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Abstract 
The present study develops an innovated shear deformable theory and four finite element formulations 
based on a total potential energy variational principle for the analysis of steel beams strengthened with 
GFRP laminates. The present theory captures orthotropic properties of the GFRP laminae, GFRP lamina 
stacking sequences, partial interaction between the steel beam and the GFRP laminates, and shear 
deformations. Three examples are conducted for the validation of the present theory. Through 
comparisons, the system responses predicted by the present solutions are excellently validated against 
those of recent experimental studies and three-dimensional finite element analyses. Key results obtained 
in the present study include: (i) the responses of GFRP-strengthened beams are strongly influenced by 
GFRP fiber angle arrangements. (ii) The strengthening is the most effective for steel beams strengthened 
with a GFRP laminate stacked with fiber angles of 0 degree. Based on two parametric studies, the effects 
of the orthotropic GFRP lamina properties and GFRP laminate thicknesses on the system deflections are 
also investigated. 
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1 Literature review 

1.1 Introduction 
Single or multiple span steel beams with wide flange cross-sections have been widely installed as main load 

carrying members in bridges, buildings, and other civil structures. However, load capacities of such old beams may be 
decreased because of corrosion and degradation (El Damatty and Abushagur 2003, El Damatty et al. 2003). Also, there 
maybe demands to increase the capacities of such existing beams so that they can carry higher load levels. In such 
cases, a beam strengthening solution may be required. However, traditional strengthening solutions by using bolds or 
welds to tightly attach strengthening plates to the steel surfaces may meet difficulties in installation. Recently, Glass 
Fiber Reinforced Polymer (GFRP) laminates have been widely being studied as an effective strengthening solution for 
steel members (El Damatty and Abushagur 2003, El Damatty et al. 2003, Harries and El-Tawil 2008, Parvathi et al. 
2018). GFRP laminates are light, and they can be easily and fast installed to the steel surfaces by using adhesives. Also, 
they can be economically manufactured into relatively thick plates capable of resisting tensile, compression and shear 
stresses (El Damatty and Abushagur 2003, El Damatty et al. 2003, Correia et al. 2011, Ali et al. 2021). El Damatty et al. 
(2003) conducted an experimental study for wide flange steel beams strengthened with GFRP laminates bonded on to 
the top and bottom beam flanges, the study reported the increases of 23% for the yielding moment and 78% for the 
ultimate capacity of the system. GFRP laminates bonded to the compression flanges of steel beams may also help to 
increase local and global buckling resistances for the systems (El Damatty and Abushagur 2003, El Damatty et al. 2003, 
Correia et al. 2011). Similar effectiveness was also reported in other studies of steel members strengthened with GFRP 
laminates (e.g., Aguilera and Fam 2013, Aydin and Aktas 2015, Raj et al. 2016, Hosseini et al. 2021, Lesani et al. 2022). 

Although there are such potential applications of GFRP laminates for the strengthening of steel beam, the 
mechanical behaviors in the GFRP-strengthened steel beams under transverse loadings are relatively complicative. 
Because GFRP laminates are typical composite materials, in which their stiffnesses are strongly depended on orthotropic 
GFRP laminae and lamina stacking sequences with different fiber orientation angles (Parvathi et al. 2018, Correia et al. 
2011, Lee and Lee 2004). Besides, a GFRP laminate is often bonded to a steel member by using a thin adhesive layer with 
an elasticity modulus considerably lower than those of steel and GFRP materials, this may lead to a partial interaction 
between the steel member and the GFRP laminate (i.e., a plane composite cross-section doesn’t remain plane after 
deformation) (El Damatty et al. 2003). Also, shear deformations in steel beams and GFRP laminates may influence on the 
deformations of such composite systems (Lee and Lee 2004, Phe and Mohareb 2014). As a result, the stresses and 
deformations in the GFRP-strengthened steel beams will be significantly influenced by the above discussed behaviors. 
To accurately capture such stresses and deformations, three-dimensional finite element solutions based on commercial 
finite element analysis packages may be developed. However, such solutions often involve in expensive computation 
costs and consume time for model treatments and result extractions. Therefore, it is necessary to develop simple beam 
solutions those have a low computation cost and a fast-running time, and they can accurately predict the responses of 
the GFRP-strengthened steel beams (as accurately as commercial finite element analyses do). Such simple solutions may 
also facilitate parametric studies to find out reasonable design configurations for the GFRP-strengthened steel beams. 

1.2 Typical theories developed for the stress and deformation predictions of composite structures 
There are numerous theories developed for the analysis of stresses and deformations of general composite 

structures. Lee and Lee (2004) and Back and Will (2008) developed finite element formulations based on Lagrange and 
Hermitian interpolation functions for the analysis of laminated composite beams. Ditaranto (1973) and Nowzartash and 
Mohareb (2005) developed analytical solutions for the static analyses of sandwich beams with a soft core. Koutsawa and 
Daya (2007) developed numerical and analytical solutions for analyses of laminate glass members attached by thin 
adhesive layers. Maddur and Chaturvedi (1999) developed a shear deformation theory for analysis of laminated 
composite open sections. Asta (2001) developed a composite beam theory for the analysis of two-layer composite beams 
with a weak shear connection at the interface. Gara et al. (2006) and Girhammar and Pan (2007) developed analytical 
solutions for the static analyses of two-layer composite beams with partial interactions between layers, in which the 
partial interactions were modeled by springs. Smith and Teng (2001) developed beam theories for the stress analyses of 
reinforced concrete beams strengthened with FRP plates. Ranzi and Zona (2007) developed a steel-concrete composite 
model with partial interactions at the interface. Challamel et al. (2010) and Challamel and Girhammar (2012) developed 
numerical and analytical solutions for the out-of-plane analyses of composite beams with interlayer slips. Recently, 
Sun et al. (2022) presented a numerically stable exact method for the analysis of partial-interaction composite beams 
based on Timoshenko beam theory. Andrade et al (2023) developed a linear 2D model for the analyses of two-layer 
plates with partial shear interaction. Although there have been many theories thus developed for the analyses of 
composite structures, they almost targeted at specified members those are different to composite systems of wide flange 
steel beams bonded with orthotropic GFRP laminates by using adhesive layers. 
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1.3 Typical numerical and analytical studies for the analyses of GFRP-strengthened steel beams 
There have been many experiment studies conducted for strengthening of steel members by using GFRP 

laminates (e.g., El Damatty and Abushagur 2003, El Damatty et al. 2003, Aguilera and Fam 2013, Aydin and Aktas 2015, 
Parvathi et al. 2018, Correia et al. 2011). However, the numerical and analytical studies for such structures have not 
been widely and fully studied. El Damatty and Abushagur (2003) presented an analytical solution to predict the 
responses of the adhesive stresses/strains in GFRP-strengthened steel members. The adhesive layer was considered 
as elastic springs to connect GFRP laminates to steel member. The orthotropic GFRP lamina properties and lamina 
stacking sequences of GFRP laminates were not considered in their study. El Damatty et al. (2003) developed a 
numerical solution based on a commercial finite element program (ANSYS) for the stresses and deformations analyses 
of W150x35 beams strengthened with GFRP plates by bonding. In their model, the adhesive layers were replaced by 
elastic springs with zero thicknesses while the steel beams and GFRP laminates were modeled by brick elements. 
Accord and Earls (2006) conducted a numerical study to investigate the ductility of steel beams strengthened with 
GFRP laminates bonded to the compression beam flanges. The numerical model was developed in a commercial 
software package ADINA, in which the wide flange steel beam was modelled by using 4-node shell elements while the 
adhesive layers and GFRP plates were modelled by using 8-node brick elements. Youssef (2006) developed an 
analytical solution for the prediction of linear and nonlinear behaviors of steel beams strengthened with GFRP 
laminates. However, his solution was only applicable to simply supported beams. Siddique and El Damatty (2012, 
2013) presented numerical studies to evaluate the improvement of buckling capacities of steel beams strengthened 
with GFRP laminates bonded to both top and bottom flanges. The numerical studies were conducted by using a finite 
element model in which the adhesive layer was again modeled as elastic springs with zero thicknesses while the steel 
and GFRP were modeled as 13-node shell elements developed by Koziey and Mirza (1997). Such finite element models 
were then adopted in a numerical study to investigate the factors of overstrength and ductility for moments in steel 
frames strengthened with GFRP laminates. The finite element model treatments based on the above discussed studies 
have some difficulties to apply to predict the responses of GFRP-strengthened steel beams, because they require to 
evaluate equivalent spring stiffnesses those replace the role of the adhesive layers. Also, they did not consider the 
effects of orthotropic GFRP lamina properties and lamina stacking sequences on the GFRP laminate stiffnesses. Phe 
and Mohareb (2014, 2015), Phe et al. (2017, 2018), Phe (2021) developed shear and non-shear deformable theories 
for the static and buckling analyses of steel beams strengthened with isotropic GFRP laminates bonded to the tension 
beam flanges. Zaghian and Mohareb (2019) developed a finite element formulation for the elastic buckling analysis of 
steel plates symmetrically strengthened with GFRP plates, in which GFRP plates were assumed as an isotropic material. 

