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Abstract 
Friction is an important source of dissipation in dynamical systems. Properly considering it in the numerical 
model is fundamental to obtain stable and representative responses in structures and mechanisms. This is 
especially significant for the well-known Coulomb model due to discontinuity in force when stick-slip 
transition occurs. In this work an improved friction force model is proposed to smooth the force transition at 
null velocity, with an additional parameter obtained from the own system state. The improved model is 
employed in sliding connections of plane frames finite elements. A total Lagrangian Finite Element Method 
(FEM) formulation based on a positional description of the motion is employed. Using a variational principle, 
frictional dissipation is added to the total mechanical energy to develop the equations of motion. The resulting 
nonlinear equations are solved by the Newton-Raphson method accounting for the friction force update in 
the iterative process. Examples are presented to show the formulation effectiveness and possibilities in 
simulating dynamical systems that present the stick-slip effect. 
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1 INTRODUCTION 

In the analysis of structures and mechanisms their dynamical systems are frequently assumed conservative, while, 
in reality, systems present dissipation due to several sources. The frictional dissipative effect, in particular, is important 
to be considered when relative motion between parts of the body exists. This is the case of sliding connections, such as 
prismatic and cylindrical joints, that, by introducing translational movement among body members, allow friction forces 
to develop at their contact regions. 

Mathematical models try to describe some of the many characteristics of friction complex nature. For instance, 
evolving from the classical one-parameter Coulomb friction model, values of the friction force at rest (static friction) and 
in motion (kinetic friction) can be distinguished. The continuous decrease of friction values for increasing, but low, 
velocities, referred as the Stribeck effect (Rabinowicz, 1951), or the adhesion between contacting surfaces before sliding, 
resulting in local pre-sliding deformation (Hsieh and Pan, 2000), may be important and included in some models. The 
effect of lubricant layers between the surfaces (Armstrong-Hélouvry et al., 1994) and the ‘frictional lag’, a delay in the 
change of the force with change in velocity (Hess and Soom, 1990), among other aspects, may be also encountered in 
current friction models. Comprehensive surveys (Olsson et al., 1998; Andersson et al., 2007; Marques et al., 2016) 
present in-depth discussions on the characteristics of friction dissipation and several available models. 

Friction models can be broadly classified in ‘dynamic’ or ‘static’ (Marques et al., 2016). Dynamical models, also 
referred as state-variable models, aim to capture more characteristics of the physically observed friction response by 
including additional degrees of freedom in the system, and usually demanding more parameters. Common state-variable 
friction models are referred as Dahl (Dahl, 1976), LuGre (Canudas de Wit et al., 1995), Elasto-Plastic (Dupont et al., 2002), 
Gonthier (Gonthier et al., 2004), only to list a few. 

Models referred as static, as opposed to dynamical models, dismiss the introduction of state variables to the 
problem, rendering a direct description of the force expression. In those models, however, the discontinuity of the 
friction force at null speed is a major drawback in the numerical solution. Some models (Kikuuwe et al., 2005; Threlfall, 
1978; Armstrong-Hélouvry et al., 1994; Ambrósio, 2003) try to circumvent this problem suggesting null friction at a 
defined null speed interval. This assumption is not a good approximation when relative motion is intermittent, such as 
the sticking and slipping of sliding surfaces, known as the stick-slip effect (Rabinowicz, 1958), as it disregards the influence 
of the resultant force acting on the bodies in contact. Other models (Karnopp, 1985; Leine et al., 1998; Cha et al., 2011; 
Awrejcewicz et al., 2008) consider the resultant force requiring additional parameters, related to a null speed interval, 
for the transition between motion and rest states, which may be problem dependent and difficult to establish. 

It is important to stress that, although several studies developed formulations to capture some of friction 
characteristics, no model is general (Pennestrì et al., 2016) and simpler force models are largely employed for design and 
are present in commercial software. Still, stability of the numerical solution for the formulation comprising the friction 
model is always desired. 

In this study, we propose a modification on a static friction model and employ it in sliding connections of plane 
frames in a large deformation finite element context. The improved model is based on Coulomb friction considering the 
Stribeck curve for the static and kinetic forces transition and viscous effect. Its numerical solution is improved by reducing 
the abrupt transition between rest and motion states of the joints by an interpolation between the static friction value 
and the resultant force in a quasi-null relative speed interval. Differently from other friction models, that define a 
constant value for a null speed interval, here we propose an expression to automatically calculate the referred quasi-null 
interval from the system state. Thus, no additional non-physical parameter needs to be informed. The resultant force 
expression at the sliding connection is achieved for any generic finite element system with multiple degrees of freedom. 
With the proposed improved friction model, stable responses for the stick-slip effect are captured, which is important 
for the correct motion reproduction in structures and mechanisms. 

