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Abstract 

The dynamic response of functionally graded skew shell is investi-
gated using a C0 finite element formulation. Reddy’s higher order 
theory has been employed to perform the analysis and the volume 
fractions of the ceramic and metallic components are assumed to 
follow simple linear distribution law. The present study attempts 
to focus mainly on the influence of skew angle on frequency pa-
rameter and displacement of shell panel with various geometries. 
Comprehensive numerical results are demonstrated for cylindrical, 
spherical and hypar shells for different boundary conditions and 
skew angles.The findings obtained for functionally graded skew 
shell panels are new and can be used as bench mark for research-
ers in this field. 
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Skew shell, functionally graded material, finite element formula-
tion, higher order shear deformation theory. 
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1 INTRODUCTION 

Due to commodious applications of functionally graded material (FGM) in various fields of engineer-
ing, it enthralled the attention of many researchers worldwide. Moreover, the smooth and continuous 
change of mechanical properties across the preferred direction made them to occupy forefront in the 
material research. Understanding the vibration characteristics and dynamic behavior of members made 
of such materials is of prime importance from structural design point of view.  

Owing to the above reasons, a large number of works have been devoted to conceive the vibration 
characteristics and dynamic response of functionally graded plates and shells exposed to thermo-
mechanical loads. Consequently, many theories were developed to model the structure that accurately 
predicts its response under different loading environment. Some of the most widely adopted theories 
available in the scientific literature include first order shear deformation theory [26] and higher order 
shear deformation theory [24, 25]. In the past years, first order shear deformation theory (FSDT) 
which neglects the effects of transverse shear strain is used to accomplish the linear as well as non 
linear response of shells. For example, Zhao et al.[6] carried out static and vibration analysis of func-
tionally graded cylindrical shell using element-free kp-Ritz method and  found that the volume fraction 
exponent plays significant role in predicting the response of the shell;  Kim et al. [4] presented the 
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nonlinear analysis of FGM plates and shells using analytical solution and assumes the properties in 
terms of volume fraction exponent that follows sigmoid function; Arciniega and Reddy [3] presented a 
tensor based finite element formulation for large deformation analysis of FGM shells; and Reddy and 
Chin [10] examined the dynamic response of functionally graded plates and shells under thermo-
mechanical environment. But the use of FSDT depends on the shear correction factor which is the 
cumbersome one to decide. Moreover, the theory may not be accurate in case of thick shells. 

To explicate the shortcomings of the first order shear deformation theory many higher order shear 
deformation theories (HSDT) were developed in due course of time.  It is noteworthy to mention that, 
Reddy’s higher order shear deformation theory [24] is the most widely implemented by many research-
ers, where the realistic parabolic variation of transverse shear strain has been taken into account to 
eliminate the use of shear correction factor.  Here, we cite the papers where the higher order theory 
[24]is successfully implemented with some analytical tools.  Yang and Shen [18] analyzed the effect of 
thermal field on free and forced vibration analysis of functionally graded plates that combines the 
Reddy’s higher order shear deformation plate theory with Galerkin technique. The plates with proper-
ties in between ceramic and metal components do not show the intermediate response, when the prop-
erties are considered as temperature dependent. Static and dynamic response of functionally graded 
plates using meshless local petrov-Galerkin approach in conjunction with higher order theory has been 
done by Qian et al.[19]. Mori-Tanaka method that includes interactions between various elastic con-
stants is used to estimate the properties of the functionally graded plate. Neves et al. [14] extended the 
Carrera’s unified formulation to perform vibration analysis of cylindrical shells. Two cases of trans-
verse displacement (constant transverse displacement and quadratic variation with thickness co-
ordinate) are considered to determine the frequency parameter of the cylindrical shell panels. 
Isvandzibaei and Moarrefzadeh[5] performed the free vibration analysis of FGM shells and influence of 
different parameters on frequency characteristics of shell are discussed briefly. Yang and Shen[15] ex-
amined the free vibration and stability analysis of FGM cylindrical shell panels under thermal and 
mechanical loads. Reddy’s higher order theory, Galerkin technique and Blotin’s method are applied to 
study the response of the shell panels under static and periodic loads. Setareh and Isvandzibaei[8] stud-
ied the vibration characteristics of functionally graded cylindrical shell using Reddy’s higher order 
shear deformation theory.  Influence of constituent volume fraction on frequency parameter was stud-
ied using Nickel and stainless steel shell panels. Pradyumna and Bandyopadhyay[13] located the un-
stable regions in functionally graded shell panels with different geometry (cylindrical, spherical, hypar 
and conical) using finite element formulation. 

Other studies include the dynamic response and stability analysis of functionally graded shells by 
various numerical techniques. Ng et al. [9] carried out the stability analysis of FGM cylindrical shells 
using Bolotin’s method. It is mentioned that control over the response of the plate can be achieved by 
proper variation of volume fraction exponent. Dynamic response of FGM shell under point load was 
investigated by Han et al.[12]. Nezhadi and Ayob [1] studied the dynamic response of the functionally 
graded cylindrical shell using Rayleigh-Ritz technique. Moreover, studies pertaining to special cases 
like shells embedded with piezoelectric layers are also considerable in number. Among them are: Wu 
and Syu[11], who studied the static response of functionally graded piezoelectric shells; and Alibeigloo 
et al.[7], who analyzed the free vibration of functionally graded piezo shells. On the whole, it can be 
interpreted that functionally graded materials are widely used in diverse fields of engineering, where 
situations like structural elements subjected to ultra high temperatures and sudden change in tempera-
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ture within a fraction of seconds are encountered. Despite of high cost of this material which is consid-
ered as a drawback, proper design and tailoring of such material to suit different requirement made 
them to stand in the row of advanced materials. 

