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This study examines the effect of electric and magnetic field on

torsional waves in hetrogeneous viscoelastic cylindrically aeolo- | Principal. DIPS Polytechnic College,
tropic tube subjected to initial compression stresses. A new equa- | India rkakar 163Qrediffmail.com

tion of motion and phase velocity of torsional waves propagating
in cylindrically aeolotropic tube subjected to initial compression
stresses, nonhomogeneity, electric and magnetic field have been
derived. The study reveals that the initial stresses, nonhomogenei-
ty, electric and magnetic field present in the aeolotropic tube of
viscoelastic solid have a notable effect on the propagation of tor-
sional waves. The results have been discussed graphically. This
investigation is very significant for potential application in various
fields of science such as detection of mechanical explosions in the
interior of the earth.
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1 INTRODUCTION

The mutual interactions between an externally applied magnetic field and the elastic deformation
in the solid body, give rise to the coupled field of magneto-elasticity. Since electric currents also
give rise to magnetic field and vice-versa, the combined effect is also sometimes known as magne-
to-electro-elasticity. It is evident that since many component fields are interacting, a large num-
ber of unknowns are involved and the solution of even the most elementary problems becomes
difficult and cumbersome. We therefore almost always have to take certain assumptions to solve
the problems. The interaction of elastic and electromagnetic fields has numerous applications in
various field of science such as detection of mechanical explosions in the interior of the earth. In
spite of the fact that Maxwell equations governing electro-magnetic field have been known for
long time, the interest in the coupled field is helpful in the field such as geophysics, optics, acous-
tics, damping of acoustic waves in magnetic fields, geomagnetics and oil prospecting etc.

Much literature is available on torsional surface wave propagation in homogeneous elastic and
viscoelastic media. Pal (2000) presented a note on torsional body forces in a viscoelastic half
space. Dey et al. (1996, 2000, 2002, 2003) investigated the effect of torsional surface waves in non-
homogeneous anisotropic medium, torsional surface waves in an elastic layer with void pores,
torsional surface waves in an elastic layer with void pores over an elastic half space with void
pores and effect of gravity and initial stress on torsional surface waves in dry sandy medium. Ka-
liski (1959) purposed dynamic equations of motion coupled with the field of temperatures and
resolving functions for elastic and inelastic bodies in a magnetic field, Narain (1978) discussed
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magneto-elastic torsional waves in a bar under initial stress, White (1981) studied cylindrical
waves in transversely isotropic media. Das et al. (1978) investigated axisymmetric vibrations of
orthotropic shells in a magnetic field. The contribution of various researchers on torsional wave
propagation such as Suhubi (1965), Abd-alla (1994), Datta (1985) and Selim (2007) cannot be
ignored. Kakar and Kakar (2012) discussed torsional waves in fiber reinforced medium subjected
to magnetic field. Kakar and Gupta (2013) presented a note on torsional surface waves in a non-
homogeneous isotropic layer over viscoelastic half-space. Tang et al. (2010) discussed transient
torsional vibration responses of finite, semi-infinite and infinite hollow cylinders. Kakar and Ku-
mar (2013) investigated surface waves in electro-magneto-thermo two layer heterogeneous viscoe-
lastic medium involving time rate of change of strain and recently, Kakar (2013) presented a note
on interfacial waves in non-homogeneous electro-magneto-thermoelastic orthotropic granular half
space.

In this study an attempt has been made to investigate the torsional wave propagation in non-
homogeneous viscoelastic cylindrically aeolotropic material permeated by an electro-magneto field.
The graphs have been plotted showing the effect of variation of elastic constants and the presence
of electro-magneto field. It is observed that the torsional elastic waves in a viscoelastic solid body
propagating under the influence of a superimposed electro-magneto field can be different signifi-
cantly from that of those propagating in the absence of an electro-magneto field.