The framework employed to model the dynamical system (Coda and Paccola, 2014; Siqueira and Coda, 2016; 2017; 
2019) is a fully nonlinear finite element approach for large deformations based on a total Lagrangian description of solids. 
As the formulation uses positions as the main degrees of freedom, instead of displacements, the adopted approach is 
referred as positional. Sliding connections, as prismatic and cylindrical joints, are introduced in the system by means of 
Lagrange multipliers. In the sliding connection formulation, the friction force is associated with a curvilinear displacement 
variable introduced in the system by the joints. This formulation is also capable of representing roughness on the sliding 
surface, making it possible to be combined with the introduced friction dissipation to simulate, for instance, vehicle-
bridge interaction as show in the examples. The Saint-Venant-Kirchhoff constitutive model is adopted to define the plane 
frame elastic strain energy using the Green-Lagrange strain and the second Piola-Kirchhoff stress tensor. The Principle of 
Stationary Total Energy is used to find the equations of motion, comprising the frictional effect, which is discretized along 
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time using the generalized-α method. The resulting nonlinear system is solved by the Newton-Raphson method 
accounting for the friction force update in the iterative process. 

This study is organized as follows. Section 2 briefly presents necessary aspects of the employed nonlinear plane 
frame element followed by the sliding connections kinematical constraints in Section 3. The dynamical equilibrium is 
obtained in Sections, 4 and 5. Known the system parameters, the friction force is introduced in its variational form in 
Section 6 and the improved model is presented in detail by Section 7. Time integration (Section 8) and system solution 
(Section 9) are presented next. In Section 10, examples verify the proposed improved friction model and show the 
possibilities of the developed formulation in the analysis of dynamical systems. 

Dyadic notation is preferred throughout this text due its brevity; however, index notation is also used to clarify 
particular aspects when necessary. 

2 NONLINEAR PLANE FRAME KINEMATICS 

The employed plane frame finite element is presented thoroughly in Coda and Paccola (2014) and Siqueira and Coda 
(2017), however, to develop the present formulation some aspects need to be briefly stated. As the finite element 
behavior is represented by a total Lagrangian description, its strain field needs to be written as a function of the initial 
and current configurations of the solid, restricted to a finite number of degrees of freedom. 

In the positional approach of the FEM, instead of nodal displacements, the parameters of the discretized plane 
frame are its positions (coordinates) and the cross section angle (Fig. 1). The deformation function, f



, depicted in Fig. 2, 
can be written indirectly as function of the non-dimensional space and nodal parameters by mappings from the non-
dimensional space to the initial configuration, 0f



, as 

0 00
1 1 1

0 00
2 2 2

( ) cos ( )
2

( ) sin ( )
2

h
f x X

h
f x X

φ ξ η φ ξ θ

φ ξ η φ ξ θ

 = = +   

 = = +   



  



  

  (1) 
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where x
  and y

  represents any point on the domain of a finite element in the initial and current configuration, 
respectively. The coordinates for both directions 1,2i =  of each node   along the reference line in the initial and current 
configurations are iX   and iY  , respectively. The initial nodal value of the cross-section angle is 0θ



 and after deformation 
is denoted as θ



. The cross section initial height is 0h , ξ  is the non-dimensional space variable in the direction of the 
reference line and η  follows the height direction. The shape functions ( )φ ξ



 are obtained by Lagrange polynomials of any 
order. 

The deformation function can be written as a composition of the previous mappings, Eq. (1) and (2), as 

1 0 1( )f f f −=
  

 .  (3) 
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Fig. 1. Current configuration mapping for a cubic approximation. 

Since only the gradient A  of the deformation function, but not the function itself, is necessary to obtain the strain 
field, as presented by (Bonet et al., 2000; Coda, 2003) 

1 0 1( ) . ( )Grad f −= =


A A A   (4) 

where 

0 1
0 1andi i
ij ij

j j

f f
A A

ξ ξ
∂ ∂

= =
∂ ∂

.  (5) 

During the iterative solution strategy both 0A  and 1A  are numerical values calculated at the integration points resulting 
in a purely numerical procedure. 

As the Saint-Venant-Kirchhoff constitutive law is employed, the Green-Lagrange strain tensor E  have to be 
calculated. This objective strain is given, for instance, by (Ogden, 1984) 

1 1( ) ( )
2 2

t= − = ⋅ −E C I A A I   (6) 

where I  is the second order identity tensor and t= ⋅C A A  is the right Cauchy-Green stretch tensor. 

 
Fig. 2. Deformation mapping. 

As there is no relation between the cross-section angle and the slope of the reference line, the frame kinematic can 
be regarded as Reissner-type. It should be mentioned that the cross-section dimensions are maintained the same during 
motion, thus, to avoid volumetric locking, the constitutive equation is relaxed in order to exclude transverse expansions. 
The specific strain energy for the plane frame is presented in Section 4. 
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3 KINEMATICAL CONSTRAINTS DUE TO SLIDING CONNECTIONS 

To introduce frictional effects in the equations of motion, it is required first to write the constraint equations 
imposed by the sliding connections. The curvilinear position – a new variable introduced in the system – is of particular 
importance as the friction force will act directly on it. In this section we summarize the description of the connections as 
prismatic and cylindrical joints. 

Sliding connections are the ones that constrain relative translations between parts of the body. Fig. 3 illustrates 
both joints and their plane representation. In either case, a sliding node, at which the joint exists, is constrained to move 
over a trajectory comprised of path elements. The distinction between the prismatic and the cylindrical joint (understood 
as a sliding-pin joint for the plane case) is the relative rotation, which is allowed only by the last one. 

 
Fig. 3. Sliding connections and its plane representation: a) prismatic and b) cylindrical (sliding-pin) joints. 