To date, vibration and dynamic solution of functionally graded shell panels are limited to rectangu-
lar plan form only. Hence, an attempt is made to fill the apparent void exists in the literature by pre-
senting the finite element solution to non rectangular plan form such as skew shells which have wide 
range of applications in modern construction industry. Reddy’s higher order shear deformation theory 
[24] which satisfies the condition of zero transverse shear stress at top and bottom of the shell is im-
plemented. The formulation also incorporates the term for twist curvature (1/Rxy) which plays a vital 
role to analyze the special forms like hypar shell, which is not yet done in any other formulation that 
incorporates Reddy’s higher order theory. The present study is divided into two parts. The first part 
gives deep insight about the vibration characteristics of various forms of functionally graded skew 
shells (cylindrical, spherical and hypar) by incorporating different parameters such as skew angle (α), 
thickness ratio (a/h), curvature ratio (R/a) and boundary conditions (simply supported and clamped). 
In the second part, dynamic response of skew shell is performed using Newmark integration scheme 
[16]. It is anticipated that the present results paves the way for researchers who are involved in the 
area of functionally graded skew shells. 
 

2 MODELING AND FORMULATION 

2.1 Shell geometry 

A shell element having skew boundary with Cartesian coordinate system is depicted in Fig.1. The mid 
surface of the shell is assumed as origin for the material coordinate system. The top surface of the shell 
(z=+h/2) is rich in ceramic content, whereas the bottom surface of the shell (z=-h/2) is rich in metal 
content. A nine noded isoprametric Lagrangian shell element (Fig. 2) having seven nodal unknowns is 
employed to model the present shell element. For analysis of skew shells, the edges of the boundary 
elements are not parallel to the global axes (x, y) of the shell. Hence it is required to carry out the 
necessary transformation from global axes to local axes by using nodal transformation matrix [T].For 
the shell finite element used in the present study the following transformation matrix [T]is utilized. 
 

[T]= 

cosα −sinα 0 0 0 0 0
sinα cosα 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 cosα −sinα 0 0
0 0 0 sinα cosα 0 0
0 0 0 0 0 cosα −sinα
0 0 0 0 0 sinα cosα

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (1) 

 
where α is the skew angle of the shell. For the elements which does not lies on skew edges no transfor-
mation will be required. For hypar shells, the surface equation can be expressed in the following man-
ner. It should be noted that the ratio c/a implies the twist curvature for hypar shell. 
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z = 4 c
ab
xy + cx

a
+ cy
b

 (2) 

 

 Figure 1   Plan view of FGM skew shell.
 

 

 Figure 2   IsoparametricLagrangian element in natural co-ordinate system.
 

 

2.2 Effective properties of shell 

Due to the dissimilarity of material properties along certain direction, it is necessary to evaluate the 
properties accurately using suitable method. Different schemes were proposed in the literature and 
some of them are: three phase model of Frohlich and Sack [20]; self consistent scheme [21]; Mori-
Tanaka technique [22]; mean field approach [23]; Voigt method; and the representative volume ele-
ment. Most widely adopted methods in the literature are Mori-Tanaka technique and Voigt method. 
In the present study Voigt method is employed to estimate the effective properties, such as, Young’s 
modulus (E), Poisson’s ratio (γ) and mass density (ρ) of the shell panel as a function of position.  
 Based on the linear distribution law, effective properties of the shell constituents (E, γ and ρ) are 
expressed in terms of volume fraction of the ceramic and metal content as mentioned below. 

a 

y’ y 

x, x’ 

b 
α 

1          2           3 
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E(z) = Et − Eb{ } z
h
+ 1
2

⎛
⎝⎜

⎞
⎠⎟

n

+ Eb

γ (z) = γ t −γ b{ } z
h
+ 1
2

⎛
⎝⎜

⎞
⎠⎟

n

c

+ γ b

ρ(z) = (ρt − ρb )
z
h
+ 1
2

⎛
⎝⎜

⎞
⎠⎟

n

+ ρb

 
(3) 

where the subscripts “t” and “b” refers to the top and bottom of the surface of the shell respectively, n 
is the non-negative key parameter that describes the optimum distribution of constituents along the 
thickness direction of the shell. It takes the value between zero and infinity (i.e., zero corresponds to 
ceramic portion and infinity corresponds to metal portion). Since the variation of Poisson’s ratio is 
negligible, it is assumed as constant in the present analysis.  

The constitutive relationship of functionally graded shell may be written as, 
 

σ xx

σ yy

σ yz

σ xz

σ xy

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

=

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q33 0 0

0 0 0 Q44 0

0 0 0 0 Q55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

ε xx
ε yy
γ yz
γ xz
γ xy

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

 
(4) 

 
where Qij contains the terms elastic moduli (E) and Poisson’s ratio (γ), in which E alone is the func-
tion of depth as given below.   

 

Q11 =Q22 =
E(z)
1−γ 2

,Q12 =Q21 =
γ E(z)
1−γ 2

, Q44 =Q55 =
E(z)
2(1+ γ )

 

 

Here, the Young’s modulus (E) and Poisson’s ratio (γ) of the panel at any height (z) of the shell can 

be easily estimated by using Equation (3). It should be noted that, the term z
h
+ 1
2

⎛
⎝⎜

⎞
⎠⎟

n

involving in 

Equation (3) implies the volume fraction of the ceramic content (Vc) present in the panel considered. 
Further, the correlation between the volume fraction of ceramic (Vc) and metal (Vm) components is 
given by the relation Vc+Vm=1.0.   
 

2.3 Displacement field 

To describe the deformation profile of the shell panel, a special form of displacement field proposed by 
Reddy [24] is chosen, where the in-plane displacement fields (u and v) are expanded as cubic functions 
of the thickness coordinate (z), while the transverse displacement(w) variable has been assumed to be 
constant through the thickness. Any other choice of displacement field would either not satisfy the 
stress-free boundary conditions or lead to a theory that would involve more dependent unknowns than 
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those in the first-order shear deformation theory [24]. Also, the theory leads to the parabolic distribu-
tion of transverse shear stresses and therefore the need of shear correction co-efficient could be avoid-
ed. According to Reddy’s higher order shear deformation theory [24], the in-plane displacements (u 
and v) and transverse displacement (w) are expressed in terms of corresponding displacements at the 
mid surface (uo, vo and wo) by the following expression. 
 