A general observation from the above discussed studies is that the GFRP laminates in GFRP-strengthened beams 
were treated as isotropic materials. However, they are hardly isotropic, and they are typically pultruded by orthotropic 
laminae stacked with different fiber orientation angles (e.g., 00, 450, or 900). Thus, axial and flexural stiffnesses of the 
GFRP laminates are accordingly influenced (Correia et al. 2011), Parvathi et al. 2018, Ibrahim et al. 2018, Phe 2022) 
and such effects have not been investigated yet. Besides, as GFRP laminates are often bonded to the steel flanges by 
using low modulus adhesive materials, those may create partial interactions between the steel flanges and the GFRP 
laminates. To model such a behavior, past numerical solutions used various spring, shell, and brick elements available 
in commercial finite element analyses packages (e.g., El Damatty et al. 2003, Siddique and El Damatty 2012) or 
simplified closed form solutions and finite element formulations based on beam theories (e.g., Youssef 2006, Phe 
2021, Zaghian and Mohareb 2019). However, such numerical models are inapplicable for the steel beams strengthened 
with orthotropic GFRP laminates under various loading and boundary conditions. Within this context, the present 
study is going to fill in the gap by developing an innovated shear deformable theory and a group of simple finite 
element formulations for the stresses and deformations analyses of single or multiple span steel beams strengthened 
with orthotropic GFRP laminates bonded to the top and/or bottom beam flanges under various loading and boundary 
conditions. The theory captures the orthotropic GFRP lamina properties and GFRP lamina stacking sequences, partial 
interaction between the steel beam and the GFRP laminate, and shear deformations due to transverse bending. 
Among various possible failure modes of GFRP-strengthened steel beams (e.g., moment resistance based on steel 
yielding, that based on steel plastification, deflections, GFRP rupture strength, adhesive shear and peeling failures, 
fatigue, local/global buckling), the present study is applicable to the check of failure modes based on moment 
resistance based on steel yielding, GFRP stress control, deflection, pre-buckling analysis. 

2 Description of the problem 

Single- or multiple-span prismatic steel beams strengthened with orthotropic GFRP laminates are considered. An 
element of the steel beam strengthened with two GFRP laminates bonded to the top and bottom steel flanges by using 
adhesive layers is given in Figure 1a,b. Three other elements of the steel beam, of which the flanges are strengthened 
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with a top GFRP laminate (Figure 1c), a bottom GFRP laminate (Figure 1d), or not strengthened (Figure 1e), are also 
considered. The steel element strengthened with two GFRP laminates is considered as a general case. The steel beam 
has basic cross-section dimensions h , b , ft , and wt  (Figure 1e). The thickness of GFRP laminate 1 is 1gt , while that of the 

adhesive layer 1 is 1at , that of the GFRP laminate 2 is 2gt , and that of the adhesive layer 2 is 2at  (Figure 1c,d). The beam 

is assumed to subject point loads yP  and distributed loads yq . Material definitions of steel, adhesive, and GFRP are given 

in Section 3.4 of the present study. It is required to develop a shear deformable theory and finite element formulations 
for the stress and deformation analyses of the given GFRP-strengthened steel beams. 

 
Figure 1 Statement of the problem: (a) A general element of a steel beam bonded with two GFRP laminates; and the cross-sections 

of four steel beam elements (b) bonded with top and bottom GFRP laminates, (c) bonded with a top GFRP laminate, (d) bonded 
with a bottom GFRP laminate, and (e) not strengthened. 

3 Development of the general finite element formulations 

3.1 Kinematic assumptions and governing displacements 
In order to develop the present theory, the following kinematic assumptions are made: (i) Shear deformations due 

to transverse bending are captured in the steel beam and the GFRP laminates, (ii) Interaction between the steel member 
and the GFRP laminates are partial, in which displacements in the adhesive layer are linearly interpolated from those of 
the steel and the laminates. 

Figure 2 presents a part of plan view of a GFRP-strengthened steel beam before and after deformation. The cross-
section of the strengthened beam is initially plane before deformation, but it doesn’t remain plane after deformation 
due to the weak behavior of the adhesive layers. Five governing displacements ( )1W z , ( )2W z  ( )W z , ( )V z  and ( )x zθ  

are proposed to describe such a deformation, in which ( )1W z  is the longitudinal displacement field of centroid 1gO  of 

the GFRP laminate 1 cross-section, ( )2W z  is that of centroid 2gO  of the GFRP laminate 2 cross-section, ( )W z  is that of 

centroid O  of the non-strengthened steel beam cross-section, ( )V z  is the transverse displacement field and ( )x zθ  is 
the transverse bending angle field of all materials, where ( )x zθ  may be different to ( )V z dz∂ . 

 
Figure 2 Governing displacement fields of the steel beams and GFRP laminates (a part of elevation view) 
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3.2 Develop through-thickness displacements 

Through-thickness displacements in the steel beam: 

To capture partial interactions between materials, a global coordinate system OXYZ  is assigned for the steel section 
while local coordinates s sCs n z  are assigned to the thickness contours of the steel (Figure 3a). In which origins C  lies on 
the contours of the steel section, ss  is the curvilinear contour coordinate measured from Origin O , sn  is the normal-to-
tangent axis of the contour measured from the contour, and z  is the longitudinal axis. The through-thickness 
displacement fields at a Point with coordinates ( ), ,s ss n z  are depicted as su , sv , sw  (Figure 3b). 

 
Figure 3 Definitions of (a) Local coordinate systems and (b) through-thickness displacement fields in the steel cross-section 

Displacement fields , ,s s su v w  can be assumed in terms of the governing displacement fields as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, , sin ,

, , cos ,

, , cos

s s s s

s s s s

s s s s s s x

u s n z s V z

v s n z s V z

w s n z W z n s V z y s z

α

α

α θ

=

= −

′= + −

 (1) 

in which ( )ssα  is an angle between the positive directions of the ss -axis and X -axis (Figure 3a) and it is taken positive 
in the clockwise direction from the X -axis. 

Through-thickness displacements in the GFRP laminates 1 and 2: 

A global coordinate system 1 1g gO XY Z  and a local coordinate 1 1 1g g gC s n z  are assigned for the GFRP laminate 1 cross-
section (Figure 4a). The meaning of the coordinate definitions are similar to those of the steel. The through-thickness 
displacement fields at a Point with coordinates ( )1 1, ,g gs n z  are depicted as 1gu , 1gv , 1gw  (Figure 4b), where 1gu = 0 because 

the present laminate only consider longitudinal-transverse responses. 

 
Figure 4 Definitions of (a) Local coordinate system and (b) through-thickness displacement fields in the GFRP laminate 1 section 

Displacement fields 1 1,g gv w  can be assumed in terms of the governing displacement fields as 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1, , , , ,g g g g g g gv s n z V z w s n z W z n V z′= − = +  (2) 

Similarly, a global coordinate system 2 2g gO XY Z  and a local coordinate 2 2 2g g gC s n z  are assigned for the GFRP laminate 

2 cross-section (Figure 5a). The through-thickness displacement fields at a Point with coordinates ( )2 ,gn z  are depicted 

as 2gv , 2gw  (Figure 5b). 
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Figure 5 Definitions of (a) Local coordinate system and (b) through-thickness displacement fields in the GFRP laminate 2 section 

Displacement fields 2 2,g gv w  can be assumed in terms of the governing displacement fields as 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2, , , , ,g g g g g g gv s n z V z w s n z W z n V z′= − = +  (3) 

Through-thickness displacements in the adhesive layers 1 and 2: 

A local coordinate 1 1 1a a aC s n z  is assigned for the adhesive layer 1 cross-section (Figure 6a). The through-thickness 
displacement fields at a Point with coordinates ( )1,an z  are depicted as 1av , 1aw  (Figure 6b). 

 
Figure 6 Definitions of (a) Local coordinate system and (b) through-thickness displacement fields in the Adhesive layer 1 section 

Displacement fields 1 1,a av w  are linearly interpolated from the displacements at the uppermost steel fiber and those 
at the bottom of the GFRP laminate 1, i.e., 

( )

( )

11 1
1 1 1 1 1

1 1

11 1
1 1 1 1 1

1 1

1 1, , , , , , ,
2 2 2 2

1 1, , , , , ,
2 2 2 2

f ga a
a a a s s g g

a a

f ga a
a a a s s g g

a a

t tn n
v s n z v s z v s z

t t

t tn n
w s n z w s z w s z

t t

      
= − + + −      

      
      

= − + + −      
      

 (4) 

From Eqs. (1), by setting 2s fn t= , and from Eqs. (2), by setting 1 1 2g gn t= − , then substituting the results into Eqs. 
(4), one has 

( ) ( )

( ) ( ) ( )
( )

( ) ( )

1 1 1

1 111 1 1
1 1 1 1

1 1 1 1

, , ,

1 1 1, ,
2 2 4 2 2 2

a a a

f g af ga a b a
a a a x

a a a a

v s n z V z

t t nt tn n h n
w s n z W z W z V z z

t t t t
θ

= −

 +−     
′ = − + + + − + −     

       

 (5) 

Similarly, a local coordinate 2 2 2a a aC s n z  is assigned for the adhesive layer 2 cross-section (Figure 7a). The through-
thickness displacement fields at a Point with coordinates ( )2 ,an z  are depicted as 2av , 2aw  (Figure 7b). 