2 BASIC EQUATIONS

The problem is dealing with electro-magnetoelasticity. Therefore the basic equations will be elec-
tromagnetism and elasticity. The Maxwell equations of the electromagnetic field in a region with
no charges (p = 0) and no currents (J = 0), such as in a vacuum, are (Thidé, 1997)

V-E=0, (1a)

V-B=0 (1b)

- OB (1c)
Vsz—a—B ,

ot

I (1)
VxB= ue,—.
Ho ot

where, E B, 1, and g are electric field, magnetic field induction, permeability and permittivity of
the vacuum. For vacuum, ,uO:47Z><1O_7 and 80:8.85><10_121n SI units. These equations lead

directly to E and B satisfying the wave equation for which the solutions are linear combinations

1 - —
of plane waves traveling at the speed of light, C = . In addition, E and B are mutually
\ Hoéo
perpendicular to each other to the direction of wave propagation.
Also, the term Ohm's law is used to refer to various generalizations. The simplest example of this

is:
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J =0oE, (2a)

where, J is the current density at a given location in a resistive material E is the electric field at
that location, and o is a material dependent parameter called the conductivity. If an external

magnetic field induction B is present and the conductor is not at rest but moving at velocityV ,
then an extra term must be added to account for the current induced by the Lorentz force on the
charge carriers (Thidé, 1997).

_ . . — 2b
J:O'(E+V><B):O'(E+%><B). (20)

The electromagnetic wave equation is a second-order partial differential equation that describes
the propagation of electromagnetic waves through a vacuum. The homogeneous form of the equa-

tion, written in terms of either the electric field E or the magnetic field inductionE, takes the
form: (Thidé, 1997)

2 \ 82 —

\ ~H% 7 E =0, (3a)
SN L B

Vit —7 [B = 0. (3b)

where,

,_ 00 10 108

ol ror r?oo?

The dynamical equations of motion in cylindrical coordinate (I‘, 0, Z) are (Love, 1944)

8s”+l83r9+asn+l(s s )eT. = o’u )
or ‘roo  er ror et IRTP e (4a)
os,, 10s, 0s, 2s, o’v
r +— + z + r +T = o 4
o roeo o r P (40)
o*w (4c)

asrz 1 aSHz aSzz Srz
+— + ++T, =p—-.
or r o0 oz r ot

where, S, ,S,5,S,,,S,-SpgsSgy+ S, are the respective stress components, Tg,T,, T, are the respective

body forces and U,V,W are the respective displacement components.
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The stress-strain relations are

Srr = 51(?Lerr + 5102e99 + §lo3ezz 4 (5&)
Seo = 5201err + 5202e99 + 5203622 ' (5b)
Szz = 53?1err + 53029% + 5??3ezz’ (5C>
Srz = é‘A?4erz’ (Sd)
Sor = 5:5%21 (5e)
Srp = 5<gsera- (51)
where, &, = elastic constants (ij = 1, 2......6).
The elastic constants of viscoelastic medium are (Christensen, 1971)
0 o ..
8 =6, +6 —+6 —5 (ij=1,2...6).
where, 5,j and é‘,i/ are the first and second order derivatives of &;.
The strain components are
o lau
m 2 or ! (7&)
1(1ov u (7b)
=T\ -2, )
2\rof r
1ow (7c)
ezz =5
2 01
1(low ov (7d)
€. =S| -2 T |
2\ror oz
1(ow ou (Te)
erz =—l =t |
2\ or oz
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. _Low (1
“ 2
The rotational components are
1(1ow ov
Q =—|—-——-——1,
f 2(rae azj (8a)
1({1ou ow
Q == -——-——1,
0 Z(raz ar] (8b)
1(0o(rv) ou
Q =—| ————1|.
: r( or aej (8¢)

Equations governing the propagation of small elastic disturbances in a perfectly conducting visco-

elastic solid having electromagnetic force (jxﬁ) (the Lorentz force, J is the current density

and B being magnetic induction vector) as the only body force are (using Eq. (4))

os, 1os, os, 1 o= o’u
r + = r + rz +—(S..—S + .JXB = o
o ros e Ty G (3B = .
0s, 10s, 0s, 25, (= = o°v
r + — + z + r + \J B = o
A I Sl e o
os, 1os,, os, S, (= = o*w
rz += 4 + 24 +£—|— JXB = .
o ro0 a r (7<B), =7 o’ 0

Let us assume the components of magnetic field intensity H are H, =H, =0and H, =H con-

stant. Therefore, the value of magnetic field intensity is (Thidé, 1997).

ﬁ(0,0,H)=ﬁ0 +ﬁi (10)

where, Ho is the initial magnetic field intensity along z-axis and Hi is the perturbation in the
magnetic field intensity.