Fig. 4 depicts a sliding connection, belonging to node P̂ , and its path contact point P . The connection is free to 
move along the path (s ξ )  defined by path finite elements, which may have an arbitrary roughness profile ( )r s

 . The new 
variable ( )P Ps s ξ=  defining the curvilinear position and the cross-section orientation of the path point is also illustrated. 

 
Fig. 4. Sliding connection over an arbitrary path (depicted for a prismatic joint). 

The constraint equations, c
 , can be written for both types of joints as a single expression 

0
3 ( )3

ˆ ( ) ( )(1 ) 0P
i i P i P i i P i ic Y Y r sφ ξ θ δ δ= − − ∆ − − =



  (7) 

where the upper bar ( )•  is used to identify variables related to path elements and the upper hat ˆ( )•  is used to define 
the sliding node. In the previous expression i  is the direction ( 1,2,3i =  for prismatic joints and 1,2i =  for cylindrical joints) 
and ijδ  is the Kronecker delta. The difference of cross sections orientations at the initial configuration is 0 0 0ˆ

P P Pθ θ θ∆ = −  and 
must be constant during the sliding process in the prismatic joint case to maintain a fixed relative angle. 

In Eq. (7), the components of the roughness profile, obtained by its ‘height function’ ( )hr s , are given by 

1
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.  (8) 

It is noteworthy that the curvilinear variable ( )s ξ  represents an arch-length function defined by the non-dimensional 
coordinate ξ  and the path element coordinates. Also, as ( )hr s  is defined directly by the curvilinear position, the 
roughness profile is mesh-independent. 
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4 UNCONSTRAINED EQUATIONS OF MOTION 

When dissipation occurs, the mechanical energy of the analyzed structure 0Π  is given by 

0Π = Π −   (9) 

where   represents the dissipation of an encompassing system of total energy Π . Studying this larger system, Eq. (9) 
can be rewritten as 

0Π = Π +   (10) 

or, making explicit the energy parcels of the new larger conservative system 

Π = − + +     (11) 

where   is the stored elastic strain energy,   is the potential of conservative external forces and   is the kinetic energy 
of the body. 

Following Lanczos (1970) and Gurtin et al. (Gurtin et al., 2010), it is not always possible to write down closed 
expressions for dissipative parcels but only its infinitesimal change. Thus, the equations of motion are stated from the 
variation of the energies present in Eq. (11), which is understood as the Principle of Stationary Total Energy 

0δ δ δ δ δΠ = − + + =     (12) 

in which the symbol δ  means variation. 
The total energy can be stated by writing the known expressions of the energies in Eq. (11) as function of the current 

configuration nodal parameters of the discretized body, grouped in the vector ϒ


, as 
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where the specific strain energy u  depends on the strain state E  of the body, Eq. (6), which is function of the nodal 
parameters ϒ



, as defined by the gradient of the deformation function in Eq. (4). Still in Eq. (13), F


 and q
  are the 

concentrated and distributed conservative external loads, respectively. The initial length of the frame reference line is 
0s . The material mass density in the initial configuration, of volume 0V , is 0ρ . The material point velocity is denoted using 

the over-dot as y


 . 
As mentioned before, the Saint-Venant-Kirchhoff constitutive relation is employed due to its simplicity and good 

representation of large displacements on solids that remain in the small to moderate strain regimen, which comprehends 
the majority of the usual applications in engineering. For the plane frame utilized, following Siqueira and Coda (2017), its 
specific energy is given as 

( ) ( ) ( )2 2 2 2
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ν ν ν
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where E  is the longitudinal elastic parameter that approaches the Young modulus for small strains. The shear elastic 
modulus is / [2(1 ν= + )]G E , being ν  a constant that reproduces the Poisson ratio for small strains. Assuming, in equation 
(14) 0ν = , except for the calculation of the shear elastic modulus, avoids locking problems. The second Piola-Kirchhoff 
stress tensor is easily obtained by the energy conjugacy property as 

u∂
=
∂

S
E

.   (15) 
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The equations of motion (geometric nonlinear dynamical equilibrium) are obtained by the development of the 
variations in eq. (13). Details regarding this development can be obtained for the employed plane frame element 
particular kinematics in Siqueira and Coda (2017) and for a general framework of positional finite elements in Siqueira 
and Coda (2019), for instance. Following these studies, the equilibrium can be written in a compact form as 

int 0F F ϒ ϒ− + ⋅ + ⋅ =
   

 M D   (16) 

where: int ( )F Grad=


  is the internal force vector; F


 collects all the external loads; M  results in a constant mass matrix 
for the present total Lagrangian formulation; D  is the external damping matrix arriving from δ  which is assumed as 
Rayleigh type; and ϒ



  and ϒ


  are the velocity and acceleration vectors of the nodal parameters. 

5 CONSTRAINED EQUATIONS OF MOTION 

The dynamic equilibrium stated by Eq. (16) is called unconstrained as no restraints, such as the ones from the sliding 
connections, are present. Several consolidated methodologies to impose constraints on mechanical and structural 
applications can be found in the literature (Géradin and Cardona, 2001; Nocedal and Wright, 1999; Rao, 2009). Here, we 
employ the well-known Lagrange multiplier method along with the Principle of Stationary Total Energy to impose the 
sliding restrictions. Concerning the later introduction of friction dissipation, the multipliers are of great value since in 
Mechanics they might be understood as the contact forces between bodies, an essential information for the friction 
model. 

