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A nonlocal model for size effect and localization in plasticity
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Abstract

A simple nonlocal plasticity model is proposed to account for the size dependence of
plastic deformation at the micro-scale and at the same time to regularize the response in the
presence of localization phenomena. Nonlocality is introduced in the yield function through
the definition of a nonlocal strain, which is the weighted average of the local strain over a
suitable neighborhood, depending on the material length. We apply the model to a strain
localization problem of a softening bar and we compare model predictions with experiments
on microbending and microtorsion.

1 Introduction

Classical local plasticity theory, in which no length scale enters, disregards the influence of the
microscopic material structure on the macroscopic material behaviour. Although local theories
are able to interpret the material behavior in a large number of applications, they become
inadequate to model phenomena such as the experimentally observed size-dependence of the
plastic response of micro-sized solids or the appearance of localization bands of finite width in
the presence of softening or very large strains.

In particular, tests performed at the micro- or nano-scale such as nano-indentation [3,27,28,
32], bending of thin metallic beams [21, 31] or micro-torsion of thin copper wires [17] have pro-
vided experimental evidence of strain gradient hardening, which makes the response dependent
on the scale of the structure. Hardness and strength increase as the specimen size is decreased;
this size effect, which is negligible for macro-specimen, becomes important at very small scales
and cannot be captured by local models.

Another noteworthy example is the localization phenomenon. Strain localization is char-
acterized by pronounced displacement gradients – induced by geometry, boundary conditions,
material heterogeneity or local defects – in restrict zones of the medium, called strain local-
ization zones. With local models, the width of the localization zones tend to zero, with the
nowadays well known numerical consequences in terms of pathological mesh dependence. As
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pointed out in [7, 24], mathematically, the boundary value problem becomes ill-posed and the
model no longer represents the physical reality.

The ill-posedness of the problem can be overcame by using regularization techniques, pro-
viding accurate numerical solutions. Nonlocal gradient models [8,10,13], nonlocal integral mod-
els [5, 9, 29] and micropolar models [30] which include a material internal length have been
formulated and effectively used.

Enhanced gradient models have also been used to interpret size effect at the microscale, see
[1,2,4,16,18,20,23,25]. These models allow to account for the presence of geometrically necessary
dislocations whose accumulation increases the flow stress; this effect becomes important when the
scale of the specimen approaches the scale of the lattice. Gradient plasticity formulations lead to
the definition of one or more internal length parameters, or even internal length tensors, whose
values can be identified on the basis of sophisticated tests and/or atomistic considerations [15,17].
Gao and Huang in [19] explore the possibility of modeling size-dependent plasticity within the
framework of nonlocal continuum theories. Considering the Taylor expansion of the strain, they
represent strain gradient as a nonlocal integral of strain

In this work we propose an alternative nonlocal plastic model intended to capture the mate-
rial behavior at the microscale and at the same time to regularize the response in the presence of
localization phenomena. Nonlocality is introduced in the yield function through the definition of
a nonlocal strain which is the weighted average of the local strain over a suitable neighborhood
depending on the material length. Similarly to the so-called lower order strain gradient plastic-
ity theory [4, 26], this formulation does not require any additional stress quantity or boundary
condition.

The effectiveness of the proposed model to reproduce size effect at the micro-scale is checked
by simulating the experimental results concerning microbending of thin films and micro-torsion
of thin wires. The regularization properties of the nonlocal formulation are evidenced with
reference to the simple one-dimensional problem of tension in a softening bar.

2 Formulation

We consider the elastoplastic evolution of a body Ω. The constitutive model is expressed by the
following state equations, loading-unloading conditions and evolutive equations

σ =E : (ε − εp) , χ = χ (η) (1)

f (σ, χ) ≤ 0, λ̇ ≥ 0, f λ̇ = 0 (2)

ε̇p =
∂g (σ, χ)

∂σ
λ̇, η̇ = −∂g (σ, χ)

∂χ
λ̇ (3)

where σ is the stress tensor, ε and εp are the total and plastic strain tensors, E is the elasticity
tensor, η is a set of internal variables describing hardening, χ are the thermodynamic forces
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conjugate to η, f is the yield function, λ̇ is the plastic multiplier and g the inelastic potential. A
generalization of the above local plasticity model is here proposed to account for size effect at the
microscale and to deal with localization problems. An internal material length ` is introduced
in the model in order to account for nonlocal interactions in the inelastic behaviour. A nonlocal
yield function f̄ is defined which depends on an integral nonlocal total strain measure ε̄ (x)