 
Figure 7 Definitions of (a) Local coordinate system and (b) through-thickness displacement fields in the Adhesive layer 2 section 
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Displacement fields 2 2,a av w  are linearly interpolated from the displacements lowermost steel fiber and those at 
the top of the GFRP laminate 2, i.e., 

( )

( )

22 2
2 2 2 2 2

2 2

22 2
2 2 2 2 2

2 2

1 1, , , , , , ,
2 2 2 2

1 1, , , , , ,
2 2 2 2

f ga a
a a a s s g g

a a

f ga a
a a a s s g g

a a

t tn n
v s n z v s z v s z

t t

t tn n
w s n z w s z w s z

t t

      
= + − + −      

      
      

= + − + −      
      

 (6) 

From Eqs. (1), by setting 2s fn t= − , and from Eqs. (2), by setting 2 2 2g gn t= , then substituting the results into 

Eqs. (6), one has 

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

2 2 2

2 2 22 2 2
2 2 2 2

2 2 2 2

, , ,

1 1 1, ,
2 2 4 2 2 2

a a a

f g f g aa a b a
a a a x

a a a a

v s n z V z

t t t t nn n h n
w s n z W z W z V z z

t t t t
θ

= −

 − +     
′ = + + − − + − +     

       

 (7) 

3.3 Develop strain fields 

The longitudinal normal strains and in-plane shear strains in the steel beam, GFRP laminate 1 and GFRP laminate 2 
are assumed as 

,,i i i
i i sz

i

w u w
z z s

ε γ
∂ ∂ ∂

= = +
∂ ∂ ∂

 (8) 

in which subscript i = s  for steel, i =  1g  for GFRP laminate 1 and i =  2g  for GFRP laminate 2. From Eqs. (1), by 
substituting into Eqs. (8), the strain fields in the steel beam can be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, 1cos , sins s s s x s sz xW z n s V z y s z s V z zε α θ γ α θ′ ′′ ′ ′= + − = −  (9) 

Similarly, from Eqs. (2), by substituting into Eqs. (8), the strain fields in the GFRP laminate 1 are obtained as 

* *
1 1, 1 1, 1,, 0g g zz g g zz g sznε ε κ γ= + =  (10) 

in which 

( ) ( )* *
1, 1 1,,g zz g zzW z V zε κ′ ′′= =  (11) 

Also, from Eqs. (3), by substituting into Eqs. (8), the strain fields in the GFRP laminate 2 are obtained as 

* *
2 2, 2 2, 2,, 0g g zz g g zz g sznε ε κ γ= + =  (12) 

in which 

( ) ( )* *
2, 2 2,,g zz g zzW z V zε κ′ ′′= =  (13) 

The shear strain field in the adhesive layers can be assumed as 

,
i i

i nz
i

v w
z n

γ
∂ ∂

= +
∂ ∂

 (14) 

where subscript i = 1a  is denoted for the adhesive layer 1 while i =  2a  is for the adhesive layer 2. From Eqs. (5), by 
substituting into Eqs. (14), the shear strain field in Adhesive layer 1 can be simplified as 

( ) ( )
( )

( ) ( )1 1
1, 1

1 1 1 1

21 1
2 2

a f g b
a nz x

a a a a

t t t h
W z W z V z z

t t t t
γ θ

+ +
′= − + − −  (15) 
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Similarly, from Eqs. (7), by substituting into Eqs. (14), the shear strain in Adhesive layer 2 is obtained as 

( ) ( )
( )

( ) ( )2 2
2, 2

2 2 2 2

21 1
2 2

a f g b
a nz x

a a a a

t t t h
W z W z V z z

t t t t
γ θ

+ +
′= − − −  (16) 

3.4 Develop stress and shell stress resultant fields 

The steel beam is assumed as a linearly elastic isotropic material with a modulus of elasticity sE  and a Poisson’s 
ratio of µ . The adhesive layers are also assumed as linearly elastic materials with a shear modulus aiG , where i  can be 
1 or 2 that denotes for Adhesive layer 1 or adhesive layer 2, respectively (Figure 1a). The stress fields corresponding to 
the strain fields developed in Eqs. (9), (15), and (16) maybe expressed as 

, , 1, 1 1, 2, 2 2,, , ,s s s s sz s s sz a nz a a nz a nz a a nzE G G Gσ ε τ γ γ γ γ γ= = = =  (17) 

GFRP laminates 1 and 2 are assumed as linearly elastic orthotropic materials and they are symmetrically balanced 
laminates stacked by n  orthotropic laminae, of which the thk  lamina ( 1,2,...,k n= ) has a longitudinal modulus of 
elasticity ,k zE , a lateral modulus of elasticity ,k sE , a shear modulus ,k szG , and Poisson’s ratio , ,k zsv ,k szv  (Appendix 1). 
Constitutive equations of the GFRP laminates 1 and 2 may be expressed as 

( )
* *

,11, ,

* *
,11, ,

, 1, 2
gigi zz gi zz

gigi zz gi zz

N A
i

M D

ε

κ

 = =
=

 (18) 

in which *
,gi zzN , *

,gi zzM , ( 1,2i = ) are shell stress resultants in GFRP laminate i  and they are respectively obtained by 
integrating stresses ,gi zzσ , ,gi gi zzn σ  from 2gi gin t= −  to 2gi gin t= , where ,gi zzσ  is the longitudinal normal stress field in 
the GFRP laminate i , ( 1,2i = ) and gin  is the normal-to-tangent axis of the contour measured from the contour of the 
GFRP laminate i , ( 1,2i = ). Plate stiffnesses ,11 ,11,gi giA D  in Eqs. (18) have been evaluated and presented in Appendix 1. 

3.5 Develop total potential energy 

The total potential energy π  of the system is contributed by the internal strain energy Uπ  and the load potential 
loss Vπ , i.e., 

0U Vπ π π= + =  (19) 

where the internal strain energy U  is contributed by 

( ) ( )
1 2

* * * *
, , 1, 1, 1, 1,0 0 0 0 0 0

* * * *
1, 1, 2 2, 2, 2, 2, 2, 2, 20 0 0 0 0 0

1
2 s s

a a

L L L b L b

U s s s s sz s sz s g zz g zz g zz g zzA A

L L b L b L

a zn a zn a g zz g zz g zz g zz a zn a zn aA A

dA dz dA dz N dxdz M dxdz

dA dz N dxdz M dxdz dA dz

π ε σ γ τ ε κ

γ τ ε κ γ τ

= + + +
+ + + + 

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
 (20) 

From Eqs. (17) and (18), by substituting into Eq. (20), one obtains 

2 2

1 2

2 2 2 2
, 1,11 1, 1,11 1,0 0 0 0

0 0

2 2 2 2
1 1, 1 2,11 2, 2,11 2, 2 2, 20 0 0 0

0 0

1
2 s s

a a

L L
L L b b

U s s s s s sz s g g zz g g zzA A

L L
L b b L

a a zn a g g zz g g zz a a zn aA A

E dA dz G dA dz A dxdz D dxdz

G dA dz A dxdz D dxdz G dA dz

π ε γ ε κ

γ ε κ γ


= + + +



+ + + + 

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
 (21) 

From Eqs. (9), (10)-(13), (15), (16), by substituting into Eq. (21), by performing area integrals, and by arranging terms 
according to governing displacement fields, one obtains 
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( ) ( )

( )
( )

( )
( )

( )

3
2 221 1 2 2

1,11 1 2,11 22 20
1 2

2 2 2 3
21 1 2 2 2

1 1 2 22 2
1 2

1 1

21
2 12

2 2
2 122 2

L fa a a a
U s s s g g

a a

a f g a f g f b w b
s w w a a a a s x

a a

a a
s w w

btG A G AE A W W E D b D b V
t t

t t t t t t bt h t hG h t G A G A V E
t t

G A hG h t

π

θ

   
′ ′′= + + + + +         

 + + + +    ′ ′+ + + + +      

+ +

∫

( ) ( )

( ) ( )

2 22 2
2 22 2 22 2

1,11 1 1 1 1 1 2,11 2 2 2 22 2
1 2 1 2

1 1 2 2 1 1 2 2
1 1 2 22 2 2 2

1 2 1 2

1 1
4 4

2 2
2

b a a b
x g a a g a a

a a a a

a f g a f g a a b a a b
s w w x a a a a x

a a a a

G A h A b W G A W A b W G A W
t t t t

t t t t t t G A h G A hG h t V G A G A WV W
t t t t

θ

θ θ

     
′ ′+ + + + +     

     
 + + + +  

′ ′ − + − + −     

( ) ( ) ( )

( )

2
1 1 2 2 1 11 1

1 1 2 2 1 1 1 12 2
1 2 1 1 1

2
2 2

1 1 1 2 2 2 2 2 2 2 2
1 1 2 2 2

2 2 212 2
2 2 2

21 1 1 12 2 2 2
2 2

a f g b a f g b a f ga a
a a a a x a a

a a a a a

a f gb
a a x a a a a a a

a a a a a a

t t t h t t t h t t tG AG A G A V G A WW WV
t t t t t

t t thG A W G A WW G A W V G A
t t t t t t

θ

θ

 + + + + + + 
′ ′ + + − −     

+ + 
′− − + + 

 
2

2 22
b

x
a

h W dz
t

θ




 (22) 