The Principle of Stationary Total Energy is extended for the case of holonomic constraints by modifying the total 
energy through the introduction of a new potential  , referred as the constraint potential, as 

Π = − + + +    .  (17) 

When using Lagrange multipliers, the expression of the new potential is simply given by 

cλ= ⋅




    (18) 

where λ


 represents the vector of multipliers, which are new variables of the system. Eq. (18) indicates the presence of 
a multiplier for each constraint equation in c

 . It is worth mentioning that the constraint potential is null at the solution, 
therefore, the total energy is not altered. 
Knowing the expression of  , the first variation of the constrained energy, Eq. (17), is 

0δ δ δ δ δ δΠ = − + + + =      (19) 

which, can be developed similarly to the unconstrained case leading to the constrained nonlinear equations of motion, 
expressed in a compact form as 

int con 0F F Fϒ ϒ− + ⋅ + ⋅ + =
    

 M D   (20) 

in which conF


 represents the restriction forces arriving from the constraint potential. As the multipliers are new variables, 
the variation of   is organized in the following force vector, which separates the parameters ϒ



 (including Ps ) and the 
multipliers 

{ } { } concc c F
c
λδ δϒ λ δλ δϒ δλ δϒ δλ

 ∇ ⋅ = ⋅∇ ⋅ + ⋅ = ⋅ = ⋅ 
  





      

 



   (21) 

where the tensor c∇
  represents the gradient of the constraint vector. The derivatives of the constraint equation for the 

sliding connections, Eq. (7), can be found in Siqueira and Coda (2017). 
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6 INTRODUCTION OF THE FRICTION FORCE IN THE SYSTEM 

The friction force is included in the system directly in the Principle of Stationary Total Energy as part of the dissipative 
potential. As previously mentioned, dissipative potentials are introduced in their differential form since closed 
expressions might be unknown, as is the case for the dissipated friction energy f . However, the variation of this 
potential can be written as the work done by the friction force vector fF



 on its displacement trajectory d


 as 

f
f F dδ δ= ⋅




 .  (22) 

To develop Eq. (22), parameters that describes the force displacement must be chosen. For that, the coordinates of 
the sliding node and its path contact point could be chosen. However, since in the previous formulation the curvilinear 
position Ps  is already used as an intrinsic variable, the displacement along the trajectory is simply the scalar expression 

0
p Pd s s= − , being 0

Ps  an arbitrary initial value, and its variation is pd sδ δ= . As the friction force acts tangentially to the 
trajectory, with its value given by the scalar fF , the dissipative parcel is introduced directly in the curvilinear position as 

f f PF sδ δ= .  (23) 

To organize the equations of motion system, we make { }f
fF F=



, the previous equation is rewritten as 

{ } f
f Ps Fδ δ= ⋅



 .  (24) 

Considering the correspondence of the friction force vector fF


 to the system degrees of freedom, the equations of 
motion are restated to include frictional dissipation as 

int con f 0F F F Fϒ ϒ− + ⋅ + ⋅ + + =
     

 M D .  (25) 

7 IMPROVED FRICTION MODEL 

Given the way the friction force is incorporated in the equations of motion, Eq. (25), any expression may be easily 
applied without modifying its development. We start from the Coulomb friction model considering the Stribeck curve for 
the static and kinetic forces transition and a viscous effect. Fig. 5 shows the overall behavior of the friction force with the 
relative velocity among sliding bodies, v . This model considers the Stribeck curve using the expression proposed by Bo 
and Pavelescu (1982) and a linear evolution for the viscous friction, which occurs if lubricant layers are present on the 
surfaces. The expression for the friction force is written as 

( ) ( )

( ) ( )

/
C S C

f

S R R

sgn( ) if 0

min , sgn if 0

v v
F F F e v v v

F

F F F v

δσ
σ η

− 
 + − + ≠ =  


=

  (26) 

with the static SF  and kinetic CF  friction forces given by 

S N C Nands kF F F Fµ µ= =  (27) 

where, sµ  and kµ  are, respectively, the static and kinetic friction coefficients. NF  is the absolute value of the contact 
force, orthogonal to the trajectory at the joint contact point, and RF  is the resultant force on the sliding connection, 
tangential to the contact point. The viscous friction coefficient is η  and the Stribeck parameters are its decay velocity vσ  
and power σδ . The sign function is represented by sgn( ) . 
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We highlight at this point that, for our application in sliding connections, the relative velocity v , tangential to the 
path, can be measured from the curvilinear position velocity, which will be important for the nonlinear solution 
procedure in Section 9. 

For null relative velocity, that is, the rest state, second condition in Eq. (26), the tangential resultant force acting on 
the connection is required for comparison with the static friction value to evaluate the tendency of motion (in case RF  
is greater than SF , or not, otherwise). Properly representing this condition is the key to simulate the stick-slip effect. 

 
Fig. 5. Friction model representation. 