ε̄ (x) =
∫

Ω
W (x− ξ) ε (ξ) dξ (4)

W (x− ξ) being a weight function. A possible choice for W is the Gaussian weight function, as
proposed in [9, 29],

W (x− ξ) =
1

W0(x)
exp

(
−‖x− ξ‖2

2`2

)
with W0(x) =

∫

Ω
exp

(
−‖x− ξ‖2

2`2

)
dξ (5)

The parameter ` represents an internal scale, which is considered a material parameter with
dimension of a length. This parameter defines the dimension of the neighborhood that affects
the non-local function. Note that the average is extended to the whole volume Ω, but due
to the shape of the weigth function, the material parameter ` defines the region of the body,
surrounding point x, which really influences the behaviour at that point. The nonlocal strain
tensor ε̄ is only used in the yield function, while state equations remain in the local form (1).
In the following, for simplicity, we will restrict to isotropic hardening/softening case described
by a single scalar internal variable η; in this case the nonlocal yield function can be written as

f̄ (σ,χ) = ϕ (E : (ε̄ − εp))− χ (η) (6)

where ϕ is an equivalent stress (e.g. Mises or Drucker-Prager equivalent stress).
The linear strain-displacement relation and equilibrium equations are the conventional one

ε =
1
2

(
gradT u+ gradu

)
(7)

divσ = F σT = σ (8)

where F is the body force vector.
The nonlocal boundary value problem above defined is always elliptic, also in the presence

of softening behaviour, as proved in [11]. A bifurcation analysis shows that the characteristic
length ` of the model fixes the wavelength of possible bifurcated solutions, thus preventing strain
localization into a line of zero thickness.

2.1 Mises flow theory

Let us decompose total and plastic strains and stresses into their deviatoric (e, ep, s) and
volumetric parts (trε,trεp,trσ)

ε = e+
trε

3
1, εp = ep +

trεp

3
1, σ = s+

trσ

3
1 (9)
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According to Mises plasticity, the volumetric behaviour is assumed to be purely elastic, thus
the state equations can be written as

tr σ = 3Ktrε, s = 2G (e − ep) (10)

K and G being the bulk and shear modulus, respectively.
The yield condition for the non local mises flow theory reads

f̄ (σ,χ) = σ̄eq − χ (η) = 2µ

√
3
2

(ē − ep) : (ē − ep)− χ (η) (11)

where ē is the nonlocal deviatoric strain. Plastic strain rates and internal variables rates are
given by normality rules

ėp =
3s

σ̄eq
λ̇, η̇ = λ̇ (12)

where λ̇ is the plastic multiplier to be determined by the loading-unloading conditions (2).

2.2 Deformation theory

The deformation theory for the proposed model assumes the same structure of classical defor-
mation theory [22]. The total deviatoric strain are assumed proportional to deviatoric stresses

e = αs (13)

The nonlocal yield function thus becomes

f̄ (σ,χ) = σ̄eq − χ (η) =

√
3
2 ē : ē

α
− χ (η) (14)

Under full loading assumption the coefficient α is given by

α =

√
3
2 ē : ē

χ (η)
(15)

The volumetric behaviour is linear elastic as in the flow theory.

3 Applications

3.1 Tension of a softening bar

We consider an elastoplastic softening bar subject to an imposed axial displacement u. This
classical example has been extensively explored in the literature to demonstrate the shortcomings
of a local model and the efficiency of proposed regularization techniques, see e.g. [6, 8, 14]. For

Latin American Journal of Solids and Structures 2 (2005)



A nonlocal model for size effect and localization in plasticity 157

L

u

MPa50
MPa100
MPa2000
MPa2100

mm10

1

0

=
−=

=
=

=

y

H
E
E
L

σ MPa50
MPa100
MPa2000
MPa2100

mm10

1

0

=
−=

=
=

=

y

H
E
E
L

σ

(a)

 

σy 

E1 
E0 

σ 

ε 

(b)