The relation between magnetic field intensity H and magnetic field inductionﬁ is
B =,H (For vacuum, t, =47 107" SI units.) (11)

From Eq. (1), Eq. (2), Eq. (3) and Eq. (10), we get
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Vzﬁ:,uoo{aa—lf+§x(%xﬁj} (12)

The components of Eq. (12) can be written as (Thidé, 1997).

OH, 1
ot = \ Hry (13&)
HoO
oH, 1 _,
=——V'H
ot uo o (13b)
OH, 1
=—V'H. (13¢)
ot u,o

3 FORMULATION OF THE PROBLEM

Let us consider a semi-infinite hollow cylindrical tube of radii o and 3. Let the elastic properties of
the shell are symmetrical about z-axis, and the tube is placed in an axial magnetic field surround-
ed by vacuum. Since, we are investigating the torsional waves in an aeolotropic cylindrical tube
therefore the displacement vector has onlyV component. Hence,

u=0, (14a)
w=0 (14b)
v=v(r,2). (14c)

Therefore, from Eq. (14) and Eq. (7), we get,

e, =6,=¢e,=e, =0, (15a)

1(avj (15b)

= 2\az
42 150
" 2\or r)
From Eq. (14) and Eq. (8), we get,
1(ov
Qr ZE(EJ’ (16&)
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0, =0, (16b)

Q, =@+X. (16¢)
or r

Using Eq. (14), Eq. (15) and Eq. (6), the Eq. (5) becomes

Sy =Sp =S, =5, = 0’ (17&)
0 o°. 1,0v v
S,y = (O + Ot — + 0t —) = (———), 17b
0 2 16v (17¢)
Sy, = (O + Ot — + Otg —5)(—=—).
o2 = (Fs5 + s ot 05 atg)( 5 8!’)
where, 5,1 and 5,;’ are the first and second order derivatives of &;.
For perfectly conducting medium, (i.e. & — o ), it can be seen that Eq. (2) becomes
- 18
Eo —'UOH@,O,O (18)
c ot
Eq. (1) and Eq. (18), the Eq. (13) becomes,
— 19
o= o o )
oz

From the above discussion, the electric and magnetic components in the problem are related as

20
CHHN ool o o (20
c ot 0z

Using Eq. (19) and Eq. (1) to get the components of body force in terms of SI system of units as:

0%V
T=|0uH?>—,0 21
{ M, P } (21)

Eq. (17) and Eq. (20) satisfy the Eq. (4a) and Eq. (4c), therefore, the remaining Eq. (4b) becomes
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0 )0 g 00 1 v v , 0, 0% lov
— (O + O — + O, —— O + 6, + 9, -
8r( i S 8t2)2(8r r) (55 5 O 8’(2)( ) _p@zv
0 o°.1,0v v p o T at? (22)
+— (566 +§6/6 P 5// ) (——F) ( H2 +SeE2 +Ejaz—2

where, p is initial compression stress, y4,and &, are the permeability and permittivity of
the material.

Let
| / [l 11 /11 m ‘
C,=d,r'.Ci =5r',Cll =5/ and p = pyr (23)

Il . . ..
where 5” , 5” ,5 and p, are constants, I is the radius vector and I,m are non-homogeneities.

From Eq. (23), we get Eq. (17) as

0 0? oV
Oy + O — + Oug — ), 24
= (% ° ot ® ot? ) 2(6r r) (242)
0 &% ;1 ov v
Oy + O — + Oug Z(—=-2), 24
= (% ® ot ® ot? ) 2(6r r) (24b)

Using Eq. (23), the Eq. (22) becomes

9 S+l L st

0? N v vol 2 ) sl 0?
or ot ot?

1lov

—=_Z o o (i
) ( r) (55 at 555t2) ( Zar) _prma_zv (25)
2 d o2 6v v p)o*v ST at?
Gt O O S G ( g )2

where, p is initial compression stress, ,and &, are the permeability and permittivity of the ma-
terial.