The load potential energy of the element may be contributed by end forces and distributed loads as follows 

1 2V V Vπ π π= +  (23) 

where 1Vπ  is the load potential energy caused by end (internal) forces associated with the governing displacements at 
two member ends and it can be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 2

1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0V z z z y xv x x

z z z y xv x x

N W N W N W Q V M V M

N L W L N L W L N L W L Q L V L M L V L M L L

θ

θ

π θ

θ

′= − + + + + +

′ − − − − − − 

 (24) 

while the load potential energy caused by a distributed load ( )yq z : 

( ) ( )2 0

L

V yq z V z dzπ = −∫  (25) 

3.6 Develop a finite element formulation 

Nodal displacement vector: 

The nodal displacement vector of the present element formulation, denoted as { }12 1×Δ , is assumed as 

{ } (0) (0) (0) (0) (0) (0) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 21 12

T L L L L L L
x xW W W V V W W W V Vθ θ

×
′ ′=Δ  (26) 

in which, symbols (0)  and ( )L  denote for the coordinates at 0Z =  and Z L= , respectively, of the present finite element. 
The nodal displacements in Eq. (26) are defined in Figure 8. 

 
Figure 8 Nodal displacement vector of the present finite element 
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Interpolated governing displacement fields: 

The governing displacement fields at a coordinate Z  in the element ( 0 Z L≤ ≤ ) are assumed to be interpolated from 
the nodal displacement vector as follows. 

( ) { } ( ) { } ( ) { }
( ) { } ( ) { }

1 1 2 212 1 12 1 12 11 12 1 12 1 12

12 1 12 11 12 1 12

, , ,

,

T T T
w w w

T T
v x x

W z W z W z

V z z θθ
× × ×× × ×

× ×× ×

= = =

= =

Z Δ Z Δ Z Δ

Z Δ Z Δ
 (27) 

where vectors 1 21 12 1 12 1 12 1 12 1 12
, , , ,T T T T T

w w w v xθ× × × × ×
Z Z Z Z Z  are shape functions, taken as 

( ) [ ] ( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]

1 1 2 21 12 1 12 1 122 12 2 12 2 121 2 1 2 1 2

1 12 1 124 12 2 121 4 1 2

, ,

,

T T TT T T
w l w w l w w l w

T TT T
v c v x l x

z z z

z zθ θ

× × ×× × ×× × ×

× ×× ×× ×

= = =

= =

Z F ρ Z F ρ Z F ρ

Z F ρ Z F ρ
 (28) 

In Eqs. (28), the following linear and cubic interpolation functions have been introduced 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

2 3 2 32 3 2 3 2 2
1 4

1

1 3 2 2 3 2

T
l

T
c

z z L z L

z z L z L z z L z L z L z L z L z L
×

×

= −

= − + − + − −

F

F
 (29) 

and the following index matrices have been defined 

[ ]

[ ]

[ ]

[ ]

[ ]

2 12

1 2 12

2 2 12

4 12

2 12

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0

×

×

×

×

×

 =   
 =   
 =   
 
 =
 
  

=

ρ

ρ

ρ

ρ

ρ

w

w

w

v

xθ 0 0 0 0 0 0 0 0 0 1
 
  

 (30) 

Expression of total potential energy of the system: 

From Eqs. (27), by substituting into Eqs. (22) and re-arranging terms, one obtains 

[ ] { } { } { }1 2 1 212 1 12 1 12 11 12 1 12 1 1212 12

1
2

T T T
U V Vπ π π π

× × ×× × ××
= + + = − −Δ K Δ Δ P Δ P  (31) 

In which [ ]12 12×
K  is the element stiffness matrix and it can be obtained as 

[ ] [ ]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1912 12 12 12× ×
= + + + + + + + + + + + + + + + + + +K k k k k k k k k k k k k k k k k k k k  (32) 

Where the component stiffness matrices [ ]12 12
, 1,2,...,19i i

×
=k , depends on sectional and material properties and 

they are determined as 
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[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] ( )
( )

2 3

1 ,1 2 ,112 2 2 12 12 2 2 122 2 2 2

3

3 1,11 2,11 ,212 4 4 124 4

2

1 1 2
4 1 1 2 22

1

, ,
2 12

2
,

12

2 2

2

× × × ×× ×

× ××

 
   = = +     

 
 

 = + +    
 

+ + + +
= + +

k ρ H ρ k ρ H ρ

k ρ H ρ

k

T Tf b w w
s s w ll w s x ll x

Tf
s g g v cc v

a f g a f
s w w a a a a

a

bt h t hE A E

bt
E D b D b

t t t t t t
G h t G A G A

t

θ θ

( )
( )

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] ( ) ( ) [ ] [ ]

2

2
,12 12 4 4 124 4

2

2 2
1 1 2 2

5 2 2 12 2 2 2 2 12
1 2

1 1 2 2
6 1 1 2 2 ,12 2 12 4 4 2

1 2

,
2

,
4 4

2 2
4 4

× ××

× × ×

× ×

 
     
 
 

= + + 
 
 + + + +

  = − + +    

ρ H ρ

k ρ H ρ

k ρ H ρ

Tg
v cc v

a

Ta a b a a b
s w w x ll x

a a

Ta f g b a f g b
s w w a a a a v cl o x

a a

t

G A h G A hG h t
t t

t t t h t t t h
G h t G A G A

t t

θ θ

θ [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] ( ) ( ) [ ]

, 12 12 12 2 4 122 4

1 1 2 2
7 1,11 1 ,1 1 8 2 212 2 2 12 12 2 2 2 2 122 2

1 2

1 1 2 2
9 1 1 2 2 ,12 2 12 4 4 2

1 2

,

, ,

2 21
2

× × ××

× × × × ××

× ×

 +  

 
 = + = +  

 
 + + + +
   = + −   
 

ρ H ρ

k ρ H ρ k ρ H ρ

k ρ H ρ

T
x lc o v

T Ta a a a
g w ll w w ll w

a a

Ta f g a f g
a a a a v cl o

a a

G A G AA b
t t

t t t t t t
G A G A

t t

θ

[ ] [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

, 12 12 12 2 4 122 4

1 1 2 2
10 2 2 12 2 2 2 2 12 12 2 2 2 2 12

1 2
2 2

11 1 1 1 1 12 1 1 112 2 2 2 2 12 12 2 2 2 2 12
1 1

,

1 ,
2

1 1,

× × ××

× × × × × ×

× × × × × ×

 +  

 
= − + 

 
   

= + = − +   
   

ρ H ρ

k ρ H ρ ρ H ρ

k ρ H ρ k ρ H ρ ρ

T
w w lc o v

T Ta a b a a b
w ll x x ll w

a a

T T
a a w ll w a a w ll w

a a

G A h G A h
t t

G A G A
t t

θ θ

[ ] [ ] [ ]( )

[ ] ( ) [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )

[ ] [ ]

1 12 2 2 2 2 12

1 1
13 1 1 1 , 1 ,1 112 2 4 12 12 4 2 122 4 4 2

1 1

1 1
14 1 112 2 2 2 2 12 12 2 2 2 2 12

1 1

15 2,11 2 ,112 2 2

,

21 ,
2

,
2

× × ×

× × × ×× ×

× × × × × ×

×

+ +
   = − +   

= − +

 = +  

H ρ

k ρ H ρ ρ H ρ

k ρ H ρ ρ H ρ

k ρ H

T
w ll w

T Ta f g
a a w lc o v v cl o w

a a

T Ta a b
w ll x x ll w

a a

T
g w ll

t t t
G A

t t
G A h

t t

A b

θ θ

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )

[ ] ( ) [ ] [ ] [ ] [ ]

2

2 16 2 2 2 22 12 12 2 2 2 2 122
2

2

17 2 2 2 212 2 2 2 2 12 12 2 2 2 2 12
2

2 22 2
18 2 , 1 ,1 212 2 4 12 12 4 22 4 4 2

2 2

1, ,

1 ,

2
2

× × × ××

× × × × × ×

× × × ×× ×

 
= +  

 
 

= − + 
 

+ +
   = + +   

ρ k ρ H ρ

k ρ H ρ ρ H ρ

k ρ H ρ ρ H ρ

T
w a a w ll w

a

T T
a a w ll w w ll w

a

T Ta f ga a
w lc o v v cl o w

a a

G A
t

G A
t

t t tG A
t t ( )

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )
12

2 2
19 2 212 2 2 2 2 12 12 2 2 2 2 12

2 2

,

2 × × × × × ×
= + +k ρ H ρ ρ H ρT Ta a b

w ll x x ll w
a a

G A h
t t θ θ

 (33) 

where 1 1 1 2 2 22 ( 2 ) , ,s f f w a a a aA bt h t t A t b A t b= + − = = . The terms in Eq. (33) including the element length L  has been grouped 
in the following matrices. 