2 3
0

2 3
0

0

( , , ) ( , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , ) ( , )

x x x

y y y

u x y z u x y z x y z z x y z z x y z

v x y z v x y z z x y z z x y z z x y z
w x y w x y

θ ξ ζ
θ ξ ζ

= + + +

= + + +

=

 (5) 

 
where u, v and w are the displacements of any general point in the shell.  The parameters u0, v0and w0 
are the displacements of points which are in the mid-surface (i.e., reference surface) of the shell and θx, 
θy are the bending rotations defined at the mid-surface about the y and x axes respectively. ξx, ξy, ζx 
and ζy are higher order terms appears in Taylor’s series expansion and solved by the condition of zero 
transverse shear stains (γxz(x,y,±h/2) = γyz(x,y,±h/2)=0) at the top and bottom of the shell surface. 
Thus, incorporation of the above condition in Equation (5) leads to the expression for unknown higher 
order terms (ξx, ξy, ζx and ζy). Finally, by substituting the values of unknown higher order terms (ξx, 
ξy, ζx and ζy) in Equation (5) and rearranging all the terms that appears in the displacement field (u 
and v), the following final expression may be obtained. 
 

3

0 2

3

0 2

0

4( , , ) ( , , ) ( , , )
3

4( , , ) ( , , ) ( , , )
3

( , ) ( , )

x x

y y

z wu x y z u x y z z x y z
h x
z wv x y z v x y z z x y z
h y

w x y w x y

θ θ

θ θ

∂⎛ ⎞= + − +⎜ ⎟∂⎝ ⎠
⎛ ⎞∂= + − +⎜ ⎟∂⎝ ⎠

=

 (6) 

 
In Equation (6), it is to be noted that the in-plane displacement field u and v invites the problem of C1 
continuity by the presence of second order derivatives in the strain part. The problem of choosing C1 
elements are well known due to its practical applications.  In order to overcome the problem of C1 
continuity requirement at the time of finite element implementation the terms involving derivatives of 

transverse displacement are treated as separate field variables. i.e., ψ x
* = θ x +

∂w
∂x

⎛
⎝⎜

⎞
⎠⎟

 and ψ y
* = θ y +

∂w
∂y

⎛
⎝⎜

⎞
⎠⎟

 

Hence by above substitution, the final in-plane displacement fields (u and v) for skew shell with the co-
ordinate axes (x’, y’, z’) can be modified as  
 

u (x ', y ', z ') = uo (x ', y ', z ') + zθ x 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
− 4z

3

3h2
ψ x
*

v (x ', y ', z ') = vo (x ', y ', z ') + zθ y 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
− 4z

3

3h2
ψ y
*

 (7) 
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Hence, the basic field variables interpreted in the present study are u0, v0, w0, θx, θy, ψx* and ψy* for 
each node thus forming a total of 63 nodal unknowns for the element. 
 

2.4 Mathematical formulation 

2.4.1 Strain displacement relation 

All the formulation in the present study is confined to linear elastic behavior with small displacements 
and hence small strains. The linear strain- displacement relations according to Sander’s shell theory 
are 
 
 

ε x =
∂u
∂x

+ w
Rx

ε y =
∂v
∂y

+ w
Ry

γ xy =
∂u
∂y

+ ∂v
∂x

+ 2w
Rxy

γ xz =
∂u
∂z

+ ∂w
∂x

−
C1u
Rx

−
C1v
Rxy

γ yz =
∂v
∂z

+ ∂w
∂y

−
C1v
Rx

−
C1u
Rxy

 

(8) 

 
 
Rx, Ry represents the radii of curvature in the x and y directions respectively and Rxy is the twist radii 
of curvature. C1 is the tracer that helps to reduce the approximation in to Love’s shell theory and it is 
taken as unity in the present formulation. To combine equation (6), (7) and (8), the strain terms may 
be re-written as 
 

ε x = ε xo + z 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
kx −

4z3

3h2
kx
*

ε y = ε yo + z 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
ky −

4z3

3h2
ky
*

γ xy = γ xyo + z 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
kxy −

4z3

3h2
kxy
*

γ yz = φ y + z 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
kyz −

4z3

3h2
kyz
* − 4z

2

h2
kyz
**

γ xz = φx + z 1−
4z2

3h2
⎛
⎝⎜

⎞
⎠⎟
kxz −

4z3

3h2
kxz
* − 4z

2

h2
kxz
**

 (9) 
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where the different terms involved in the above equation are defined in the following fashion. 

ε xo ,ε yo ,γ xyo{ } = ∂uo
∂x

+
wo
Rx
,
∂vo
∂y

+
wo
Ry
,
∂uo
∂y

+
∂vo
∂x

+
2wo
Rxy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

φx ,φ y{ } = ∂u
∂z

+ ∂w
∂x

−
C1u
Rx

−
C1v
Rxy
, ∂w
∂y

+θ y −
C1vo
Rx

−
C1uo
Rxy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

kx ,ky ,kxy ,kx
*,ky

*,kxy
*{ } = ∂θ x

∂x
,
∂θ y
∂y
,
∂θ x
∂y

+
∂θ y
∂x
,
∂ψ x

*

∂x
,
∂ψ y

*

∂y
,
∂ψ x

*

∂y
+
∂ψ y

*

∂x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

kxz ,kyz ,kxz
* ,kyz

* ,kxz
**,kyz

**{ } =
−C1

θ x
Rx

−C1
θ y
Rxy
,−C1

θ y
Ry

−C1
θ x
Rxy
,−C1

ψ x
*

Rx
−C1

ψ y
*

Rxy
,

−C1
ψ y
*

Ry
−C1

ψ x
*

Rxy
,θ x +ψ x

*,θ y +ψ y
*

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 

 

2.4.2 Free vibration analysis 

The acceleration at any point within the element may be expressed in terms of the mid surface param-
eters (u0, v0 and w0) as  

f{ }
..