4 SOLUTION OF THE PROBLEM
Let V= &(r)e'“”*<Y (Watson, 1944) be the solution of Eq. (25). Hence, Eq. (25) reduces to

e (+Dos (|+1)

2 5
ar2 r or Tz SO+, =0 (26)

where,
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@2 = 2/00;2 — (95 +55:5i§ _55:é§2)§2
1 O + O5el — el

(27a)
©; = I 2y (27b)
(566 +566|é/ _5664/ )
Eq. (26) is in complex form, therefore we generalize its solution for | =0 and | =2
4.1 Solution for 1 =0
For,I =0 the Eq. (26) becomes,
o°¢ 108 ,_, 1
—+——4+(E"-=)¢=0 28
or’ ror ( r2)§ (28)
where,
22 =02+ 03 (29)
The solution of Eq. (28) is
v={PJ,(Gr)+QX,(Gr)}e'c*<V a0)
30

From Eq. (24) and Eq. (30)

50 =00 +Lic -0} Baea,6n - 22,60+ Hex,@n-2xen e

5 BOUNDARY CONDITIONS AND FREQUENCY EQUATION
The boundary conditions that must be satisfied are

Bl. Forr = a, (« is the internal radius of the tube)
Sre + Tr& = 7'-(n9)0
B2. Forr = B3, (B is the external radius of the tube)

Sre + Tr& = T(r&)o
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where 7,,and T(rg), L€ the Maxwell stresses in the body and in the vacuum, respectively. There

will be no impact of these Maxwell stresses. Hence,
Ty =T(rg), =0 (32)

On simplification, Eq. (18) and Eq. (30) gives

Fe ﬂf;H iZ{PJ, (Gr) +QX, (Gr)}e*<" (33)
Let,

E — Tei(g2+{t)
0

Hence, Eq. (3) becomes

2 34
a\f+la\y+72?=0 (34)
or 0
2
2_§ _ 2
where, ¥ = I (35)

The solution of the Eq. (34) becomes

W = RI, (1) + SX, (1)

(36)
where J; and X, are Bessel functions of order zero. R and S are constants.
From Eq. (37) and Eq. (40)
W ={RJ, (1) +SX,(yr)}e' <V (37)
The boundary conditions B1 and B2 with the help of the Eq. (31) and (32) turn into:
P{GaJ,(Ga)-2J,(Ga)}+ QGaX,(Ga) - 2X,(Ga)}=0 (38)
P{G3J,(GB)-2J,(GH)}+AfGSX,(Ga)-2X,(GA)}=0 (39)
Eliminating P and Q from Eq. (38) and Eq. (39)
Gal,(Ga)-2J,(Ga) GaX,(Ga)-2X,(Ga) o (40)

GBI, (GB)-23,(GB) GpX,(Ga)-2X,(GB)|

On solving Eq. (40), we get the obtained frequency equation
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Gady(Ga)-23,(Ga) _ GaXy(Ga)-2X,(Ga) _ 0 (41)
GBI, (GB)-23,(GB) GBX,(GB)-2X,(GB)

On the theory of Bessel functions, if tube under consideration is very thin i.e. f#=a+Aa and

neglecting Aa’®, Act*....... , the frequency equation can be written as (Watson [18])
Ea’ +2-1=0 (42)
where,
. H? E’
2,00(2—(555+545Ié/—55/é§2)g2 +(A€2+6}2+ pjgz (43)
2

—
— —
—

566 + 5é6i§ - 5(;(/34/2

Putting the value of Zin Eq. (42), the frequency ¢ of the wave can be found. Clearly, frequency

¢ is dependent on magnetic field, electric field and initial pressure.

Put | (44)
H2a=>0

The phase velocity & =¢ /'S can be written as

2 2

2 2
2 2
C_lzzq)z(ij +K - I 1l 2 (45)
Co 2na Og + Oggl S — Os &
where,
L2 S slic-al "

KT Gt Ol = 3

c? = s +5é6i§_5éé§2
’ 2p,

The terms H,E and p are negative in Eq. (45) which means that the combine effect of magnetic
field, electric field and initial pressure reduces the phase velocity of torsional wave.