Figure 1: Uniaxial tension test: (a) geometry and material data (b) linear softening law

this one dimensional example only one stress component σ is considered and, assuming linear
softening behaviour, the flow theory of the nonlocal model can be expressed as

f̄ (σ,χ) = E (ε̄− εp)− χ (η) , χ = σy + Hη, ε̇p = η̇ = λ̇ (16)

with ε̄ defined as in eq.(4). E is the Young modulus, σy is the initial yield limit and H < 0 is
the softening parameter (see Figure 1). The central part of the bar is weakened (5 % reduction
of the Young’s modulus) to trigger localization; E1 and Eo are respectively the Young’s moduli
in the weakened central part and in the rest of the bar. Numerical analyses, both with the
local and nonlocal formulations (with material internal length ` = 0.19mm) have been carried
out using three different meshes of constant strain bar elements. The nonlocal procedure has
required to modify the predictor-correction iterative solution scheme, adding an averaging phase
between predictor and corrector to compute the nonlocal strain ε̄. An arc-length procedure has
been used to follow possible snap- back behaviour.

Figure 2 shows the numerical response in terms of reaction versus imposed displacement
obtained with the different meshes. The response obtained with the local model, figure 2a
exhibit pathological mesh dependence: as the mesh is refined the numerical response becomes
more brittle and tends to the unphysical prediction of failure with zero dissipation. The results
obtained with the proposed nonlocal model are shown in figure 2b. Convergence to a physically
acceptable solution with a well-defined positive dissipation is observed. The plastic strain profile
for u = 0.6 mm, figure 3, is also almost mesh-independent and evidences a localization zone
depending on the material internal length ` and not on the element size.

3.2 Bending of thin beams

The nonlocal model here proposed is used to simulate the microbend tests reported in [31] which
give evidence of the size effect at the micron scale. Bending of ultra-thin beams is considered
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Figure 2: Reaction vs displacement curves for different meshes (a) local model; (b) nonlocal
model.
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Figure 3: Plastic deformations along the bar, nonlocal model

under plane strain conditions. The reference frame is defined in figure 4, bending is applied in
the x1 − x2 plane.

Since bending moment is monotonically increased, the deformation theory is used in this
example and, for simplicity, elastic deformation is neglected. With the above hypotheses, the
beam theory gives:

ε11 = e11 = κx2; ε22 = e22 = −κx2; ε33 = ε12 = ε13 = ε23 = 0 (17)

where κ is the curvature. The nonvanishing nonlocal strain components are

ε̄11 = −ε̄22 =

∫ h
2

−h
2

exp
(−‖x2−ξ‖2

2`2

)
κξdξ

∫ h
2

−h
2

exp
(−‖x2−ξ‖2

2`2

)
dξ

(18)
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Figure 4: Microbending: geometry

Figure 5 shows the variation of ε̄11 along the beam thickness (axes are normalized), for different
values of the ratio `

h between internal material length and the beam height. As ` → 0 or h→∞,

the local linear distribution is approached; for a given material (` fixed) the nonlocal effect
becomes important for small scale specimen.
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Figure 5: Nonlocal strain

In the deformation theory deviatoric stresses are proportional to deviatoric strains through
eq. (13), therefore, due to (17), one has

s11 = −s22 (19)

The equilibrium in the bulk and the traction free boundary conditions al x2 = ±h
2 entail

σ22 = 0 (20)

and, hence, give the hydrostatic stress and the normal stress to the cross section

trσ = −3s22, σ11 = 2s11 (21)
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The bending moment can be finally computed as

M =
∫ h

2

−h
2

2s11x2dx2 =
∫ h

2

−h
2

2
χ√

3
2

(
ε̄2
11 + ε̄2

22

)κx2x2dx2 (22)

Linear isotropic hardening χ=σ0 + Hε, with parameters σ0 and H taken from the microtensile
tests of [31], has been assumed for the simulation. Figure 6 compares the experimental results
of [31] with the prediction of the proposed model (with ` = 4 µm) in terms of non-dimensional
bending moment ( 4M

σ0bh2 ) versus maximum strain κh
2 : good agreement is found.
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Figure 6: Comparison of the proposed model prediction (solid lines) with experimental results
of [31].