= ∂2

∂t2
f
−⎧

⎨
⎩

⎫
⎬
⎭
= −ω 2

u0
v0
w0

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
= −ω 2 F⎡⎣ ⎤⎦ f{ }  (10) 

Where f{ } = u0 v0w0θ xθ yψ x
*ψ y

*⎡⎣ ⎤⎦
T
 and the matrix [F] contains the terms involving z and h as ex-

pressed below.   
 

F⎡⎣ ⎤⎦ =

1 0 0 z 0 −4z3

3h2
0

0 1 0 0 z 0 −4z3

3h2

0 0 1 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

Again the matrix {f} is decoupled into matrix [C] that contains the interpolation functions (Ni) and 
global displacement vector {X}.  
 

f{ } = C⎡⎣ ⎤⎦ X{ }  (11) 
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where the global displacement vector {X} contains the nodal unknowns for all the nine nodes and 
thus forming the matrix of order 63x1. i.e., X{ } = ui vi wiθxiθ yiψ xi

* ψ yi
*⎡⎣ ⎤⎦ , where i=1-9. 

The shape functions in [C] associated with the present nine noded Lagrangian element are as given 
below. 
 

 
 

Finally utilizing the Equations (10) and (11), the mass matrix of an element may be expressed as,  
 

m⎡⎣ ⎤⎦ = C⎡⎣ ⎤⎦
T
L⎡⎣ ⎤⎦ C⎡⎣ ⎤⎦ dA

A
∫∫  (12) 

  
where matrix [L]can be written as 
 

L⎡⎣ ⎤⎦ = ρ F⎡⎣ ⎤⎦
T
F⎡⎣ ⎤⎦ dz

z
∫  (13) 

 
Where ρ is the density of the material estimated from Equation (1). Hence the governing equation 

for free vibration analysis becomes,
  
K⎡⎣ ⎤⎦ −ω

2 M⎡⎣ ⎤⎦( ) X{ } = 0{ }  (14) 

 
where [M], [K] and ω are global mass matrix, global  stiffness matrix and frequency parameter. The 
right hand side of the above equation zero represents the problem of free vibration analysis. Eigen 
value algorithm is utilized to extract the mode shapes of the shell panel.  
 
 
 

2.5 Dynamic Response 

For the problem of forced vibration Equation (14) is modified to incorporate damping matrix [C] and 
the force vector {q} at the right hand side. Hence the governing equation for forced vibration analysis 
becomes,  

[M ]U
..

+ [C]U
.

+ [K ]U ={q}  (15) 

 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 2 3

2 2
4 5 6

2 2 2 2
7 8 9

1 1 11 1 , 1 1 , 1 1 ,
4 4 4
1 1 11 1 , 1 1 , 1 1 ,
4 2 2
1 11 1 , 1 1 , 1 1 .
2 2

N N N

N N N

N N N

ξ η ξη ξ η ξη ξ η ξη

ξ η ξη ξ η η ξ η ξ

ξ η η ξ η ξ ξ η

= − − = + − = + +

= − + = − − − = − + −

= − − + = − − − = − −
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Where, [M]and [K] represent the global mass matrix and stiffness matrix respectively.[C] is the 
Rayleigh damping matrix and it is considered as below. 
 

[C] =α [M ]+ β [K ]  (16) 
 

In the above form, α and β are constants to be determined from two given damping ratios corre-
sponding to two unequal frequencies of vibration. {q}appearing in Equation (12) is the dynamic pres-
sure applied on the top of the shell. It is given by, 
 

  
q x, y,t( ) = q0 F(t)  (17) 

 
Here, q0 is the maximum amplitude and F(t)is a dynamic load shape function of time domain. In 

the present analysis F(t) is taken as unity for the case of suddenly applied load. The extension of the 
linear acceleration method known as Newmark integration method [16] is used to obtain the transient 
response of the system. A step-by-step procedure for the problem of dynamic response is summarized 
below. 

1. For the problem under consideration the stiffness matrix [K], mass matrix [M] and damping 
matrix [C]are formed as an initial step. 

2. The magnitude of displacement U( ) , velocity U
.⎛

⎝⎜
⎞
⎠⎟

and acceleration U
..⎛

⎝⎜
⎞
⎠⎟

 at time t=0 are initial-

ized. 
3. The time step ∆t is chosen, and parameters α and β are to be determined from damping ratios 

that corresponds to two unequal natural frequencies obtained from free vibration analysis. 
4. The co-efficients are determined from the expression given below. 

 

ao =
1

αΔt 2
;a1 =

β
αΔt

;a2 =
1

αΔt
;a3 =

1
2α

−1;a4 =
β
α
−1;

a5 =
Δt
2

β
α
− 2

⎛
⎝⎜

⎞
⎠⎟
;a6 = Δt(1− β );a7 = δΔt

 (18) 

 
5. Effective stiffness matrix [K’] is formed as  

 
[K’]=[K]+a0[M]+a1[C] (19) 

    
6. The above formed effective stiffness matrix [K’] is triangularized. Then, effective loads [R’] are 

calculated at time t+∆t. 
7.    From the effective stiffness matrix [K’] and load matrix [R’] generated from step 5, the dis-

placement is solved for time t+∆t and subsequently the velocity and acceleration can be esti-
mated at time interval t+∆t. 
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3 DISCUSSION ON NUMERICAL PROBLEMS 

This section is broken down into three parts:  (1) The accuracy and efficiency of the present finite 
element formulation are validated with the existing literature data for free and forced vibration analy-
sis; (2) Vibration analysis is done for skew shells with cylindrical (Rx=R, Ry=Rxy=∞), spherical 
(Rx=Ry=R, Rxy=∞) and hypar (Rx=Ry=∞) geometry; and (3) Transient response of the cylindrical 
skew shell is studied under suddenly applied dynamic pressure. Properties of the ceramic and metal 
constituents adopted to perform these analyses are mentioned below. 
FGM I: Silicon Nitride (Si3N4)/ Stainless steel (SUS304): 
Ec= 322.27GPa, Em=207.78GPa, γ=0.3, ρc =2370, ρm = 8166. 
FGM II: Silicon carbide (SiC)/ Aluminium (Al): 
Ec= 427GPa, Em=70 GPa, γc=0.17, γ=0.3, ρc =3210, ρm = 2707. 
All the results presented herein are in non-dimensional forms and following are the different non-
dimensional parameters implemented in the study. 
 