In numerical simulations, the transition from motion to rest states is challenging due to the absence of continuity 
at null speed, as expressed by Eq. (26), leading to instabilities in the response. For this reason, a linear interpolation 
between SF  and RF  is proposed here for the stabilization of the friction force at a range 0 0[ , ]v v−  of quasi-null velocities, 
as depicted in Fig. 6. The improved friction model is written as 
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v v
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F F F v v F F
F F

v F v v F F
v

δσ
σ η

− 
 + − + >
  
= − ≤ ≥


−
+ ≤ <



  (28) 

where 0v  is the quasi-null speed limit. One should note that CF  and SF  are always positive as they are obtained from 
the absolute value of the normal force, Eq. (27), thus, the sign of the friction force in Eq. (28) depends on the values and 
signs of the relative velocity and resultant force. 

 
Fig. 6. Improved friction model. 
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In the proposed approach, RF  is not a constant value, but depends on the system own force state at a given time 
instant, which can even be null, if applicable. Therefore, the system response can be stabilized by means of a smooth 
transition from the motion state to rest state and vice versa. 

It should be noted that 0v  is a new parameter introduced in the model to distinguish the movement when in the 
quasi-null velocity interval. For a better convergence of the iterative solution method, the recommended value of the 
limit velocity should be close to the relative stop speed of the bodies, but not too small, to still allow the smooth transition 
among forces at rest. Instead of adopting a fixed unknown arbitrary value, an estimative for this parameter can be 
obtained by 

S R
0

F F
v t

m
−

= ∆   (29) 

being m  the mass of the sliding node. This estimative is updated along the solution process and presented good 
responses for general applications, as is illustrated in the examples section. 

Known the coefficients of the model, which depends on the materials that make the sliding connection and its path, 
the forces required to calculate the friction force have to be related to the variables describing the joint. The normal 
force vector NF



 is found from the component of the Lagrange multipliers vector due to the translational constraints, 

{ }1 2,λ λ λ=


, at the normal direction of the path at the contact point, defined by the normal vector PN


, as 

P P
N

P P

N NF
N N

λ ⋅
=

 





 

  (30) 

and its absolute value, actually used in the calculation, is 

N
P

N
P
NF F

N

λ ⋅= =









.  (31) 

In the plane case, the components of the normal vector are obtained from the tangent vector of the path finite element 
at the contact point, , ( )P

i P iT Yξφ ξ= 



 ( 1,2i = ), as 1 2
P PN T= −  and 2 1

P PN T= . 

The resultant force, equal to the inertial force at the sliding node, is obtained directly from the equilibrium equation, 
Eq. (25), considering only the sliding node degrees of freedom (positions and curvilinear variable), as 

int conRF F F F= − −
   

  (32) 

or, to identify the terms referred to the degrees of freedom of interest one writes 

1 1 11

2 2 22

conint

conint

con0

P P PP

P P PP

P P P

R
Y Y YY
R

Y Y YY
R

s s s

F F FF

F F FF

F F F

                       = − −       
       
       

           

  (33) 

where F


 represents all the external loads, intF


 the internal force of the sliding element and conF


 the connection 
constraint force. Subscripts 1

PY , 2
PY  and Ps  refer to the sliding node position degrees of freedom and the curvilinear 

position, respectively. In the definition of Eq. (32) and (33), being a quasi-null velocity case, the velocity-proportional 
external damping force was neglected. The friction force is also not present since its value is already considered indirectly 
through the constraint force at the curvilinear position direction. 

As the tangential value of the resultant force RF  is required, the tangent vector PT


 is used to decompose the 
Cartesian terms as 
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1 21 1 2 2

int con int con
1 2 con

P PP P P P

P P

P P
Y YY Y Y Y

R s sP

F F F F F FT T
F F F

T

   − − − −+   
   = + −



.  (34) 

As expected from the physical meaning of the multipliers as contact forces, we have 
1

con
PY

F  = 1λ  and 
2

con
PY

F  = 2λ , which 

can be obtained by developing the constraint force given in Eq. (21) for the constraint equation in (7). 

8 TIME INTEGRATION 

For the time discretization, as the description of the solid is made in a total Lagrangian reference, the inertial force 
in Eq. (25) is obtained using a constant mass matrix. Similarly, the assumed Rayleigh damping also renders a constant 
matrix. This allows the use of classical time approximations, originally developed for linear dynamics, for the material 
velocity and acceleration vectors. Paultre (2011) discuss the application of direct time integration on nonlinear systems. 

As Lagrange multipliers are present in the system to introduce constraints, a time marching scheme capable of 
controlling deleterious high frequencies introduced by their presence is necessary (Rong et al., 2019; Géradin and 
Cardona, 2001). Here we employ the generalized-α method (Chung and Hulbert, 1993) design to numerically control the 
system high frequency content while retaining the important information of low frequency range. 

To discretize the solution in time increments t∆ , the forces in Eq. (25) are rewritten for specific auxiliary time 
instants 1 ft α+ −  and 1 mt α+ −  as 

int con f
1 1 11 1 1 0

f m ff f f
t t tt t tF F F Fα α αα α αϒ ϒ+ − + − + −+ − + − + −− + ⋅ + ⋅ + + =

     

 M D .  (35) 

A linear combination of the type ( )1 11t t td d dα α α+ − += − +
  

 is used to evaluate any vector in (35) at an auxiliary instant using 
its current value 1td +



 and its past instant value td


. The parameter α  may represent fα  or mα . 
Nodal parameters velocity and acceleration vectors are written using the Newmark approximations with parameters β  
and γ  as 

2
1 1

1
2t t t t tt tϒ ϒ ϒ β ϒ βϒ+ +

  
= + ∆ + ∆ − +  

  

