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Abstract 
In this paper, the hybrid differential evolution and symbiotic organism search (HDS), is the first-time developed 
for general solutions of a piezoelectric stack in ultrasonic transducers. The convergence and reliability of the new 
algorithm are verified through comparison with corresponding data from similar previous publications and 
differential evolution (DE) algorithm. This study also presents and discusses the calculation results using HDS for 
commercial piezoelectric stacks. The Matlab HDS programs for a segmented piezoelectric (PZT) model have 
advanced features including its applicability to any configurations, thickness and arbitrary layer numbers of PZT. 
Using the novel proposed technique, there is no requirement for initial data guess, no limitations for piezoelectric 
stacks and the convergence rate is much faster than DE. Therefore, the HDS is promising for direct evaluation of 
specific aging or degradation mechanisms of ultrasonic transducers. 
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INTRODUCTION 

Piezoelectricity has been considered as one of the most important electromechanical phenomena in which materials 
transform a voltage into mechanical deformation or convert mechanical loads into electric charges (C. S. Feng et al. 
(2021)). Piezoelectric effect has been widely applied to many applications such as transducers, actuators (C. S. Feng et al. 
(2021), M. T. Chorsi et al. (2019)), sensors (S. Zhang and F. Yu (2011)). It is worth mentioning that piezoelectric material 
and piezoelectric stack parameters are extremely important in the calculation, simulation and design of ultrasonic 
transducers, which are popularly used in many applying, such as cleaning, welding, and ultrasonic assisted machining (M. 
Sako et al. (2014)). Meanwhile, these parameters are considerably inconsistent due to the diversity of material types and 
they made by different manufacturers around the world. Furthermore, piezoelectric materials represent a performance 
loss under any changes of configurations as well as working conditions. Several studies have focused on identifying a full 
set of such material coefficients based on experimental data by regression techniques, each of which is applied to a 
specified material and has certain limitations. 

Generally, finite element method and the analytical method are mainly employed for modeling piezoelectricity. 
Although the finite element method has been devoted since the early 1970s (Y. Kagawa (2005), M. Naillon et al. (1983), 
Y. Amini et al. (2015), A. Ferrari and A. Mittica (2012), S. Y. Wang (2004), A. Benjeddou (2000)) as it can deal with complex 
models and provide high-accuracy solutions, the computational cost is still a considerable problem. To overcome this 
issue, the analytical models have received much interest from many researchers worldwide. Nevertheless, designers 
would face problematic challenges since a full set of material parameters must be identified from samples performing in 
different frequency ranges, in order to input into the governing equations. Because of their frequency-dependent 
characteristic, the analytical models seem to be never exact enough. Consequently, designers will experience problems 
in employing these data because of their inaccuracy or even cannot achieve expected solutions. In such cases, a 
comparison between the data of modeling and the experiment is really challenged. For this reason, finding a full correct 
set of material parameters from experimental data is required. To tackle this problem, several attempts have been 
proposed to estimate the piezoelectric parameters, such as IEEE’s method (American National Standards Institute, 1988), 
Smiths’ method (J. G. Smits (1976)), nonlinear regression (K. W. Kwok et al.(1997)), and gradient methods (Y. Roh and M. 
S. Afzal (2018), E. Heikkola et al. (2006). However, it has been found that these methods would face significant difficulties 
because of the highly nonlinear nature of the piezoelectricity phenomena, thus solutions are not able to be optimized or 
even are trapped in some local regions. To overcome this problem, non-gradient-based methods, evolutionary 
algorithms (EAs), could be solutions since they do not require sensitivity information of the functions because of using 
random searching techniques in given design spaces. Some noticeable EAs for the estimation of piezoelectricity materials 
are included genetic algorithms (F. Karami and R. Morsali (2019)), differential evolution (C. S. Feng et al.(2021), T. 
Liu et al. (2017), G. Wang et al. (2015)), and so on. 

Recently, HDS has been proposed for size and shape optimization of truss structures under multiple frequency 
constraints (Nguyen-Van et al. (2021)). This method has also proved its efficient performance in terms of both global and 
local search on topology optimization (K. D. Dang et al. (2022)). However, it has not been applied in the field of 
piezoelectricity materials yet. Consequently, this paper aims to provide an extension of HDS in the area of piezoelectricity 
for computing the 3 complex parameters of piezoelectric materials in a configuration of identical layers. Moreover, from 
the successful application of HDS algorithm, future studies can develop for calculating 3*n complex parameters of 
different properties of each layer. This is especially significant in the research and evaluation of the aging or degradation 
mechanisms of ultrasonic transducers in practice, which for the best of the authors’ knowledge, the methods mentioned 
have not yet been employed. 