[ ]ll ll,12 2 2 2

, 1 ,1 , 12 4 4 2 4 2

2 2

,1 ,2 34 4 4 4
2 2

12 1 1 1H , H ,1 2 1 16
1 6 6H , H H6 612

36 3 36 3 12
1 13 4 3H , H36 3 36 330

3 3 4

× ×

× × ×

× ×

−    = =  −      
− −      = =     − −  

− 
 − −   = =    − − −
 − − 

T
lc o cl o lc o

cc cc

L
L

L L
L L

L L
L L L L

L LL L
L L L L

2 2

2 2

6 12 6
6 4 6 2 ,12 6 12 6
6 2 6 4

− 
 −
 − − −
 − 

L L
L L L L

L L
L L L L

 (34) 

Vector { }1 12 1×P  is the nodal force vector of the finite element and it is obtained from Eq. (24) as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0
1 1 2 1 21 12

P T L L L L L L
z z z y xV x z z z y xV xN N N Q M M N N N Q M Mθ θ×

=  (35) 

Also, { }2 12 1×P  is the equivalent nodal force vector of the element and it can be obtained by substituting ( )V z  of Eq. 
(27) into Eq. (25) as 
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{ } ( ){ }2 12 1 12 1
P Zy v

L

q z dz
× ×
= ∫  (36) 

Formulation of the present finite element: 

From Eq. (31), by applying the first variational principle with respect to the nodal displacement vector { }12 1×Δ  and 
noting the system stationary condition at equilibrium condition (i.e. 0δπ = ), a finite element formulation can be obtained 
as 

[ ] { } { } { }1 212 1 12 1 12 112 12 × × ××
= +K Δ P P  (37) 

where [ ] { } { }1 212 1 12 112 12
, ,

× ××
K P P  have been defined in Eqs. (32)-(36). 

4 Development of THREE other finite element formulations 

The finite element formulation (FE) developed in the previous section is for a general case in which the steel beam 
element is strengthened with 2 GFRP laminates bonded to the top and bottom flanges (Figure 1a,b). For three other 
cases in which the steel beam element is strengthened with a top GFRP laminate (Figure 1c), a bottom GFRP laminate 
(Figure 1d), or not strengthened (Figure 1e), simplifications of the general FE formulation can be made to derive finite 
element formulations for the cases, as presented in the following. 

4.1 A steel beam element strengthened with a GFRP laminate bonded to the top flange 

From the general FE formulation developed in Section 3, by eliminating all variables regarding to GFRP laminate 2 
and adhesive layer 2, one obtains a steel beam element that is only strengthened with a top GFRP laminate. In such a 
case, the governing displacements of the system include ( ) ( ) ( ) ( )1, , , xW z W z V z zθ  and thus the finite element 
formulation can be obtained as 

[ ] { } { } { }1 210 1 10 1 10 110 10 × × ××
= +K Δ P P  (38) 

in which [ ] { } { } { }1 210 1 10 1 10 110 10
, , ,

× × ××
K Δ P P  are the element stiffness matrix, nodal displacement vector, end force vector and 

equivalent load vector, respectively and they are expressed as 

{ }
[ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

{ } ( ){ }

(0) (0) (0) (0) (0) ( ) ( ) ( ) ( ) ( )
1 11 10

1 2 3 4 5 6 7 8 9 10 11 12 13 1410 10 10 10

0 0 0 0 0
1 1 11 10

2 10 1 10 1

T L L L L L
x x

T L L L L L
z z y xV x z z y xV x

y v
L

W W V V W W V V

N N Q M M N N Q M M

q z dz

θ θ

θ θ
×

× ×

×

× ×

′ ′=

= + + + + + + + + + + + + +

=

= ∫

Δ

K k k k k k k k k k k k k k k

P

P Z

 (39) 

where the component stiffnesses [ ]12 12
, 1,2,...,14i i

×
=k  and vector { }10 1v ×

Z  can be found in Appendix A2.1. 

4.2 A steel beam element strengthened with a GFRP laminate bonded to the bottom flange 

Again, from the general FE formulation in Section 3, by eliminating all parameters regarding to GFRP laminate 1 and 
adhesive layer 1, one obtains a steel beam element that is only strengthened with a bottom GFRP laminate. In this case, 
the governing displacements of the system are ( ) ( ) ( ) ( )2, , , xW z W z V z zθ  and thus the finite element formulation can be 
expressed as 

[ ] { } { } { }1 210 1 10 1 10 110 10 × × ××
= +K Δ P P  (40) 

in which [ ] { } { } { }1 210 1 10 1 10 110 10
, , ,

× × ××
K Δ P P  are the element stiffness matrix, nodal displacement vector, end force vector and 

equivalent load vector, respectively and they are determined as 
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{ }
[ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

{ } ( ){ }

(0) (0) (0) (0) (0) ( ) ( ) ( ) ( ) ( )
2 21 10

1 2 3 4 5 6 7 8 9 10 11 12 13 1410 10 10 10

0 0 0 0 0
1 2 21 10

2 10 1 10 1

T L L L L L
x x

T L L L L L
z z y xV x z z y xV x

y v
L

W W V V W W V V

N N Q M M N N Q M M

q z dz

θ θ

θ θ
×

× ×

×

× ×

′ ′=

= + + + + + + + + + + + + +

=

= ∫

Δ

K k k k k k k k k k k k k k k

P

P Z

 (41) 

the component stiffnesses [ ]12 12
, 1,2,...,14i i

×
=k  and vector { }10 1v ×

Z  can be found in Appendix A2.2. 

4.3 A steel beam element is not strengthened (i.e., a bare steel element) 

From the general FE formulation in Section 3, by eliminating all parameters regarding to GFRP laminates 1 and 2 
and adhesive layers 1 and 2, one obtains a steel beam element that is not strengthened. The governing displacements of 
the system are ( ) ( ) ( ), , xW z V z zθ  and the finite element formulation is obtained as 

[ ] { } { } { }1 28 1 8 1 8 18 8 × × ××
= +K Δ P P  (42) 

in which [ ] { } { } { }1 28 1 8 1 8 18 8
, , ,

× × ××
K Δ P P  are the element stiffness matrix, nodal displacement vector, end force vector and 

equivalent load vector, respectively and they are determined as 
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where the component stiffnesses [ ]12 12
, 1,2,...,6i i

×
=k  and vector { }10 1v ×

Z  can be found in Appendix A2.3. 

5 Validation and Comparisons 
The purpose of this section is to validate the theory and the finite element formulations developed in the present study 

for the analyses of single- or multiple-span steel beams strengthened with orthotropic GFRP laminates. The deflections, 
stresses, and internal resultant forces of GFRP-strengthened beams predicted by the present study will be 
validated/compared against those of three-dimensional finite element analyses (3D FEA) conducted in ABAQUS [40] or 
those of experimental studies. Key observations will be also discussed through three examples conducted in the following. 

5.1 Example 1: A continuous beam bonded with GFRP laminates 

Description of the problem: 

A continuous steel beam with two spans of 1 5.0spanL m=  and 2 3.0spanL m=  are strengthened with GFRP laminates, 

as depicted in Figure 9a-d. The steel beam section is W150x13 that has a depth of 148h mm= , a flange width of 
100b mm= , a flange thickness of 4.9ft mm=  and a web thickness of 4.3wt mm= . Three GFRP laminates are installed 

to strengthen for the beam, in which GFRP laminate 1 is 4.8 m  long and it is bonded to the bottom flange of span 1, 
GFRP laminate 2 is 2.8 m  long and it is bonded to bottom flange of span 2, and GFRP laminate 3 is 1.6 m  and it is bonded 

to the top flange above the intermediate support. The following longitudinal dimensions are given as 1 0.1L m= , 

2 3.9L m= , 3 0.9L m= , 4 0.1L m= , 5 0.1L m= , 6 0.5L m= , 7 2.3L m=  and 8 0.1L m= . Thicknesses of all GFRP 
laminates are assumed as 10 mm  and they are stacked by 16 equal-thick laminae with fiber orientation angles of 00. The 
adhesive thicknesses are 1.0 mm. The elastic modulus and Poisson ratio of steel are assumed as 200 GPa  and 0.3 , 
respectively, while those of adhesive materials are 3.18 GPa  and 0.3 [8]. All GFRP laminae are assumed to have a 

longitudinal modulus of elasticity , 45.95k zE GPa= , lateral and transverse moduli of elasticity , , 14.56k s k nE E GPa= = , 
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shear stiffnesses , , 4.50 ,k sn k znG G GPa= = , 5.51k szG GPa= , and Poisson’s ratio , , ,0.25, 0.30k sn k zn k szµ µ µ= = =  (i.e., 

GF800). The beam is assumed to subject two transverse point loads P  and Pη , where 20P kN=  and 1η = , statically 
applied in the middles of spans 1 and 2. In this example, deflections and stresses predicted by the present study are 
validated against those of the 3D FEA solutions. 