    

     (36) 

and 

( )1 11t t t tt tϒ ϒ γ ϒ γ ϒ+ += + ∆ − + ∆
   

    .  (37) 

The time-discrete equations of motion results, using Eq. (36) and (37) in Eq. (35), 

( )( ) ( ) ( )int con f 11 1 1 1 2

111 0fm
f t tt t t t PF F F F

tt

α γαα ϒ
ββ

++ + + +

 −−
−  + + =++ + −

∆ ∆ 

 

   

M D ,  (38) 

with the vector that groups the terms of the previous time instant given by 

( ) ( ) ( )int con f 11 fmt f m t t f t tt t t tP T RF F F F ααα α ϒ α ϒ −−= + ⋅ − ⋅ + ⋅ + ⋅+ + −
    

   

 M M D D   (39) 

with 

2
1 1

2
t t

t tT
t t

ϒ ϒ
ϒ

β β β

 
−= + +  ∆  ∆

 



 

   (40) 

and 
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1 1
2

t
t t tR t

t
γ γ γϒ

ϒ ϒ
β β β

+
   
− −= ∆ −    ∆   



  

  .  (41) 

At the end of the step, velocity and acceleration vectors must be calculated from the approximations (36) and (37). 
To start the time march, the initial acceleration is evaluated from Eq. (25) using the initial configuration and velocity of 
the system. 

Chung and Hulbert (1993) recommend obtaining the generalized-α method parameters from the high frequency 
region spectral radius [ ]0,1ρ∞ ∈ . In order to retain second order accuracy, to minimize numerical dissipation of the 
fundamental frequencies and maximize the numerical dissipation on the high frequencies range the α-parameters are 
calculated from 

2 1 and
1 1m f

ρ ρ
α α

ρ ρ
∞ ∞

∞ ∞

−
= =

+ +
,  (42) 

and the Newmark parameters by 

( )21 1 1and
2 4 m fm f α αγ α α β − += − + = .  (43) 

To achieve unconditional stability in the presence of constraints, the relation 1/ 2m fα α< ≤  must also be respected – 
proven for the linear case in Géradin and Cardona (2001). As a consequence of m fα α< , the situation without numerical 
dissipation, 1ρ∞ = , is not achieved. From the authors experience in most situations ρ∞  in the range 0.7 – 0.9 presents 
good results with small or negligible numerical dissipation even in nonlinear cases. 

9 NONLINEAR SYSTEM SOLUTION PROCEDURE 

To solve the resulting time-discrete nonlinear equations of motion, Eq. (38), for the variables { }1 1,t tϒ λ+ +
  the 

equilibrium is restated as 

( ) ( )( ) ( ) ( )int con f1 1 1 11 1 1 1 2

111, 0fm
ft t t t tt t t tg Y PF F F F

tt

α γααϒ λ
ββ

+ + + ++ + + +

 −−
−  = + + =++ + −

∆ ∆ 

   

   


M D   (44) 

where g
  is the residual of the Newton method (or mechanical unbalanced vector), null when 1tϒ +



 and 1tλ +


 are a solution 
of the system of equations for a given time step 1t + . Note that 1tλ +



 only appears in the terms con
1tF +



 and f
1tF +



. 
A usual first order Taylor expansion can be employed to obtain the Newton method as 

( ) ( )11 0 01 1 1
1

,
t

t t t
t

g
ϒ

ϒ λ
λ

−+
+ + +

+

 ∆  = − ⋅ 
∆  







H   (45) 

in which, the correction  ϒ 1 1,t t  


 on a trial solution { }0 0
1 1,t tϒ λ+ +


 is repeated until the relative position norm – 
calculated as || || / || ||Xϒ∆

 

, where X


 is the initial nodal position vector of the body – is smaller than a given tolerance. It 
should be mentioned that the constraint equations, calculated from Eq. (7), can also be employed as a secondary 
convergence criterion. In the authors’ experience, for the examples tested, employing the adopted relative position 
criterion with a tolerance of 1.10-8 results in small force errors along the iterative process, even for the imposed 
constraints. 

The Hessian matrix 1t+H  (tangent operator), in Eq. (45), is given by 

( )( ) ( ) ( )int con f
1 1 1 1 1 2

11
1 fm

ft t t t tg F F F
tt

α γα
α

ββ
+ + + + +

−−
−= ∇ = ∇ +∇ +∇ + +

∆∆

  



H M D .  (46) 
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The elastic part of the Hessian matrix, associated with the strain energy potential of the finite elements, is 

0

int 2 2
int

1 1 0
1 11 1

: : :t t
V t tt t

F uF dV
ϒ ϒ ϒ ϒ ϒ+ +

+ ++ +

 ∂ ∂ ∂ ∂ ∂ ∇ = = + ∂ ⊗∂∂ ∂ ∂ ∂ ⊗∂ 
 

∫




    

E E ES
E E

  (47) 

in which ⊗  represents tensor product. From the specific strain energy expression, Eq. (14), and developing the Green 
strain derivatives, using Eq. (6) and (2), one develops this matrix particular expression for the plane frame finite element 
as seen in Siqueira and Coda (2017) and Coda and Paccola (2014). 