Frequency: Ω =Ωa2 12ρm(1−γ

2 ) Emh
2  

 

Displacement: w(a / 2,b / 2) =
wEmh
qoa

2  

 

Time: t = t Em
a2ρm

 

   

Axial stresses: σ xx (a / 2,b / 2) =
σ xx h

2

qa2
 

 

3.1 Free vibration analysis- validation study  

The free vibration of FGM I cylindrical shell with simply supported boundary condition is demon-
strated in Table 1. The mode shapes of first four frequencies for different power law exponent n = 0.0, 
0.2, 2.0, 10.0 and 1000 (very high value), with geometric properties a/R=0.1 and a/h=10 are investi-
gated. The source papers considered for comparison purposes are: Neves et al.[14], who adopted higher 
order shear deformation theory in conjunction with Carrera’s unified formulation [28-30] and colloca-
tion radial basis techniques [31-34]; Pradyumna and Bandyobadyay [17], who presented free vibration 
solution using higher order shear deformation theory [25] combined with finite element formulation; 
and Yang and Shen [15], who carried out the vibration analysis using higher order shear deformation 
theory [27] and semi analytical approach. It may be concluded that the present results exhibit close 
range with the above cited reference data for the maximum number of cases.  
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Table 1   Vibration modes of square cylindrical shell (FGM I) with clamped boundary condition. 
 

Power law 

exponent (n) 

References Mode 

1 2 3 4 

0.0 

(Ceramic) 

Present(12X12)a 74.503 142.647 142.816 201.072 

Yang and Shen [15] 74.518 144.663 145.740 206.992 

Pradyumna and Bandyopadhyay [17] 72.961 138.555 138.555 195.536 

Neves et al. [14] 74.263 141.677 141.848 199.156 

0.2 Present (12X12)a 60.834 116.431 116.587 164.113 

Yang and Shen [15] 57.479 117.717 112.531 159.855 

Pradyumna and Bandyopadhyay [17] 60.026 113.880 114.026 160.623 

Neves et al. [14] 60.006 114.378 114.549 160.735 

2.0 Present (12X12)a 40.585 77.356 77.451 108.754 

Yang and Shen [15] 40.750 78.817 79.407 112.457 

Pradyumna and Bandyopadhyay [17] 39.145 74.291 74.386 104.768 

Neves et al. [14] 40.525 76.972 77.081 107.948 

10.0 Present (12X12)a 35.090 66.709 66.787 93.629 

Yang and Shen [15] 35.852 69.075 69.609 98.386 

Pradyumna and Bandyopadhyay [17] 33.366 63.286 63.366 89.197 

Neves et al. [14] 35.166 66.648 66.732 93.335 

1000 

(Metal) 

Present (12X12)a 32.712 62.341 62.416 87.620 

Yang and shen [15] 32.761 63.314 63.806 90.370 

Pradyumna and Bandyopadhyay [17] 32.027 60.554 60.630 85.178 

Neves et al. [14] 32.610 61.932 62.008 86.816 
a indicates mesh size 

 
Maximum exception cases in first frequency mode are observed with Pradyumna and Bandyopadh-

yay[17] for the values of power law exponent n = 0.0, 2.0 and 10.0.  The probable reason may be due 
to the different model of higher order theory involved in the reference paper by Pradyumna and Ban-
dyopadhyay [17]. In case of Reddy’s higher order deformation theory [24] used by the authors, the 
unknowns present in the in-plane displacement fields are determined by satisfying the condition of zero 
transverse shear stress at the top and bottom surface to be zero, which is not in the case of displace-
ment field proposed by Kant and Khare [25]. Also, for higher modes, the results obtained by the pre-
sent study shows slight deviation from the reference data. The different methods proposed to extract 
the frequencies may be the influence factor for this deviation amongst the results. 
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3.2. Dynamic response - validation study 

The above formulation is extended to study the transient response of shell panel having different skew 
angles (α) and power law exponent (n). Validation part considers the square simply supported FGM 
(Al/Zr02) plate with geometric properties a =b =0.2m and h=0.01m. The corresponding material 
properties are: Ec= 151GPa, γc =0.3, ρc =3000 kg/m3 for Zirconia (Zr02) and Em=70GPa, γm =0.3, ρm 
= 2707 kg/m3 for Aluminium (Al). The plate is subjected to a uniformly distributed load of 106 N/m2 
in upward direction and time step of 0.00001s is considered. Fig.3 reveals the comparison of present 
results with those of Praveen and Reddy [2] which is based on first order shear deformation theory [35, 
36]. The results are compared for selected values of power law exponent n = 0.0, 1.0 and 1000, again a 
good agreement between the results is observed for all the values of n considered.  

 Present (n=1)
 Reddy (n=1)
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Figure 3   Transient response of plate (FGM I, simply supported) –Validation study. 

3.3 New results  

After examining the effectiveness of the present formulation, the study is extended to perform the vi-
bration and dynamic analysis of FGM skew shells. The different shell forms such as cylindrical, spheri-
cal and hypar are considered to generate new results. 
 