 
Figure 9 A two-span steel beam strengthened with GFRP laminates (a) beam profile, and cross-sections of steel segments (b) not 

strengthened, (c) strengthened with a bottom GFRP laminate, and (d) strengthened with two GFRP laminates 

Description of the finite element modelling in the 3D FEA solution: 

The finite element model is built by using C3D8R brick elements in ABAQUS library. The element has 8 nodes with 3 
nodal displacements per node and it has an integration point at its center. Reduced integrations are used to avoid volumetric 
locking. In order to mesh the three dimensional configuration of the present GFRP-strengthened beam, 15 independent 
numbers of elements in , 1,2,...,15i = , are proposed (Figure 10). Of which, 1n , 2n , 3n , 4n , 6n , 7n , 8n  are respectively the 
number of elements across the overhang part of the flanges, that across the bottom GFRP laminate thickness, that across 
the bottom adhesive layer thickness, that across the flange thicknesses, that along the clear web height, that across the 
web thickness, that across the top adhesive layer thickness and that across the top GFRP laminate thickness (Figure 10a). 

9n , 10n , 11n , 12n , 13n , 14n  and 15n  are respectively the numbers of elements along lengths 1L , 2L , 3L , 4 5L L+ , 6L , 7L  
and 8L  (Figure 9a, Figure 10b). Elements of two different materials share the same nodes at interface (Figure 10a). To avoid 
stress localizations, loads P  and Pη  are converted to shear tractions applied at the web cross-sections of the steel beam. 

A mesh study is conducted to investigate the convergence of the deflections and stresses in the present 3D FEA 
solution. Four different meshes are proposed in Table 1 and they are denoted as Meshes 1, 2, 3, and 4. Figure 11a-c 
present the elevation deformation view captured in ABAQUS, the beam deflection and the longitudinal normal 
stresses at the top fiber of the steel cross-section, respectively. As observed, the deflections are insensitive, while the 
stresses are slightly sensitive to the meshes. For example, the compression stresses at the location of load P  based 
on Mesh 1 is 183.8 MPa, that based on Mesh 2 is 188.0 MPa, that based on Mesh 3 is 197.2 and that based on Mesh 4 
is 197.4. When compared to the stress based on Mesh 4, the stress based on Mesh 1 is 6.9% lower, that based on 
Mesh 2 is 4.8% lower, while that based on Mesh 3 is only 0.1%. This indicates that the stresses of Mesh 3 are almost 
converged. Based on the results of the mesh study, Mesh 3 is selected for the mesh of the present 3D FEA solution. 
The time per run based on Mesh 3 takes about 45 minutes based on a computer with Intel(R) and Core(TM) i7-8700 
processors at 3.2 and 3.19 GHz and an installed memory RAM of 16 GB. 

 
Figure 10 Independent numbers of elements for meshing of the 3D FEA model in ABAQUS (a) cross-section view, (b) elevation view 
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Table 1 Meshes adopted to study the result convergences in the 3D FEA solution 

Mesh 1n  2n  3n  4n  5n  6n  7n  8n  9n  10n  11n  12n  13n  14n  15n  

1 4 4 2 2 20 2 2 4 4 39 9 8 5 23 4 
2 10 8 4 4 40 4 4 8 10 156 36 20 20 92 10 
3 10 16 4 4 40 4 4 16 10 312 72 20 40 184 10 
4 10 16 4 4 40 4 4 16 10 624 144 20 80 368 10 

 
Figure 11 Deflections and stresses predicted by the 3D FEA solution in ABAQUS based on 4 different meshes (a) elevation 

deformation view in ABAQUS, (b) beam deflection and (c) longitudinal normal stresses at the top fiber of the steel cross-section 

Description of the present finite element solution: 
A mesh study for the convergence of deflections and stresses of the finite element formulations developed in the 

present study (i.e., Eqs. (37), (38), (40) and (42)) is also conducted. It is recalled that the present finite element 
formulations are based on beam elements. In order to mesh the present GFRP-strengthened beam, only 7 independent 
numbers of elements in , 1,2,...,7i = , along lengths 1L , 2L , 3L , 4 5L L+ , 6L , 7L  and 8L  are proposed. Four different 
Meshes 1, 2, 3, and 4 are proposed in Table 2 for the present mesh study. As observed, the deflections are converted 
based on all meshes, while the stresses are considered to convert by using Mesh 3 or Mesh 4 (Figure 12a,b). Based on 
the results of the mesh study, Mesh 3 is selected for the mesh of the present solution. The time per run based on Mesh 
3 spent about 30 seconds based on the same computer as used for the run of the 3D FEA solution. 

Table 2 Meshes adopted to study the result convergences in the present finite element formulations 

Mesh 1n  2n  3n  4n  5n  6n  7n  

1 2 39 2 2 2 23 2 
2 10 39 10 10 10 23 10 
3 20 390 100 20 100 230 20 
4 40 390 200 40 200 230 40 

 
Figure 12 Deflections and stresses predicted by the present finite element formulations based on 4 different meshes (a) beam 

deflection and (b) longitudinal normal stresses at the top fiber of the steel cross-section 
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Validations and result discussions: 
The comparisons of deflections and stresses as predicted by the present study and those predicted by the 3D FEA 

solution are presented in Figure 13a-i. As observed, the results obtained by both solutions are in excellent agreements. For 
example of displacements (Figure 13a), the maximum displacement at the middle span of span 1 predicted by the present 
study is 18.7 mm, while that predicted by the 3D FEA solution is 18.8 mm, corresponding to a difference of only 0.5%. For 
the longitudinal normal stresses at the top fiber of the steel cross-section (Figure 13b), the maximum stresses in magnitude 
are observed to occur at the middle of span 1. The stress predicted by the present study is 199.7 MPa, while that predicted 
by the 3D FEA solution is 197.2 MPa, corresponding to a difference of 1.3%. For the longitudinal normal stresses at the 
bottom fiber of the steel cross-section (Figure 13c), the maximum stresses in magnitude are observed to occur at the 
intermediate support (i.e., at the right end of span 1). The stress as predicted by the present study is 200.6 MPa, while that 
predicted by the 3D FEA solution is 198.3 MPa, corresponding to a difference of 1.2%. It is obseverd that the stresses may 
experience different slopes because there are changes of load, boundary and strengthening conditions. Similar observations 
can be obtained for the longitudinal normal stresses in the top and bottom fibers of GFRP laminate 1 (Figure 13d,f), those 
of GFRP laminate 2 (Figure 13e,g) and those of GFRP laminate 3 (Figure 13h,i). The positive or negative signs of the GFRP 
stresses are similar to those of the steel fibers where the GFRP laminates are installed. 

 
Figure 13 Comparison of the deflection and stresses results in the steel beams and the GFRP laminates between the present 

solution and the 3D FEA solution 
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Effectiveness of GFRP strengthening: 

Based on the finite element formulation developed in Eq. (42) for bare steel beams (without GFRP strengthening) 
in the present study, the deflections and stresses of the bare beam in the present example can be evaluated. Under 
identical loading and boundary conditions, Figure 14a presents a comparison of the beam deflections of the bare beam 
and the given GFRP-strengthened beam. A significant difference between two scenarios can be obtained from the figure. 
For example, the deflection at the middle of span 1 in the GFRP-strengthened beam is 18.7 mm, while that in the bare 
beam is 23.3 mm. As a result, the effectiveness of the GFRP strengthening for the deflection is 24.6%. This is relatively 
suitable with the observation in an experimental study of El Damatty et al. [2]. For stresses (Figure 14b,c), the 
strengthening effectiveness is mostly observed at the steel fibers where the GFRP laminates are bonded with. For 
example of the tension stresses at the bottom fiber at the middle of the span 1 (Figure 14c), the stress of the GFRP-
strengthened beam is 152.9 MPa, while that of the bare beam is 211.7 MPa, corresponding to a strengthening 
effectiveness of 27.8%. For the tension stresses at the top fiber at the right end of span 1 (on the intermediate support, 
Figure 14b), the stress based on the GFRP-strengthened beam is 153.7 MPa, while that of the bare beam is 196.7 MPa, 
corresponding to a strengthening effectiveness of 21.9%. 

 
Figure 14 Effectiveness of the strengthening for the system deflections 

5.2 Example 2: Validation of present solution against experimental results 

Description of the problem: 

El Damatty et al. (2003) conducted an experimental study for the strengthening of steel beams with W150x37 cross-
sections by using GFRP laminates bonded to the top and bottom beam flanges (Figure 15a,b), in which 2.4rL m=  and 

0.2a m= . The steel section had dimensions of 162h mm= , 154b mm= , 11.6ft mm=  and 8.1wt mm= . The 

thicknesses of both GFRP laminates were 19 mm , while those of adhesive layers were 0.79 mm . Steel had an elastic 
modulus of 200 GPa  and a Poisson ratio of 0.3 . GFRP laminates was reported to have a longitudinal modulus of 
elasticity of 17.2 GPa . The GFRP orthotropic lamina properties and stacking sequences were not provided. The averaged 
shear modulus of adhesive layer was taken as about 0.4 GPa . The beam is subjected to two point loads 75P kN=  
applied at the locations of 0.93bL mm≈ . 