MATHEMATICAL MODEL OF PIEZOELECTRICITY 

The phase-impedance models of piezoelectric materials for different modes of piezoelectric resonators are well-
known for many researchers (S. Sherrit and B. K. Mukherjee (2007)). Focusing into thickness mode, it is possible to 
synthesize 3 models that are mainly used in the calculation, analysis and design of transducers, including the Martin (D. 
A. Berlincourt et al. (1964)), the IEEE and the Kwok models (K. W. Kwok et al. (1997), D. A. Berlincourt et al. (1964), IRE 
Standards (IRE, 1961). These models are briefly described as below. 

Martin’s model 

The admittance of a piezoelectric segmented system is given by: 
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and n is number of the piezoelectric wafers, N is electromechanical transformation ratio,  γ is the complex 
propagation constant for each segment; c, K and C0 are respectively longitudinal velocity of propagation, longitudinal 
wavenumber (ω/c) and longitudinally clamped capacitance for each segment, which given by [23]: 

0 33 0 33/ ;  SC A L N C hε= =  (4) 

IEEE’s model 

Consider a low-loss piezoceramic wafer of thickness L which is relatively small in comparison with its lateral 
dimension, electrode area A, and polarized in the direction of its thickness. The electrical impedance of a piezoelectric is 
given as follows (D. A. Berlincourt et al. (1964), IRE Standards (IRE, 1961): 
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Kwok’s model 

The impedance of the piezoelectricity plate is given as follows (K.W. Kwok et al. (1997)): 

( ) Re( ) ( )Z f f iIm f= +  (6) 

Where the resistance, Re, is 
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The reactance, Im, is given as follows: 
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The electrical impedance or admittance of a piezoelectric is depended on the material parameters, particularly, 
clamped dielectric permittivity 33  Sε , electromechanical coupling constant for the thickness mode tk , the elastic stiffness 

constant at constant electric displacement 33  Dc . However, the piezoelectric possess dependent on mechanical, dielectric 
and electromechanical losses (Dahiya, R.S., Valle, M (2013)). These losses can be justified by considering elastic, dielectric 
and piezoelectric constants, which are used in these models (1) and (5) as complex numbers (K.W. Kwok et al. (1997)), 
L.F. Brown (2000)). Those parameters are rewritten as follows: 

( )* 1 tant t kk k i δ= +  (18) 

( )*
33 33 1 tanD D

mc c i δ= +  (19) 

( )*
33 33 1 tanS S

eiε ε δ= −  (20) 

Where, tan ,  tank mδ δ  and tan eδ  are the electromechanical coupling, elastic and dielectric factor loss tangent, 
respectively. 
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Equations 6-17 of Kwok model in which the factor loss tangent are tan ,  tank mδ δ  and tan eδ  are employed to build 
the mathematic model, are basically the explicit representation of the Equation 5 in IEEE. These equations are convenient 
for programming nonlinear regression problems to determine the complex coefficients of piezoelectric materials in 
Equations 18-20, Kwok's nonlinear regression method then can overcome the limitations of methods provided by IEEE and 
PRAP (K.W. Kwok et al. (1997)). Equation 1-4 in the Martin’s model can determine complex material constants for all values 
of n. The IEEE model is a special case of Martin model when n = 1 and the thickness is relatively small or in other words, 
|K|*L<< π (Martin, 1964). In this paper, the HDS algorithm based on the general Martin model will allow solving problems 
for the general configuration of piezoelectric materials and this content will be presented in the following sections. 

OPTIMIZATION PROBLEM 

This paper aims to find optimal parameters of design variables corresponding to 6 piezoelectric material parameters. 
 DX stands for the design variable vector and is formed as follows: 

33 33 0tan tan tan /D S
D t k e mk cδ δ δ ε ε =  X  (21) 

The optimal function of the algorithm is mean square error (MSE) of the amplitude of impedance (A) in logarithm 
scale and phase angular (ϕ) and can be expressed as follows: 
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Where, nos is the number of data points,  kA and  kφ are the kth measured data of the amplitude of impedance and 

phase angular, respectively; kA  and   kφ are the kth corresponding simulated data of the amplitude of impedance and 
phase angular, respectively. 

The optimization process is established to find optimal parameters by minimizing the root mean square error (MSE) 
using the following objective function: 

( ): MSE1 MSE2f α= +min X  (24) 

Where, α =1 is the unit normalization in the unit of 1/Ω and the cost function f(X) used in the optimization problem, is 
minimized by using the HDS and DE which is briefly expressed in the next section. 