3.3.1 Skew cylindrical shell with various thickness ratios (a/h) 

Table 2 present the non dimensional frequency of square clamped cylindrical skew shell with R/a =5.0 
for several skew angles (α). Power law exponent (n) is varied from ceramic phase to metal phase ac-
cording to Equation (1) to show its influence on frequency parameter. It is seen that, as the power law 
index rises, the frequency of the shell tends to reduce, which is also the most common observation in 
case of shells with no skew boundary. The low stiffness offered by the metal portion may be the con-
tributing phenomenon for the above statement. Next, the increasing trend of the frequency with fall in 
thickness of the shell, due to dominance of mass effect is observed. Also, with the increase of skew 
angle of the shell (i.e., beyond skew angle 30°), the frequency parameter tends to increase at faster rate 



1256      G.Taj M.N.A. et al./ Dynamic response of functionally graded skew shell panel 
 

Latin American Journal of Solids and Structures 10(2013) 1243 – 1266 

 

(nearly about 1.5-1.7 times). For thick shells (a/h =5.0 and 10.0) with clamped boundary and skew 
angle 30°, the deviation in results is found from other cases (a/h =20.0, 50.0 and 100).  Therefore, it 
can be inferred that the present model will not accurately predict the frequency in case of thick 
clamped cylindrical skew shell predominantly for skew angle 30°. Fundamental frequency mode of 
simply supported cylindrical skew shell with R/a=5.0 and different values of power law exponent (n) 
are established in Table 3. As estimated, the clamped skew shell establish higher frequency compared 
to simply supported shell, due to high stiffness. 
 

Table 2   Non dimensional frequencies of square cylindrical shell (FGM II) with clamped boundary condition (R/a=5.0). 
 

 
 
 
 
 

a/h Skew 

angle 

(α) 

Power law exponent (n) 

0 0.2 0.5 1.0 2.0 5.0 10 1000 

5 15° 102.822 96.143 88.284 79.251 69.234 57.842 52.183 44.317 

30° 101.371 94.744 86.956 78.070 68.282 56.850 51.134 43.376 

45° 139.226 130.230 119.646 107.450 93.654 77.202 69.172 59.579 

60° 216.383 202.808 186.871 168.348 146.744 120.123 107.135 92.582 

10 15° 185.024 171.999 156.798 140.145 122.578 103.601 94.044 80.083 

30° 171.945 160.384 147.136 132.399 116.610 98.979 89.621 75.080 

45° 242.460 226.300 207.582 186.537 163.679 137.670 124.185 104.825 

60° 395.899 370.347 340.463 306.286 267.921 222.554 199.645 170.403 

20 15° 294.111 272.805 248.382 221.734 194.815 167.807 153.708 128.646 

30° 299.849 280.400 258.372 233.763 206.533 175.248 158.265 131552 

45° 417.148 389.657 358.343 323.420 285.271 242.099 218.796 181.977 

60° 697.837 652.297 599.751 540.624 475.672 401.239 361.731 303.170 

50 15° 534.163 495.534 451.386 403.477 355.577 309.121 284.618 234.978 

30° 693.548 650.797 602.222 547.096 483.754 407.581 365.747 304.370 

45° 934.133 875.746 809.441 734.455 648.985 547.264 491.578 408.749 

60° 1523.040 1427.625 1318.461 1194.980 1055.548 891.609 802.190 667.230 

100 15° 865.366 806.316 739.451 665.682 587.119 502.407 456.651 377.459 

30° 1358.464 1275.945 1181.824 1074.461 950.124 799.230 716.050 596.066 

45° 1813.851 1702.820 1576.456 1432.625 1266.382 1065.001 951.151 794.043 

60° 2897.804 2720.454 2517.364 2286.156 2021.261 1704.125 1529.640 1272.777 
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Table 3   Non dimensional frequencies of square cylindrical shell (FGM II) with simply supported boundary condition (R/a=5.0). 
 

 

 

3.3.2 Skew spherical shell with various thickness ratios (a/h) 

The fundamental frequency of square spherical shell with clamped and simply supported boundary 
condition is demonstrated in Table 4 and Table 5, respectively. Shell panel with R/a=5.0 and several 
values of thickness ratio (a/h) are considered. The observations drawn for spherical shell are similar to 
those for cylindrical shells, except that high magnitude of frequency is reported in case of spherical 
shell. 
 
 
 

a/h Skew angle 

(α) 

Power law exponent (n) 

0 0.2 0.5 1.0 2.0 5.0 10 1000 

5 15° 53.388 49.875 45.871 41.374 36.412 30.693 27.621 22.951 

30° 82.586 76.946 70.400 62.981 54.933 45.898 41.425 35.264 

45° 111.264 104.962 97.497 88.578 77.863 64.833 58.034 47.404 

60° 150.283 143.009 134.086 122.837 108.356 90.098 80.542 64.179 

10 15° 96.784 90.395 83.172 75.010 66.196 55.974 50.420 41.895 

30° 138.752 128.777 117.872 105.667 92.876 79.113 71.918 60.337 

45° 213.801 200.471 185.021 167.208 147.081 123.628 110.968 91.572 

60° 294.951 278.867 260.227 238.182 211.245 176.641 156.895 125.992 

20 15° 175.069 162.844 148.822 113.269 117.244 100.701 91.625 76.290 

30° 235.901 219.941 201.892 181.905 160.377 136.613 123.879 103.166 

45° 389.747 364.161 335.143 302.710 266.935 226.148 204.161 170.081 

60° 583.545 549.221 510.231 465.263 411.876 344.735 306.428 249.947 

50 15° 343.732 319.794 292.993 263.615 232.321 198.385 180.275 149.982 

30° 510.505 476.861 438.863 396.507 349.894 297.010 268.362 223.337 

45° 888.385 831.905 767.856 695.661 614.205 518.860 467.049 389.619 

60° 1436.591 1354.542 1265.107 1132.626 996.447 835.543 746.387 612.483 

100 15° 612.748 571.037 524.088 472.134 416.283 354.822 321.181 266.623 

30° 946.338 885.230 816.317 739.081 652.493 551.682 496.762 413.288 

45° 1706.310 1599.148 1473.810 1328.351 1170.123 995.443 896.831 745.520 

60° 2745.516 2569.263 2369.666 2145.473 1893.306 1597.616 1436.002 1190.948 
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Table 4   Non dimensional frequencies of square spherical shell (FGM II) with clamped boundary condition (R/a=5.0). 
 