 
Figure 15 Simply supported steel beam strengthened with two GFRP laminate subjected to point loads (El Damatty et al. 2003) 
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Validations of the system responses of the present solution against those of the experiment study: 

A mesh study is conducted for the present finite element formulations (i.e., Eqs. (37), (42)) in a similar way as done 
in Example 1 to obtain converged deflections and stresses. Table 3 presents comparisons of the midspan deflections and 
longitudinal normal stresses as obtained from the present study and those from the experimental study by El 
Damatty et al. (2003). The deflection in the experimental study is 12.0mm, while that predicted by the present study is 
11.9 mm, corresponding to a difference of only 0.8%. Similar observations are obtained for the longitudinal normal 
stresses at the bottom fiber of the steel cross-section and those at the GFRP laminate 2 (Table 3). Those indicate that the 
system responses predicted by the present study are in excellent agreements with the experiment results. 

Table 3 Comparison of system responses of the present study against those of the experimental study 

Responses Experimental study by  
El Damatty et al. (2003) Present study % difference 

Midspan deflection, (mm) 12.0 11.9 0.8 
Longitudinal normal stresses at the bottom fiber of steel cross-

section at midspan, (MPa) 
220.0 220.8 0.4 

Longitudinal normal stresses at the bottom fiber of GFRP laminate 
2 at midspan, (MPa) 

23.0 23.4 0.9 

5.3 Example 3: GFRP-strengthened beams under the effect of GFRP laminate properties 

A simply supported steel beam with a cross-section of W150x13 (i.e., 148h mm= , 100b mm= , 4.9ft mm= , and

4.3wt mm= ) strengthened with a GFRP laminate and subjected to a uniformly distributed load 10 /q kN m=  is 

considered (Figure 16). The strengthened length rL  is 3.0m , and the non-strengthened lengths a  are 0.5m , thus a 

steel span length is 2 4.0rL L a m= + = . Thickness 2gt  of the GFRP laminate is 10 mm and thickness 2at  of the adhesive 

layer is 1.0mm. The modulus of elasticity and Poisson ratio of the steel are 200 GPa and 0.3, respectively. While those of 
the adhesive layer are 3.18 GPa and 0.3. It is assumed that the beam is strengthened with 5 different scenarios of GFRP 
laminates (Table 4), of which the GFRP laminate is treated as an isotropic material in Scenario 1, that as an orthotropic 
material stacked by 16 laminae with stacking angles of 00 in Scenario 2, that as an orthotropic material stacked by 16 
laminae with stacking angles of 450/-450 in Scenario 3, and that as an orthotropic material stacked by 16 laminae with 
stacking angles of 900 in Scenario 4. In Scenario 5, GFRP laminate is not strengthened for the steel beam (i.e., bare steel 
beam). Deflections, longitudinal normal stresses in steel and axial resultant forces in the GFRP laminate will be predicted 
by the present solutions and they are validated against 3D FEA solutions in ABAQUS. The effect of the orthotropic and 
stacking properties of the GFRP laminates on such system responses will be clarified. 

 
Figure 16 A steel beam strengthened with a bottom GFRP laminate subjected to uniformly distributed loads 

Validations and result discussions: 

Figure 17 presents a comparison of the beam deflections as predicted by the present study and the 3D FEA solution 
under different Scenarios 1-5 of the GFRP laminates. Table 5 summarizes the comparison of the midspan deflections. For 
each Scenario, the deflection curve predicted by the present study is observed to excellently agree with that predicted 
by the 3D FEA solution. For example of Scenario 2 (with lamina stacking angles of 00), the midspan deflection based on 
the present study is 23.5 mm, that based on the 3D FEA solution is 23.6 mm, corresponding to a difference of only 0.4%. 
In Scenario 3 (with lamina stacking angles of 450/-450), the midspan deflection predicted by the present study is 25.6 mm, 
while that predicted by the 3D FEA solution is 25.8 mm, a difference of 0.8%. The midspan deflection in Scenario 4 based 
on the present solution and that based on the 3D FEA solution are not different and they are equal to 26.5 mm. 
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The effect of the GFRP laminate properties on the beam deflection can be observed in Figure 17 and Table 5. The 
midspan deflection based on Scenario 1 (i.e., isotropic GFRP laminate) is the lowest one (i.e., 23.45mm), and it increases to 
23.5 mm in Scenario 2 (laminae with stacking angles of 00), 25.6mm in Scenario 3 (laminae with stacking angles of 450/-450), 
and 26.5 mm in Scenario 4 (laminae with stacking angles of 900). Therefore, it here observes that the increase of fiber 
stacking angles (from 00 to 900) of the GFRP laminate may lead to the increase of the beam deflections. In the present study, 
it is observed that when the stacking angles increase, they decrease axial and transversely flexural stiffnesses ,11giA , ,11giD  
(as defined in Eqs. (18)) of the GFRP laminate. Specifically, the values of ,11giA  and ,11giD  for Scenario 2 with stacking angles 

of 00 are evaluated as 54.6 10 /N mm×  and 63.8 10 .N mm× , while those for Scenario 3 with stacking angles of 450/-450 
are 51.7 10 /N mm×  and 61.4 10 .N mm× , and those for Scenario 4 with stacking angles of 900 are 51.4 10 /N mm×  and 

61.2 10 .N mm× . Such an axial-transversely flexural response is different to a lateral-torsional response of the composite 
beams. (i..e., the GFRP laminates stacked by laminae with 450/-450 stacking angles often generate a maximum effectiveness 
for the system responses in lateral-torsional analyses (Lee and Lee 2004, Phe 2022)). 

Table 4 Different scenarios of GFRP laminate properties in Example 3 

Scenario Behavior Number of 
laminae 

Lamina 
thickness 

Lamina properties* 
Lamina stacking angles 

,k zE  ,k sE  ,k szG  ,k zsv  ,k szv  

1 Isotropic N.A. N.A. 45.95 45.95 17.67 0.3 0.3 N.A. 
2 

Orthotropic 16 0.625 45.95 14.56 5.51 0.3 0.095 
(0/0/0/0/0/0/0/0)s 

3 (45/-45/45/-45/45/-45/45/-45)s 

4 (90/90/90/90/90/90/90/90)s 
5 No GFRP strengthening 

* units of ,k zE , ,k sE  and ,k szG  are GPa . 

 
Figure 17 Comparison of the beam deflections between the present study and the 3D FEA solution  

under different Scenarios 1-5 of the GFRP laminates 

Based on Table 5, it is observed that the effectiveness of GFRP strengthening also depends on the fiber stacking 
angles of the GFRP laminates. For example, by comparing the deflection in Scenario 2 (i.e., 23.5 mm) against that in 
Scenario 5 (i.e., 28.1 mm, no GFRP strengthening), an effectiveness of 16.4% is observed. However, by comparing the 
deflection in Scenario 3 (i.e., 25.6 mm) against that in Scenario 5, the effectiveness is only 8.9%. 

Figure 18a present comparisons of the longitudinal normal stresses at the bottom fiber of the steel cross-section in 
Scenario 2, as predicted by the present study and the 3D FEA solutions. While Figure 18b present comparisons of the 
stresses in Scenario 3, as predicted by the present study and the 3D FEA solutions. Also, Figure 19a-b present comparisons 
of the axial (internal) resultant forces in the GFRP laminate (i.e., 2zN  in Eq. (35)) in Sceneries 2 and 3, as predicted by the 
present study and the 3D FEA solutions. For both Scenarios, the normal stresses and the resultant forces predicted by 
the present study are observed to excellently agree with those predicted by the 3D FEA solution. For example, the normal 
stresses at midspan in Figure 18a predicted by the present study is 173.3 MPa, that predicted by the 3D FEA solution is 
174.3 MPa, corresponding to a difference of only 0.6%. In Figure 19b, the resultant force at midspan predicted by the 
present study and the 3D FEA solutions are 19.5 kN and 19.4 kN, respectively, a difference of only 0.5%. 
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The effect of the GFRP lamina stacking angles on the normal stresses and internal resultant forces can be also 
observed in Figure 18a-b and Figure 19a-b. The peak normal stresses predicted by the present solution based on 
Scenario 2 (Figure 18a) is 173.3 MPa, while that based on Scenario 3 is 220 MPa, a difference of 27.0%. Also, the peak 
internal resultant forces in GFRP laminates predicted by the present solution in Scenario 2 (Figure 18a) is 44.3 kN, that in 
Scenario 3 is 19.5 MPa, a difference of 56.0%. It is recalled that the GFRP lamina stacking angles is 00 in Scenario 2 while 
that is 450/-450 in Scenario 3 (as defined in Table 4). Therefore, it is here observed that the increase of lamina stacking 
angles of the GFRP laminates may cause an increase of the longitudinal normal stresses in the steel beam and a decrease 
of the axial resultant force in the GFRP laminate, that leads to a lower strengthening effectiveness. 