THE HYBRID DIFFERENTIAL EVOLUTION AND SYMBIOTIC ORGANISMS SEARCH 

The HDS algorithm suggested by Nguyen-Van et al. (2021) is hybrid from two classical algorithms differential 
evolution (DE) and symbiotic organisms search (SOS). Motivated by a symbiotic relationship in which one organism 
receives benefits both from mutualism and commensalism, HDS has proved its good performance in terms of good 
accuracy and fast convergence rate for many benchmarks and structural optimization. However, its application to fitting 
parameters of piezoelectricity has not been investigated yet so far. 

Four main stages of HDS method, including initialization, mutation, crossover, and selection, are given as follows: 

• Initialization 

Random NP individuals are generated in a defined search space. Every ith individual (i = 1, 2, …, NP) is a vector of D 
design variables and is defined as follows: 
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where NP stands for individual numbers, D denotes the number of design variables, L, H correspondingly symbolize for 
the lower and upper boundaries, rand[0; 1] is an arbitrary number in the [0,1] interval, g denotes the gth 
generation/population. The ith individual vector is expressed as follows. 

{ },1 ,2 , ,, ,..., ,...,g g g g g
i i i i j i DX X X X X=  (26) 

• Mutation 

This stage aims to obtain the diversity of the population. Firstly, a mutant vector g
iV is created by using the following 

mutation schemes are “DE/rand/1”, “SOS”, “DE/best/1” and “DE/best/2”. These four operators are briefly summarized as follows: 

DE/rand/1: ( )1 2 3

g g g g
i R R RF= + −V X X X , (27) 

SOS: [ ]( ) [ ]( )1 2 3 4
0,1 1* 0,1g g g g g

i R R R Rrand BF MU rand= + − + −V X X X X , (28) 

DE/best/1: ( )1 2est
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i b R RF= + −V X X X , (29) 

DE/best/2: ( ) ( )1 2 3 4est
g g g g g g

i b R R R RF F= + − + −V X X X X X  (30) 

Where R1; R2; R3; R4 and R5 are random differential numbers chosen from [1, 2, 3, …, NP]; F is a random number between 

0.4 and 1; MU denotes ( )1
/ 2g g

i R−X X and est
g
bX is the best individual vector in the current population. 

The HDS has a good balance of global and local searches. In global search, DE/rand/1 and SOS operators are used. 
These are automatically switched by performing a numeric operator. If rand[0,1]>0.4 is true, DE/rand/1 is performed, 
otherwise SOS is used. Similarly, in local search, DE/best/1 and DE/best/2 are incorporated. Concretely, rand[0,1]>0.3 is 
true, DE/best/1 is utilized otherwise DE/best/2 is used. 

To switch from global search to local one, an adaptive parameter is used and given as follows: 

/ 1m bf fδ = −  (31) 

Where fm and fb denote the mean and best objective function values in the previous population, respectively. If 410δ −> , 
the global operators (DE/rand/1 or SOS) are employed, otherwise, local ones (DE/best/1 or DE/best/2) are used. 

• Crossover 

This stage helps to obtain better optimal solutions by using a crossover operator. Concretely, the ith trial vector 

{ },1 ,2 , ,, ,..., ,...,g g g g g
i i i i j i D=U U U U U  is created by mixing g

iX  and g
iV  as: 
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 (32) 

where Rand is a random number within the range of [1; NP], and the crossover value Cr is randomly chosen in [0.7, 1]. 

• Elitist selection 

This technique aims to generate elite individuals for the next generation by choosing the best ones in a combined 
group of the new individual g

iV and the current individuals g
iX . This new population has a size of 2NP, but only NP best 

individuals are chosen for the next generation. 
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It should be noted that this study focuses mainly on the accuracy of the engineering solutions, only global search 
operators are used, the local search in HDS can be eliminated. Thus, the modified flowchart of HDS is illustrated in Figure 1. 

 
Figure 1. The modified flowchart of HDS 

RESULTS AND DISCUSSIONS 

Comparison of mathematical models 

In this section, MATLAB codes are programmed based on mathematical models of Martin (Equations 1-4), IEEE 
(Equation 5), and Kwok (Equation 6-17) to calculate the phase-impedance spectra of the four samples namely PVDF, 
P(VDF-TrEE), 1-3/PZT/Epoxy Composite, and Lead Metaniobate. The data for material properties and constants of these 
materials are shown in Table 1 and Table 2, respectively. The simulation results will be use in the following sections. 