Case 1

Since the pipe under consideration is made of an aeolotropic material, then

5”( - 5”(’ =0 (47)

Latin American Journal of Solids and Structures 11 (2014) 580-597



R. Kakar / Electro-Magneto-Viscoelastic Torsional Waves 591

Hence, from Eq. (42), Eq. (44) and Eq. (47) the frequency equation becomes
O3+ Dy —a=0 (48)

Using Eq. (45) and Eq. (46), the phase velocity is

[ueHZ &, E? J
2 L
S @2( 4 j WO L 2 2 (49)
’ ’ 566 566

1

2 2 2
&]2 [’UQH +geE +pj
or  Ge_J2m O \ 2 2

Co [g]2 566 566
A

(50)

where, ¢; = J,/2p,

The terms H,E and p are negative in Eq. (49) which reduces the phase velocity of torsional

wave. This is in complete agreement with the corresponding classical results given by Chandra-
sekharaiahi (1972).

Case 2

If the pipe under consideration is made of an isotropic material, then

5! :5_;’ =0,6, =0, =1 (51)

ij i

Using Eq. (49) and Eq. (50), the phase velocity is

2 2
ﬂ_‘_geE + p}

2 (
2 2
C;:L q)g(ij +1—
20, 2na X

(52)

This is in complete agreement with the corresponding classical results given by Narain (1978).

5.1 Solution for 1=2
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For,| =2 the Eq. (26) becomes,
0’8 30¢&
_+__
or’ ror

(3-9;)
r.2

+(®F - £=0

1
Putting £ ==N(r) in Eq. (53), one get
r

2 2
0 I:I+l6_N+|:®12_P_2:|N:O
or r or r

where,

P?=3-03

Solution of Eq. (54) will be (Watson, 1944)

N =RJ,(©,r)+SX,(©,r)

Putting the value of £ and N in Eq. (55), we get
P= l{RJP (©,1) + SX, (©,r)}e!¢*<V
r

From the Eq. (24) and Eq. (56)

R

) E{®1r‘] P—1(®1r) o (P + 2)‘]P (®1r)} )
Srp = (05 + 56/6|§ _5(5/t/3§2) e =0
+ E{G)lrx P-1 (®1I’) B (P + 2) XP (®1I‘)}

With the help of Eq. (32), Eq. (56) and boundary conditions B1 and B2, we get

240,03,.,(00)~(P+2)3,(O,0}+ S{0,aX, 1(0,0) - (P+2) X, (B,2)} =0

4O03,,(0,0)- P+ DI, O} AOS X, 1(0.6)~(P+ DX, (0,0} =0
Eliminating R and S from Eq. (58) and Eq. (59)

{0,03,,(0,0)-(P+2)J,(0,a)} {©,aX, ,(0,a)-(P+2)X,(0,ya)} _
{0,83,,(0,8)-(P+2)J,(0,8)} {0,6X,,(0,8)-(P+2)X,(0,8)} -
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On solving Eq. (60), we get
{®1a‘JP—1 (®1a) B (P + Z)JP (@10!)} _ {®1ﬁ‘]1’—1(®1ﬂ) B (P + Z)JP (®1ﬁ)}
{0.0X,,(0,2)-(P+2)X,(0,2)} {0,5X,,(0,8)-(P+2)X,(0,5)} (61)

If v, is the root of the above equation, then

{771pr1 (771) - (P + Z)Jp (771)} _ {771 Fl‘]P—l (771F1) - (P + 2)‘]P (771F1)}
00X (1)~ (P+2)X, (1)} {mF X, 1 (mF) — (P +2)X, (1 F,)} (62)

where, F, = f/a

On the theory of Bessel functions, if tube under consideration is very thin i.e. f=a+Aa and

neglecting Aar®, Ac®...... , the frequency equation can be written as (Watson, 1944)

1

(P+2)2—[2P—1+®i](1>+2)+®fa2 =0 (63)

where,

2 2
(566 + 5é6i§ _5616/34/2) ’ (64a)

2 2
ﬂ_'_é‘eE + pjgz

P2=3®§:P2=3(

@2 = 2/0042 — (95 + égsig _55/é§2)§2
! - .
85 + T3old — Fel”

(64b)

From the Eq. (62), Eq. (63) and Eq. (64), the phase velocity can be written as (same as above
Eq. (45) and Eq. (46))

c

2
2
CO

.2 A i 555 + 55/5i§ B 55/;) ?
=1 + I Il £2 (65)
27 Ogs T 055l — Os S

Case 1
Since the pipe under consideration is made of an aeolotropic material, then