The Hessian matrix parcel due the constraint potential of the sliding connections is written as 

{ }
( )

( )

con
con

1
1 1,

t t
t t

c cFF
c

λ

ϒ λ
+

+ +

 ⋅∇ ∇ ∇∂  ∇ = =
∂  ∇ 




 





 0
  (48) 

where, ( )c∇ ∇
  is a third order tensor that can be understood as the set of Hessian matrices due to each constraint 

equation ic , Eq. (7), and 0  is the null matrix. 

It must be stressed that, the achieved value of Ps  in the solution process is not enough to update conF


 and con
1tF +∇



 
as ( )P Psξ ξ=  is not explicitly written. The solution of this stage is done by adopting a least square method to find the non-
dimensional coordinate from the converged values of the path element and the sliding node as described in detail by 
Siqueira and Coda (2017). Given the numerical value of the non-dimensional variable in the dimensionless space, the 
solution process continues and also the transition between path elements can be performed – which is straightforward 
when Pξ  exceeds the space domain [ 1,1]− . 

As the friction force calculation is dependent on the tangential velocity Pv s=  , Eq. (28), the solution procedure is 
improved by updating its value at each iteration by the following finite difference approximation 

( ) ( )1
1 1

1

k
P Pk t t

t
s s

v
t

+
+ +
+

−
=

∆
,  (49) 

where 1k + , is explicitly written to identify the value as belonging to the current iteration of a time step 1t + . 
Consequently, the friction force is entirely defined by the main solution variables, of particular interest, the curvilinear 
position. 

As { }f
fF F=



, i.e., the friction force is a scalar properly placed at the system’s degree of freedom, the friction part of 
the Hessian matrix can be developed as 

f f
1

1
t

p t

FF
s+

+

∂
∇ =

∂



,  (50) 

which is a scalar value to be added in the curvilinear position degree of freedom of the system’s matrix. Further 
developing Eq. (50), using Eq. (49) and (28), results 

( ) ( )1
1

1
1/ 1

S C 1 0
f

1
1

1 0
0

1 if

1 if and

k
t

k
tv v k

t

p t
S R k

t R S

v
F F e v v

t vF
s

F F
v v F F

t v

δσ
σ

σ

δ

δ
σ

δ
η

+
+

−1+
+− +

+

+
+
+

  
  
  − − >
∆  ∂ =    ∂ 
 −

≤ <
∆

  (51) 

with 1
1

k
tv +
+  updated in each iteration by Eq. (49). 

Regarding the computational implementation, to reduce the time spent in updating the residual vector and Hessian 
matrix of the Newton method for each iteration, it should be noted that, due to the total Lagrangian description of the 
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positional formulation, the mass and damping matrices, as well as the part 0A  of the deformation gradient, Eq. (4), are 
constants and can be stored before starting the time marching process. 

10 EXAMPLES 

Examples are presented to verify the correct response of the proposed improved friction model and its introduction 
on the finite element system and also to show the capabilities of the proposed formulation in describing engineering 
applications of interest including roughness. 

10.1 Rabinowicz test 

The Rabinowicz test is a one degree of freedom experiment largely used as a benchmark, Pennestrì et al. (2016), for 
testing friction models, particularly useful in verifying the model capability of representing the stick-slip behavior. Fig. 
7a) depicts the test system with mass m , held by a spring with stiffness k , in contact with a belt moving horizontally with 
constant velocity v . Due to friction between the oscillator and belt, the mass initially sticks to the belt until the spring 
force exceeds the static friction value. At this point sliding takes place under the kinetic value of friction. After a while, 
the mass attaches again to the moving surface and the process is repeated. 

 
Fig. 7. Geometry of the test: a) mass-spring and b) finite element bar scheme. 

Parameters for the mass-spring system and friction were adopted the same as Pennestrì et al. (2016). To simulate 
the oscillator, one two-node (linear) frame element, Fig. 7b), is employed with a cylindrical joint at the end of the bar. 
This connection is free to slide over another finite element moving in the horizontal direction with velocity v  = 0.5 m/s 
and with all other degrees of freedom locked. A vertical force P  = 196.2 N is applied to manifest frictional effects at the 
contact point. In order to maintain small strains, to allow comparison with the reference, a L  = 1000 m bar is adopted 
with squared cross-section, 0b  = 0h  = 1.0 m, and Young modulus E  = 10 kPa. This results in an equivalent axial stiffness 
k  = 0 0 /b h LE  = 10 N/m. Null Poisson ratio is used and the equivalent system mass m  = 20 kg is lumped at the joint node. 

The sliding node displacement is shown in Fig. 8a) for the improved friction model under two different cases. The 
first considers the Stribeck effect, with parameters sµ  = 0.6, kµ  = 0.5, vσ  = 0.05 m/s and σδ  = 1.0, and the second case 
is the classic Coulomb model, only capable of representing kinetic friction. No viscous effect is present, η  = 0, in both 
cases. Results were obtained with a time increment t∆  = 1.0 ms with the generalized-α method parameter ρ∞  = 1.0. 

Fig. 8b) depicts Pennestrì et al. (2016) results for the mass displacement due to different friction models evaluated 
in their work. No direct comparison can be performed with the reference models as they are not directly equivalent with 
the proposed improved model, or among themselves, as they consider different friction characteristics requiring 
parameters not present in the current model. For those parameters and models description we refer to Pennestrì et al. 
(2016) study. 