Table 1. Material properties of piezoelectric materials 

Materials Density (g/m3) Thickness (mm) Diameter (mm) 

PVDF 1.78 0.27 14 
P(VDF-TrEE) 1.88 0.408 14 

1-3/PZT/Epoxy Composite 3.9 1.06 14 
Lead Metaniobate 6 1.55 25.2 
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Table 2. Material constants of piezoelectric materials 

Materials tk  tan kδ  tan eδ  tan mδ  33
Dc , ( )2/N m  33 0/Sε ε  

PVDF 0.146 0.0362 0.265 0.133 8.7 6.3 
P(VDF-TrEE) 0.262 0.0143 0.106 0.051 10.1 4.38 

1-3/PZT/Epoxy Composite 0.58 -0.0074 0.042 0.0237 61.3 116 
Lead Metaniobate 0.334 0.0008 0.0089 0.063 65.8 258 

where 0ε is vacuum permittivity and is equal to 8.85×10-12 (F/m). 

 
Figure 2. Comparison the Martin model with the IEEE and Kwok’s models 

Figure 2 shows modeling data of impedance magnitude and impedance phase of the three models. It should be 
pointed out that these three models give the same results corresponding to the same input data from Table 2. This is 
reasonable because IEEE and Kwok are specified models of Martin’s general solution with: (i) one piezoelectric ring and 
(ii) the thickness of the ring is relatively small (K*L<<π). For this reason, the following sections will employ the model of 
Martin (Equations 1-4) to calculate the material parameters of a piezoelectric stack with large thickness installed in 
ultrasonic transducers for welding, cleaning and ultrasonic-assisted machining. 

Optimization 

This section shows the idealness of HDS in determining material parameters by the results obtained from two 
MATLAB regression programs, one is based on HDS algorithm with Martin’s models, the other uses DE algorithm. The 
first stage uses these programs to calculate the material constants from Kwok’s work based on the simulation data of 
Kwok’s model in the previous sections. The stage is conducted to evaluate the convergence rate of HDS and DE with the 
expectation that HDS will give good results for all materials. In the second stage, the programs are applied to calculate 
the complex material constants for real experimental data of a commercial PZT material (Beijing Ultrasonic, 2023). 

In both cases, the number of generations, population, and other parameters in HDS are the same and can be seen 
in Table 3. It should be noted that HDS uses a random search technique, thus its results in each run may different, but 
only the best optimal results are reported. 

Table 3. Parameters for HDS 

Parameters Generation Population F Cr 

Values 150 100 [0.4, 1] [0.7, 1] 
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Evaluation of the convergence and the accuracy of HDS 

In this stage, the Matlab regression program HDS is firstly tried for regression of the six optimal values of 

33 33 0, tan , tan , tan , , /  D S
t k e mk cδ δ δ ε ε  of the four materials namely PVDF, P(VDF-TrEE), 1-3/PZT/Epoxy Composite and 

Lead Metaniobate. The target data for fitting are obtained from the simulation in the previous section. During the 
optimization process, the boundaries of six design variables are provided in Table 4. 

Table 4. Boundaries of design variables in Kwok’s model 

Design variables tk  tan kδ  tan eδ  tan mδ  33
Dc  (GPa) 33 0/Sε ε  

Lower bound 0 -1 0 0 5 1 

Upper bound 1 1 1 1 100 300 

Table 5. Optimal results obtained by HDS and DE 

Materials Methods tk  tan kδ  tan eδ  tan mδ  33
Dc  (GPa) 33 0/Sε ε  

PVDF HDS 0.1457 0.0375 0.2563 0.1334 8.7031 6.3163 

DE 0.1461 0.0356 0.2560 0.1339 8.7036 6.2392 

Kwok 0.1460 0.0362 0.2650 0.1330 8.7000 6.3000 

P(VDF-TrEE) HDS 0.2621 0.0143 0.1058 0.0510 10.1003 4.3303 

DE 0.2622 0.0140 0.1057 0.0510 10.0999 4.6725 

Kwok 0.2620 0.0143 0.1060 0.0510 10.1000 4.3800 

1-3/PZT/Epoxy 
Composite 

HDS 0.5800 -0.0074 0.0419 0.0237 61.3000 116.5844 

DE 0.5800 -0.0074 0.0420 0.0237 61.2997 116.2229 

Kwok 0.5800 -0.0074 0.0420 0.0237 61.3000 116.0000 

Lead Metaniobate HDS 0.3340 0.0008 0.0089 0.0630 65.8006 257.4015 

DE 0.3340 0.0008 0.0089 0.0630 65.7975 255.1552 

Kwok 0.3340 0.0008 0.0089 0.0630 65.8000 258.0000 

The optimal results of HDS and DE are reported in Table 5. It shows that HDS gives a good performance since it 
provides the same results as those in Kwok’s work (K.W. Kwok et al. (1997)). However, the convergence history illustrated 
in Figure 3 and Figure 4 show that the convergence rate of HDS is much better than DE, then HDS’s calculation number 
is 2-3 time less than the DE’s calculation number. 

