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Through the analysis of Figure 4 to Figure 6 and Table 2 to Table 4, it becomes evident that the HGAPSO-OD method, as 
proposed, outperforms the GA and PSO methods in terms of accuracy. Specifically, the HGAPSO-OD method demonstrates 
precise prediction of actual damages in three instances, transpiring at elements 1009, 1015, and 1021, with a commendable 
accuracy rate of 60%. Conversely, GA and PSO exhibit erroneous identification of both the positions and severity of damage. 

5.2 Multiple damages 

This research investigates the occurrence of multiple damages by examining three distinct damage locations (referred to as 
damage scenario D4), which are positioned at elements 1009, 1015, and 1021 along the structure. The damage rates at these 
locations are set at 30% for element 1009, 50% for element 1015, and 10% for element 1021, as visually depicted in Figure 7. 

 
Figure 7 Multiple damage – damage scenario D4. 

 
Figure 8 The accuracy of three used algorithms (D4) 

Table 5 Damage detection using GA, PSO, and HGAPSO-OD for multiple damage– damage scenario D4. 

Elements Real damaged GA PSO HGAPSO-OD 

1000 0.000 0.998 0.001 0.001 
1003 0.000 0.952 0.002 0.001 
1006 0.000 0.998 0.001 0.002 
1009 0.300 0.361 0.197 0.299 
1012 0.000 0.994 0.001 0.001 
1015 0.500 0.378 0.523 0.499 
1018 0.000 0.992 0.002 0.002 
1021 0.100 0.083 0.099 0.100 

Time (second)  217.139 210.586 170.312 
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The graphical representation presented in Figure 8 elucidates that the convergence efficacy of the HGAPSO-OD 
method transcends that of the GA and PSO techniques. Furthermore, the findings from Table 5 provide compelling 
evidence that the HGAPSO-OD method exhibits a remarkable ability to precisely ascertain the locations and magnitudes 
of damages in the examined elements, in contrast to the struggles encountered by GA and PSO in achieving comparable 
accuracy in determining these critical parameters. Moreover, the utilization of the HGAPSO-OD approach consistently 
results in reduced computational time in comparison to both GA and PSO methods across all scenarios. 

5.3 Damage detection with noise 

To evaluate the influence of noise on the efficacy of the proposed method, white gaussian noise is utilized applying 
varying noise levels, specifically 5%, 10%, and 15%. White gaussian noise calculated by using awgn function in MATLAB 
can be presented as 

( ) ,y y
nf awgn f snr=  (26) 

n
yf  and yf  indicate new and old input data; snr  is signal-to-noise ratio. 

• Single damage 

Table 6 Single Damage Scenario (SDS) with noise 5%, 10%, and 15% 

Elements Real damage 
Damage with noise 

5% 10% 15% 

1000 0.000 0.001 0.001 0.001 
1003 0.000 0.001 0.001 0.001 
1006 0.000 0.001 0.001 0.002 
1009 0.200 0.191 0.193 0.188 
1012 0.000 0.003 0.001 0.001 
1015 0.000 0.001 0.001 0.001 
1018 0.000 0.001 0.001 0.004 
1021 0.000 0.001 0.001 0.001 

 
Figure 9. Single Damage Scenario (SDS) using HGAPSO-OD with noise 5%, 10%, and 15% 

• •Multiple damage 
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Table 7 Multiple damage scenario (SDS) with noise 5%, 10%, and 15% 

Elements Real damaged 
Damage with noise 

5% 10% 15% 

1000 0.000 0.001 0.025 0.002 
1003 0.000 0.003 0.006 0.082 
1006 0.000 0.003 0.001 0.002 
1009 0.300 0.300 0.301 0.300 
1012 0.000 0.001 0.039 0.051 
1015 0.500 0.498 0.451 0.477 
1018 0.000 0.001 0.103 0.001 
1021 0.200 0.198 0.162 0.181 

 
Figure 10 Mutiple Damage Scenario (SDS) using HGAPSO-OD with noise 5%, 10%, and 15% 

Based on the findings derived from Figure 9, Figure 10, Table 6, and Table 7, it is evident that the accuracy of the 
obtained results diminishes with higher levels of noise. Nevertheless, the HGAPSO-OD algorithm, as proposed, 
demonstrates its proficiency in accurately identifying the positions and severity of damages in the elements under 
consideration, even in scenarios where noise levels range from 5% to 15%, regardless of whether damages occur at 1 or 
2 elements. 

6. CONCLUSION 

In conclusion, this paper presents an effective approach for damage detection that incorporates reduction models 
and optimization algorithms. The study systematically evaluates the performance of GA, PSO, and HGAPSO-OD in 
detecting damages in diverse scenarios. The proposed approach leverages reduction models to mitigate computational 
costs while maintaining accuracy and optimizes the damage detection process using the aforementioned algorithms. 

The research findings demonstrate that the proposed approach achieves accurate detection of damages in various 
scenarios, including single damage locations and multiple damage cases. The comparative analysis of accuracy among 
the algorithms reveals that HGAPSO-OD outperforms GA and PSO in terms of detection accuracy. Additionally, the 
utilization of reduction models effectively reduces computational costs, enhancing the efficiency and practicality of the 
approach for real-world applications. 

In order to evaluate the influence of noise on measurement outcomes, varying levels of noise (5%, 10%, and 15%) 
were applied within the framework of the HGAPSO-OD method. The results divulge that, despite the presence of such 
noise levels, the HGAPSO-OD method adeptly identifies the precise location and extent of structural damage. 

The contributions of this research to the field of structural health monitoring are significant, as it presents an 
effective approach that integrates reduction models and optimization algorithms for damage detection. The proposed 
approach has the potential for practical implementation in SHM of civil infrastructure, aerospace, and mechanical 
systems, facilitating timely detection and mitigation of damages. However, it can be seen that the approach still has 
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limitations, such as low accuracy and the proposed method only being applied to simple structural numerical models. 
Future research should apply the proposed method to detect damage in more realistic and complex structures. 
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