3.3 Torsion of thin wires

The third example concerns the simulation of the torsion tests conducted by Fleck and co-
workers [17] on thin wires to obtain experimental evidence of the size effect at the microscale in
ductile materials. These tests have been used by many authors [2,4,23] to validate the proposed
nonlocal models.

Let us consider a circular wire of radius R, diameter D = 2R, subject to a torque M (Figure
7). The only nonzero stress and strain components are the tangential stress τ and the shear
strain γ, which varies with radius r from the axis x3 of twist

γ = φr = γe + γp τ = Gγe (23)

φ is the twist per unit length of the wire. Torque and tangential stress are related through
equilibrium

M = 2π

∫ R

0
τr2dr (24)
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Figure 7: Torsion of thin wires: coordinate systems.

Due to the axisymmetry of the problem, there is no dependence on the angle θ in the response.
The general expressions for the nonlocal yield function (6) and the evolutive equations (3)

can be simplified as
f̄ = G(γ̄ − γp)− χ (η) , γ̇p = η̇ = λ̇ (25)

where γ̄ is the nonlocal shear strain defined according to (4) and taking into account the axial-
symmetry of the problem

γ̄ (r) =
∫ R

0
W (r − s) γ (s) ds (26)

Non-linear hardening is assumed in the form

χ = τy + kηN = τy + k (γp)N (27)

where τy is the yield stress and N is the hardening exponent.
Substituting equation (23)a into equation (4) one has,

γ̄ = φ

2 `

(
re−

r2

2 `2 − (R + r)e−
(R−r)2

2 `2

)
+
√

2π
(
`2 + r2

) (
Erf(R−r√

2 `
) + Erf( r√

2 `
)
)

2 `

(
−e

−(R−r)2

2 `2 + e
−r2

2 `2

)
+
√

2π r
(
Erf(R−r√

2 `
) + Erf( r√

2 `
)
) (28)

where,

Erf(x) =
2√
π

∫ x

0
e−t2dt (29)

is the function error, i.e., twice the integral of Gaussian distribution with 0 mean and variance
of 1/2. Figure 8 presents the γ̄ profile to different values of R. As the radius R increases, the
nonlocal effect decreases and γ̄ tends to its local value γ.

When r = R, γ̄ achieves its maximum value γ̄R, defined by,

γ̄R = φ

2R

(
−2 + e

−R2

2 `2

)
` +

(
R2 + `2

) √
2π Erf( R√

2 `
)

2
(
−1 + e

−R2

2 `2

)
` + R

√
2π Erf( R√

2 `
)

(30)
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Figure 8: Profile of the nonlocal shear strain for different wire size R

G k N τy `

30 GPa 117 MPa 0.23 113 MPa 0.5 µm

Table 1: Set of material parameters.

For the numerical example, the values in Table 1 where adopted, in order to capture the
experimental results obtained in [17] and shown in Figure 9a.

The solution obtained with the proposed model is given by Figure 9b. For varying radius,
the model gives a qualitatively correct prediction of the size effect in the plastic response.
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Figure 9: Normalized torque versus normalized twist at r = R (a) experimental results from [17];
(b) simulation with constant yield stress.

In order to illustrate the decrease of gradient effect when the radius increases, in Figure 10
different length scale parameters are considered for radii R = 10 µm and R = 85 µm. It can be
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Figure 10: Effect of material length ` (a) R = 10µm; (b) R = 85µm

seen that the nonlocal effect is more evident for small specimen size.

4 Conclusions

A simple elastoplastic nonlocal model is proposed in order to deal with phenomena which are not
well represented by conventional continuum theories, such as localization and size–dependence
in micron-sized structures. From the theoretical point of view, the model introduces an inter-
nal length and ensures well-posedness of the boundary value problem also in the presence of
softening. Numerically, the proposed model presents no difficulties in the implementation, since
the nonlocal variable – total strain – is the input, driving quantity in the solution of nonlinear
constitutive equations. The nonlocal corrector phase can still be performed locally, at the Gauss
point level. The simple one-dimensional examples shown in this paper confirm the potentiality
of the proposed model. Application to more realistic problems exhibiting size effects, such as
the totally not standardized microtensile tests adopted by the dentistry to evaluate the strength
of a resin [12], is currently in progress.
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