The average algorithm convergence speed of HDS reached 5350 – 6500, much faster than DE which is 10000-15000. 
The expectation optimal value (cost function f(X)) is set at 0.001. This is reasonable since the regression function is 
performed on the data set calculated from Kwok's, so there is no effect of noise as in the data from the experiment. 

The comparison results in Table 5 and Figure 4 show that the regression method with a newly developed HDS 
algorithm for Martin's general model gives complete agreement with all surveyed piezoelectric materials. This allows 
using a new method to determine the piezoelectric material parameters with arbitrary configuration from measurement 
data with high accuracy and reliability. 

HDS algorithm applying in experimental data 

The experimental data for this stage is achieved from the authors’ Ministry of Education and Training project (B2020-
TNA-02). The experiment was set up to measure the impedance–phase spectra of 4 stacked PZT rings by the Keysight 
E5061B-3L5 ENA impedance analyzer. The PZT rings are stacked by a pair of very thin wires (0.005 mm diameter). The 
PZT ring dimensions and its material properties are shown in Table 6. 
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Figure 3. Convergence history of HDS and DE for the data form Kwok’s work 

 
Figure 4. Comparison of amplitude and phase of impedance obtained by Kwok and HDS methods 

Table 6. Several parameters of PZT rings 
 

Density (kg/m3) Thickness of a PZT ring  (mm) Number of rings Outer diameter  (mm) Inner diameter (mm) 

PZT 7500 6.5 4 50 17 

 
As the mention above, the program using HDS is applied to find variables 33 33 0, tan , tan , tan , , /  D S

t k e mk cδ δ δ ε ε  of PZT 
material (bjultrasonic.com) from the 4 stacked PZT rings. The lower and upper bounds of these parameters are shown in Table 7. 

The optimal results are provided in Table 8. The convergence history is illustrated in Figure 5. 
No doubt to say that HDS gives a great performance since the data of simulation with corresponding optimal 

constants fitted well with those from experiments. 
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Table 7. Bounds of design variables in Kwok’s model 

Design variables tk  tan kδ  tan eδ  tan mδ  33
Dc  (GPa) 33 0/Sε ε  

Lower bound 0 -1 0 0 1 500 

Upper bound 1 1 1 1 1 50  2000 

Table 8. Optimal values of design variables in PZT (bjultrasonic.com) 

Design variables tk  tan kδ  tan eδ  tan mδ  33
Dc  (GPa) 33 0/Sε ε  

Values HDS 0.3789 0.0024 0.0487 0.0068 30.2695 888.3594 
Values DE 0.3789 0.0026 0.0489 0.0069 30.2687 878.8385 

 

Figure 5. The rate of convergence of the HDS and DE at the left; at the right is comparison of calculated impedance – black line and 
phase - red line, solid for HDS and dashed line for DE with experimental data (|Z|, black point makers and phase, red point makers. 

Similar to the above results, the convergence rate of HDS algorithm is much better than DE algorithm (the left side 
of Figure 5). However, the expectation optimal value is 8.4. The cause of this difference is the “non-smooth” or noise of 
experimentally measured data. Nonetheless, the results presented in the right side of Figure 5 show that the results from 
HDS regression algorithm are ideal and promising. 

CONCLUSION 

In this study, the HDS regression method is successfully applied for the estimation of the material parameters of 
piezoelectric materials with extreme accuracy for the first time. The development of a nonlinear regression algorithm 
based on HDS to calculate the main coefficients of piezoelectric materials has many outstanding advantages over 
previous methods, including (i) applicable capacity to all piezoelectric material configurations with varied thickness and 
unlimited layers which is particularly popular in transducers; (ii) the calculation of material parameters requires only 
impedance-phase-frequency spectra data in the resonant-anti-resonance frequency domain and an initial choice for data 
or any parameter is not necessary; (iii) the HDS can be applied to piezoelectric rings which are currently installed in the 
transducers, as a result, degradation of the material can be calculated as well as for the calculation and design of suitable 
boosters or horns, and these contents will be mentioned in the next studies. 
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