 

 

 

 

 

 

 

a/h Skew angle 

(α) 

Power law exponent (n) 

0 0.2 0.5 1.0 2.0 5.0 10 1000 

5 15° 118.769 113.112 106.350 98.089 87.605 73.178 64.509 49.865 

30° 134.209 127.982 120.436 111.092 99.095 82.544 72.829 56.552 

45° 167.197 160.012 151.073 139.545 124.008 102.785 91.109 70.799 

60° 231.432 221.269 207.937 189.837 165.221 136.131 122.957 98.608 

10 15° 227.841 215.096 200.526 183.522 163.047 136.544 120.737 95.661 

30° 249.303 236.188 220.802 202.578 180.478 151.577 134.413 107.090 

45° 312.867 297.302 278.782 256.440 228.725 191.788 169.955 134.698 

60° 444.292 422.317 394.756 358.670 315.584 263.484 236.125 192.118 

20 15° 433.195 407.757 378.694 345.208 305.885 256.928 228.714 185.795 

30° 481.982 453.905 421.762 384.733 341.196 286.645 255.106 206.980 

45° 601.828 567.741 528.306 482.473 428.321 360.064 320.420 259.052 

60° 841.972 790.077 729.640 660.709 583.011 491.312 441.658 368.184 

50 15° 1055.636 990.086 916.386 833.110 737.080 619.584 552.284 453.260 

30° 1170.697 1098.825 1017.694 925.462 818.106 685.900 611.378 502.225 

45° 1437.485 1349.729 1250.066 1136.465 1004.953 844.381 753.608 618.200 

60° 1942.545 1824.688 1689.009 1534.186 1356.430 1143.033 1025.769 852.656 

100 15° 2118.873 1982.404 1837.416 1681.582 1464.397 1218.010 1090.172 903.134 

30° 2320.251 2175.791 2013.102 1828.599 1614.298 1352.009 1205.708 994.916 

45° 2787.506 2611.840 2413.901 2190.306 1933.477 1623.580 1451.427 1197.823 

60° 3773.824 3546.135 3284.538 2985.526 2640.176 2222.549 1991.944 1654.534 
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Table 5 Non dimensional frequencies of square spherical shell (FGM II) with simply supported boundary condition (R/a=5.0). 

 

3.3.3 Skew cylindrical and spherical shell with several curvature ratios (R/a) 

This example refers to the square cylindrical and spherical shell with a/h=10, power law exponent n 
=1.0, having simply supported and clamped boundary condition. Various values of R/a ratio (0.2, 0.5, 
5.0, 10.0, and 50.0) are selected to perform the study. Influence of R/a ratio on frequency parameter 
for cylindrical, spherical skew shell with simply supported and clamped boundary condition are inves-
tigated in Fig.4 and Fig.5, respectively. It should be noted that, R=1/radius of curvature is adopted in 
this case. Up to a certain value of R/a (i.e.,(R/a)=2.0), it endures decline tendency in hasty manner, 
after which it converges to a constant for all the values of R/a considered. The shell with clamped 
boundary confirms elevated frequency compared to shell with simply supported boundary. Further-

a/h Skew angle 

(α) 

Power law exponent (n) 

0 0.2 0.5 1.0 2.0 5.0 10 1000 

5 15° 70.435 67.100 62.922 58.004 52.453 44.708 39.451 29.896 

30° 91.233 87.173 82.240 76.273 68.905 58.169 51.061 38.501 

45° 116.113 110.950 104.671 96.866 86.682 72.269 63.682 49.182 

60° 151.826 145.167 136.969 126.514 112.545 93.545 82.937 64.716 

10 15° 124.097 117.594 109.868 100.849 90.303 76.392 67.616 52.937 

30° 168.884 160.016 149.738 137.711 123.203 103.687 91.410 71.268 

45° 221.471 209.943 196.516 180.595 161.039 134.843 119.027 93.741 

60° 296.372 281.168 263.429 242.203 215.706 180.290 159.414 126.318 

20 15° 231.618 218.506 203.273 185.670 165.132 139.185 123.701 99.292 

30° 325.842 306.822 285.331 260.683 231.492 194.069 171.782 137.498 

45° 427.999 402.915 374.433 341.676 303.036 254.031 225.219 180.925 

60° 585.131 551.643 513.447 469.126 416.014 347.946 308.485 249.207 

50 15° 540.704 508.451 471.324 428.801 379.772 319.895 285.531 233.080 

30° 796.679 747.061 691.631 628.853 555.625 464.637 412.593 336.357 

45° 1031.472 966.306 893.666 811.658 716.652 599.803 533.327 435.128 

60° 1432.093 1343.148 1243.084 1129.401 997.463 835.317 743.462 608.399 

100 15° 1032.021 969.501 897.736 815.787 721.629 607.790 543.353 446.232 

30° 1576.086 1475.905 1364.275 1238.315 1092.292 912.888 811.732 665.998 

45° 2033.259 1902.225 1756.954 1593.624 1404.795 1173.654 1043.847 857.016 

60° 2807.427 2627.588 2426.963 2200.913 1940.566 1624.170 1446.948 1189.335 
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more, spherical skew shell authenticates its superiority over cylindrical skew shell irrespective of the 
value of R/a considered. 
 

 
Figure 4  Influence of R/a ratio on non dimensional frequencies of cylindrical skew shell (FGM II, n =1.0, a/h=10). 