=6 =0 (66)
The frequency equation is given by
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{®3a‘]Pl—1(®30‘) -(P+ 2)‘JP1 (©;a)} B {®3ﬂ‘]P1—l(®3ﬂ) -(P+ 2)‘]P1 (©:8)}

= 67
{®3aXP1—1 (®306) - (P + 2) XPl (®3a)} {®3IBXP1_1 (®3ﬁ) - (P + 2) Xpl (®3ﬂ)} ( )
ns+6n,—-3a=0 (68)
2 2
[ﬂeg + gezE + pjgz 2 2 5 2
P?=3- 01 =28 “%C  , _@ at P =1 (69)

) 3
O Os

Using Eq. (65), Eq. (66), Eq. (67) and Eq. (69), we get (calculations are done in the similar man-
ner as for the Eq. (48) to Eq. (50) for | = Qcase)

2
2:)
S _ ZLZ 2O
Cor [CYJ Fe (70)
A
where, Cor” = 6 1 29,

Case 2
If the pipe under consideration is made of an isotropic material, then

é‘uj = é‘lj/ =0,055 =0 =1 (71)

The frequency equation (calculations are done as for the [=0 case) is

{®4a‘]P2—l(®4a) - (P + Z)Jpz (®4a)} _ {®4:BJP271 (®4IB) - (P + 2)‘]?2 (®4/B)}

{0,aX, ,(0,0)-(P+2)X, ©,0)} {0,5X, ,(0,8)-(P+2)X, (0,5} (72)
where
A A
: 2 T2 TP o7 228"~ e’
P, =3- 4 :

2 ’ 4

Using Eq. (71) and Eq. (72), the phase velocity for this case is (same as above Eq. (45) and Eq.

(46))
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C02 a 2 (73)
)

where, sz =x/2p,

7 NUMERICAL RESULTS

The effect of non-homogeneity, electric field and magnetic field on torsional waves in an aeolo-
tropic material made of viscoelastic solids has been studied. The numerical computation of phase
velocity has been made for homogeneous and non-homogeneous pipe. The graphs are plotted for
the two cases (1=0 and 1=2). Different values of o/A (diameter/wavelength) for homogeneous in
the presence of electro-magneto field and non-homogeneous case in the absence of electro-magneto
field are calculated from Eq. (49) and Eq. (65) with the help of MATLAB. The variations elastic
constants and presence of electro-magneto field in two curves have been obtained by choosing the
following parameters for homogeneous and non-homogeneous aeolotropic pipe (table 1). The
curves obtained in fig. 1 clearly show that the phase velocity for homogeneous as well as non-
homogeneous case decreases inside the aeolotropic tube. The presence of electro-magneto field also
reduces the speed of torsional waves in viscoelastic solids. These curves justify the results ob-
tained in Eq. (50) and Eq. (52) mathematically given by Narain (1978) and Chandrasekharaiahi
(1972).
Table 1: Material parameters

1 @, a E (Volt/m) H (Tesla) P(Pascal) Ous | Oy
Homogeneous Pipe 0 2.33 15 0 0 0 0.9
Inhomogeneous 2 2.33 15 50 0.32x10* 0.1 0.9

Pipe

Table 2: Shows values of G (1 =0) and i(1 = 2) for different values of a/)\ (diameter / wave-

CO CO
length)
o/ A c, c
CO CO
0.2 1.9849 2.5680
0.4 1.1662 1.5243
0.6 0.9393 1.2380
0.8 0.8455 1.1206
1.0 0.7985 1.0619
1.2 0.7717 1.0286
1.4 0.7557 1.0080
1.6 0.7441 0.9944
1.8 0.7365 0.9850
2.0 0.7310 0.9782
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Figure 1: Torsional wave dispersion curves

We see that for homogeneous case when electro-magneto field is present and for non-homogeneous
case when electro-magneto field is not present the variation i.e. shape of the curves is same. For
non-homogeneous case, the elastic constants and the density of the tube are varying as the square
of the radius vector.

6 CONCLUSIONS

The above problem deals with the interaction of elastic and electromagnetic fields in a viscoelastic
media. This study is useful for detections of mechanical explosions inside the earth. In this study
an attempt has been made to investigate the torsional wave propagation in non-homogeneous
viscoelastic cylindrically aeolotropic material permeated by a electric and magnetic field. It has
been observed that the phase velocity decreases as the magnetic field and electric field increases.
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