Table 5 Comparison of the midspan deflection (mm) between the present study and 3D FEA solution 
 under different Scenarios 1-5 of the GFRP laminate 

Scenario Present study* 3D FEA solution* % difference 

1 23.45 23.6 0.6 

2 23.5 23.6 0.4 
3 25.6 25.8 0.8 
4 26.5 26.5 0.0 

5 28.1 28.5 1.4 
* Negative signs of deflections are converted to positive ones 

 
Figure 18 Comparison of the longitudinal normal stresses at the bottom fiber of steel in (a) Scenario 2 and (b) Scenario 3 as 

predicted by the present study and the 3D FEA solution 

 
Figure 19 Comparison of the internal resultant forces in the GFRP laminate in (a) Scenario 2 and (b) Scenario 3, as predicted by the 

present study and the 3D FEA solution 

6 Parametric studies 

The present parametric study is conducted to further investigate the effect of GFRP laminate properties on the 
deflections of GFRP-strengthened steel beams. The given structures in Scenarios 2 and 3 of Example 3 are re-considered 
and they are taken as reference cases. Based on the present FE solution, the GFRP lamina properties ,k zE , ,k sE , ,k szG  and 
the GFRP laminate thickness 2gt  are separately varied to investigate their effects on the midspan deflection. Specifically, 

,k zE  is varied from 9.0 GPa to 92 GPa, ,k sE  is varied from 2.9 GPa to 46 GPa, ,k szG  is varied from 0 GPa to 17.7 GPa, and 2gt  
is varied from 2.0 mm to 30 mm. When one parameter is varied, other properties are kept unchanged as given in the 
reference cases. 
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Figure 20a-d respectively present the effects of the longitudinal lamina modulus ,k zE , the lateral lamina modulus 

,k sE , the lamina shear modulus ,k szG , and the laminate thickness 2gt  on the midspan deflection in Scenario 2 (i.e., a GFRP 
laminate is stacked by GFRP laminae with 00 stacking angles). As observed, the system deflection is sensitive to ,k zE  and 

2gt  while it is insensitive to ,k sE  and ,k szG . This can explained through plate stiffnesses ,11 ,11,gi giA D  in Scenario 2, those 
are dependent on ,k zE  and 2gt  but independent on ,k sE  and ,k szG , as proved in Eqs. (A.5) of Appendix 1. 

Figure 21a-d respectively present the effects of the longitudinal lamina modulus ,k zE , the lateral lamina modulus 

,k sE , the lamina shear modulus ,k szG , and the laminate thickness 2gt  on the midspan deflection in Scenario 3 (i.e., a GFRP 
laminate is stacked by GFRP laminae with 450/-450 stacking angles). It is observed that the system deflection is slightly 
dependent on ,k zE  and ,k sE , while it strongly depends of ,k szG  and 2gt . Again, this can be explained through plate 
stiffnesses ,11 ,11,gi giA D  in Scenario 3. As proved in Eqs. (A.6) of Appendix 1, stiffnesses ,11 ,11,gi giA D  are evaluated through 
all four parameters ,k zE , ,k sE , ,k szG  and 2gt , in which ,k szG  and 2gt  mostly contribute to the magnitudes of ,11 ,11,gi giA D . 

 
Figure 20 Effect of the GFRP properties on midspan deflection in Scenario 2, (a) longitudinal lamina modulus ,k zE , (b) lateral lamina 

modulus ,k sE , (c) Lamina shear modulus ,k szG , and (d) laminate thickness 2gt  

 
Figure 21 Effect of the GFRP properties on midspan deflection in Scenario 3, (a) longitudinal lamina modulus ,k zE , (b) lateral lamina 

modulus ,k sE , (c) Lamina shear modulus ,k szG , and (d) laminate thickness 2gt  



Innovated shear deformable FE formulations for the analyses of steel beams strengthened with 
orthotropic GFRP laminates 

Thanh Bui-Tien et al. 

Latin American Journal of Solids and Structures, 2023, 20(4), e487 22/28 

7 Conclusions 

The present study has successfully developed an innovated shear deformable theory and four finite element (FE) 
formulations based on the first variational principle of stationary potential energy for the analysis of steel beams 
strengthened with orthotropic GFRP laminates under transverse loadings. The FE formulations were developed by using 
linear and cubic shape functions. The present study captured orthotropic properties of the GFRP laminae, GFRP lamina 
stacking sequences, partial interaction between the steel beam and the GFRP laminates, and shear deformations. Based 
on the validations and comparisons presented in three examples and two parameter studies, important conclusions were 
achieved in the present study and they are summarized in the following. 

1. The FE formulations developed in the present study were based on beam elements. The system responses (i.e., 
deflections, stresses, and internal resultant forces) predicted by the present FE solutions were successfully validated 
against those of experimental studies and/or three-dimensional finite element analyses (3D FEA). Meanwhile, the 
running time of an analysis based on the present FE solution was orders of magnitude lower than that based on the 
3D FEA solution, as discussed in Examples 1 and 2. 

2. The system responses of GFRP-strengthened beams were significantly influenced by GFRP fiber angle arrangements 
of GFRP laminates. As discussed in Example 3 and parametric studies, GFRP laminates with fiber orientation angles 
of 0 degrees maximized the axial and transversely flexural laminate stiffnesses and thus minimized the responses 
of the strengthened steel beams. 

3. For steel beams strengthened with GFRP laminates stacked by GFRP laminae with 00 stacking angles, their 
deflections are strongly influenced by the longitudinal GFRP lamina modulus and the GFRP laminate thickness, while 
they are insensitive to the lateral GFRP lamina modulus and the GFRP lamina shear modulus. However, for steel 
beams strengthened with GFRP laminate stacked by GFRP laminae with 450/-450 stacking angles, their deflections 
are strongly influenced by the GFRP shear modulus and the GFRP laminate thickness, while they are slightly 
influenced by longitudinal GFRP lamina modulus and the lateral GFRP lamina modulus, as observed in the 
parametric studies. 

4. The effectiveness of GFRP strengthening for both single and continuous steel beams were quantified in present 
study. For example of Example 1, the effectiveness for the beam deflection was 24.6%, that for tension stresses at 
the bottom steel fiber at the middle of the first span was 21.9%, and that for tension stresses at the top steel fiber 
at the right end of the first span was 27.8%. 

5. The present finite element formulations are applicable to single or multiple span GFRP-strengthened beams 
subjected to various loading and boundary conditions. However, they can only predict the linearly elastic responses 
including stresses, deflections, and internal resultant forces of the system. Hence, they are applicable to check 
several system failure modes, such as moment resistance based on steel yielding, GFRP stress control, and 
deflection. Also, they can predict pre-buckling internal resultant forces those maybe necessary for a further lateral-
torsional buckling analysis. 
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Appendix 1. Evaluation of the GFRP laminate stiffnesses 

Plane stress-reduced stiffnesses of the thk  GFRP lamina may be evaluated as [10,39] 

( ) ( ) ( ),11 , ,12 , ,22 , ,66 ,1 , 1 , 1 ,k k z zs sz k zs k s zs sz k k s zs sz k k szQ E v v Q v E v v Q E v v Q G= − = − = − =  (1.1) 

In which parameters ,k zE , ,k sE , ,k szG , and , ,k zsv ,k szv  have been defined in Section 3.4. Then, the transformed lamina 
stiffnesses can be evaluated as 
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 (1.2) 

where kγ  is the fiber orientation angle of the thk  lamina. The extensional and bending stiffnesses of the GFRP laminate 
can be evaluated as 

( ) ( )3 3
, , 1 , , 11 1

, 3
n n

gi ej k ej k k gi ej k ej k kk k
A Q y y D Q y y+ += =

= − = −∑ ∑  (1.3) 

where , 1, 2,...,6e j = . kt  is the thk  lamina thickness, while *
ky  is the coordinate of the middle surface of the thk  lamina. Based 

on Eqs. (A.3), plate stiffnesses ,11 ,11,gi giA D  in Eqs. (18) can be derived as: 

2 2
,11 ,11 ,12 ,22 ,11 ,11 ,12 ,22,gi gi gi gi gi gi gi giA A A A D D D D= − = −  (1.4) 

For GFRP laminate stacked by is 00 lamina angles, the plate stiffnesses can be simplified as 

3
2

,11 2 , ,11 ,,
12
g

gi g k z gi k z
t

A t E D E= =  (1.5) 

While for GFRP laminate symmetrically stacked by is 450/-450 lamina angles, the plate stiffnesses can be obtained 
as 
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 (1.6) 

For GFRP laminate stacked by is 900 lamina angles, the plate stiffnesses can be obtained as 

3
2

,11 2 , ,11 ,,
12
g
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t
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Appendix 2.  Stiffness matrices of finite element formulations in Eqs. (38), (40), (42) 

A2. 1 A steel beam element strengthened with a GFRP laminate bonded to the top flange (Eq. (38)) 

The governing displacement fields are interpolated from the nodal displacements as follows. 
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in which the index matrices are defined as 
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1 2 1 4
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F F  have been defined in Eq. (29). The component stiffnesses 12 12 , 1,2,...,14i i× =  k , defined in Eq. 

(38) can be determined as 
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A2. 2 A steel beam element strengthened with a GFRP laminate bonded to the bottom flange (Eq. (40)) 

The governing displacement fields are interpolated from the nodal displacements as follows. 
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in which the index matrices are defined as 
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F F  have been defined in Eq. (29). The component stiffnesses 12 12 , 1,2,...,14i i× =  k , defined in Eq. 

(40) can be determined as 
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A2. 3 A steel beam element is not strengthened, as presented in Eqs. (42) 

The governing displacement fields are interpolated from the nodal displacements as follows. 
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in which the index matrices are defined as 
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F F  have been defined in Eq. (29). The component stiffnesses 12 12 , 1,2,...,6i i× =  k , defined in Eq. 

(42) can be determined as 
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