 

 
Figure 5Influence of R/a ratio on non dimensional frequencies of spherical skew shell (FGM II, n =1.0, a/h=10) 

 

3.3.4 Skew hypar shell with various c/a ratios 

In this example, the term c/a is used as an indicator of the twist curvature of hypar shell. Effect of c/a 
ratio on frequency parameter for simply supported and clamped boundary conditions having geometric 
properties a/ h=10.0 and power law exponent (n)=1.0 is illustrated in Table 6. When the c/a ratio 
improves from 0.0 to 0.3, the frequency of the shell increases for all the skew angles (α) considered. As 
anticipated, shell with clamped boundary shows more frequency than shell with simply supported 
boundary.  
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Table 6 Non-dimensional frequencies of square hypar skew shell (FGM II, a/h =10.0, n =1.0) 

 

 

3.3.5 Cylindrical skew shell subjected to dynamic pressure  

In order to generate new results for dynamic response of cylindrical (FGM I) skew shell the effects of 
different parameters such as skew angle (α), volume fraction index (n), shell geometry (cylindrical and 
spherical) and aspect ratio (b/a) are considered and the results are presented in the form of Figures 
(Figs. 6-9).Simply supported boundary condition is adopted to perform all the problems related to 
dynamic response of the panel and the displacement at the center of the shell is shown in all the fig-
ures. As a first illustration, in order to study the consequence of change of skew angle on the central 
displacement, cylindrical shell with a/h=10.0 is used and depicted in Fig.6. In this example, the value 
of the skew angle ranges from 15° to 60° and a linear variation of n (n=1.0) is considered. Cylindrical 
shell with skew angle 30° endures the maximum displacement; and the minimum displacement is ob-
served for skew angle 60°. Hence it is concluded that, an increase in skew angle contributes more stiff-
ness to the shell under consideration thus recording minimum displacement at the center of the shell. 
Fig.7 reveals the consequence of aspect ratio (b/a) on central displacement component for cylindrical 
shell with skew angle (α) =15°. Four different cases of aspect ratio (b/a= 0.5, 1.0, 2.0 and 5.0) and 
skew angle 15 °are chosen to perform the study. Smaller aspect ratio (b/a=0.5) ensures maximum 
central displacement while the minimum value is observed for the value of b/a=5.0. Shell with aspect 
ratio b/a=5.0 exhibits negligible displacement is also observed in Fig.7. In Fig. 8, skew shell (α =15°) 
with two different geometry namely, cylindrical and spherical shells are considered for the study.  As 
expected, the spherical shell report less deflection compared to cylindrical shell, thus ensuring its high 
stiffness. Next, the power law exponent (n) is varied from ceramic (n=0) to metal segment (n=very 
high value), to study its influence on transient response of cylindrical skew shell as demonstrated in 
Fig. 9. Shell with pure metal (n=very high value) gives maximum displacement, followed by composite 
shell and pure ceramic shell (n=0.0). Dominance of stiffness effect offered by pure ceramic shell may be 
the possible cause for the above observation. At the end, variation of axial stresses over a period of 
time for cylindrical shell having skew angle 0° to 60° is also studied. The shell with skew angle (α) 30° 
gives maximum axial stress compared to other skew shells. 
 
 
 

Boundary condition Skew angle 
(α) 

c/a 
0 0.05 0.1 0.15 0.2 0.25 0.3 

Simply supported 

15° 37.085 37.130 37.263 37.484 37.788 38.170 38.625 
30° 60.418 60.448 60.556 60.741 61.002 61.338 61.748 
45° 100.105 100.136 100.238 100.408 100.647 100.955 101.331 
60° 177.715 177.745 177.806 177.897 178.018 178.170 178.352 

Clamped 

15° 56.200 56.254 56.417 56.687 57.063 57.542 58.121 
30° 78.036 78.072 78.174 78.342 78.576 78.874 79.236 
45° 118.182 118.214 118.306 118.458 118.670 118.941 119.271 
60° 199.356 199.376 199.424 199.500 199.603 199.735 199.894 
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Figure 6   Influence of skew angle (α) on the transient response of cylindrical shell (FGM I, n =1.0, a/h=10.0) 
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Figure 7   Effect of aspect ratio (b/a) on dynamic response of cylindrical skew shell (FGM I, α=15°, n=1.0, a/h=10.0) 
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Figure 8   Influence of shell geometry on the dynamic response of cylindrical skew shell (FGM II, α =15°, n =1.0, a/h=10.0) 
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Figure 9   Influence of power law exponent (n) on the dynamic response of cylindrical skew shell (FGM II, α =15°, a/h=10.0) 
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Figure 10   Influence of non-dimensional axial stresses on the dynamic response of cylindrical skew shell (FGM II, α =15°, n =1.0, a/h =100). 

 

4 SUMMARY 

In the present paper the dynamic response of functionally graded skew shell has been studied by using 
a C0 finite element formulation which is developed to overcome the issue of C1 continuity associated 
with the present higher order shear deformation theory (HSDT). Different types of skew shell geome-
tries are considered and various conclusions regarding the analysis are highlighted in the discussion 
section. The term for twist curvature is also included in the formulation to analyze special shell forms 
such as hypar shells. Based on the detailed study, the following observations are drawn regarding the 
free and forced vibration response of different types of functionally graded shells by varying different 
geometric and material parameters.  
 

i. Skew angle: Increase in skew angle (α) exhibit higher frequency irrespective of the value of 
powerlaw exponent (n) considered and hence ensures minimum displacement. Also, shell with 
skew angle 30° gives the maximum axial stress. 

ii. Shell geometry: Spherical skew shell establish better performance in vibration and transient 
response compared to cylindrical skew shell when boundary condition and other parameters (i.e., 
geometric properties and power law exponent) are kept constant. 

iii. Boundary conditions: Skew shell with clamped boundary shows higher frequency than shell 
with simply supported boundary, due to the high rigidity in the first case. 

iv. Other parameters:  Due to preponderance effect of either mass or stiffness, fundamental fre-
quency tends to decrease with the (a) raise in curvature ratio (R/a) and (b)fall-off in thickness 
ratio (a/h) for all the skew angles assumed. 



G.Taj M.N.A. et al./ Dynamic response of functionally graded skew shell panel      1265 
 

Latin American Journal of Solids and Structures 10(2013) 1243 – 1266 

 

The above conclusions may be helpful for the researchers affianced in analysis and design of 
skew shell panels, as they are reported for the first time. 
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