Compatible responses with Pennestrì et al. (2016) models are observed for both friction cases even for the relative 
velocity, Fig. 9, and friction force, Fig. 10. It is noticeable that, as the classic Coulomb model does not account for static 
friction, after the initial stiction phase, the system displays the harmonic oscillator behavior without maintaining null 
relative velocity and stiction again. For the Stribeck case a detail for the first relative motion of the system can be seen 
in Fig. 11 showing the variation between static and kinetic friction force captured by the improved model. Regarding 
processing time between models, for this example, the simulation for the Stribeck case is 15% longer than for the classic 
Coulomb model. The computation time was calculated by averaging the time spent in three separate simulations of each 
case (due to the influence of the operational system background tasks) on the same computer. 

To further analyze the improved friction model results, a reference solution is depicted in Fig. 8 to Fig. 11 for each 
case. As analytical solutions are not always available, the reference solution was obtained by employing a time step 100 
times smaller to diminish the influence of the quasi-null speed range calculated by Eq. (29). For the classic Coulomb case, 
the reference solution after stiction is also the response of a harmonic oscillator subjected to the Couloumb friction force. 
The simulated response coincides perfectly for this case (overlapping curves). A difference in the response is observed 
after the initial stiction phase in the Stribeck case. This difference is anticipated as the friction force value in this situation 
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is velocity dependent, due to the exponential term of the Stribeck curve expression, Eq. (26), which is null for the 
Coulomb case. Thus, the numerical solution procedure has a higher influence. Nevertheless, very good agreement with 
Pennestrì et al. (2016) models are observed. 

 
Fig. 8. Displacement for the Rabinowicz test: a) improved model results and b) numerical results from Pennestrì et al. (2016) for 

different friction models. 

 
Fig. 9. Relative velocity for the Rabinowicz test: a) improved model results and b) numerical results from Pennestrì et al. (2016) for 

different friction models. 

 
Fig. 10. Friction force for the Rabinowicz test: a) improved model results and b) numerical results from Pennestrì et al. (2016) for 

different friction models. 

 
Fig. 11. Detail of the friction force evolution for the improved model showing the Stribeck effect. 

10.2 Quick-return mechanism with friction 

A classic quick-return mechanism is analyzed considering frictional dissipation, Fig. 12. This mechanism was 
proposed by Bauchau (2000) and also investigated by Siqueira and Coda (2017) employing positional frame finite 
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elements, for the frictionless case. The system consists in a 1.0 m arm AB able to spin around a fixed support B and 
connected to a 0.25 m bar NA. The motion is imposed by a 0.20 m crank RS which turns around the fixed support R with 
a constant angular speed Ω  = 5π rad/s and slides over the arm with a cylindrical joint S. The translational motion resulting 
from the mechanism input rotation is obtained by a cylindrical joint at point N, able to move horizontally over a fixed 
path. 

 
Fig. 12. Initial configuration of the mechanism. 

All bars have 5.98 cm squared cross section and density 1724.82 kg/m3. The arm is flexible with E  = 47.04 GPa and 
discretized by 10 cubic finite elements. To simulate the rigid behavior of the remaining bars a 106 times greater Young 
modulus was adopted and 2 cubic frame elements were used for each bar. The shear elastic modulus is half the value of 
its corresponding Young modulus value for the whole mechanism. Lumped masses are placed at slider S (0.31 kg) and N 
(2.50 kg). Simulations were performed with a time increment t∆  = 0.1 ms and the generalized-α method parameter ρ∞  
= 0.9. 

Four cases of friction were evaluated. As we are interested in the flexible arm deflection and the output velocity of 
the mechanism, attention is restricted to slider N. Tests with friction at slider S presented minor effects in the overall 
system response, thus dissipation at this joint was not considered. Two dry friction cases, one with sµ  = 0.35 and kµ  = 
0.30 and another with sµ  = 0.75 and kµ  = 0.70, both with Stribeck curve parameters vσ  = 0.10 m/s and σδ  = 1.0, and 
two viscous friction situations, η  = 10.0 N.s/m and 200.0 N.s/m, are considered at the sliding connection N. 

The first four cycles of the mechanism arm tip deflection (point A), evaluated orthogonally to a line that follows the 
arm spin at point B, are shown in Fig. 13. Interesting results for the deflection of the arm were obtained for different 
friction cases. Compared to the frictionless case, the situation with smaller dry friction coefficients presented slightly 
higher arm deflection along the cycles, Fig. 13a), but similar output velocity at slider N, Fig. 14a), even though a horizontal 
friction force, Fig. 15a), acts at this point. The output velocity for a frictionless rigid body case of the mechanism 
(simulated by adopting the same Young modulus for the arm AB as for the rigid parts) is also depicted in Fig. 14. It is clear 
that the arm flexibility promotes an oscillatory response of the output velocity around the rigid body response. 

For the higher dry friction parameters adopted, however, the mechanism presents a curious behavior reducing its 
arm tip vibration amplitude in alternating cycles, Fig. 13b). The output velocity presented the same pattern, Fig. 14b). 
Friction forces, Fig. 15b), showed smaller values at the low amplitude cycles, than higher ones. Tests performed for even 
higher values of static and kinetic friction coefficients ( sµ  = 0.85 and kµ  = 0.80) showed that the same pattern occurs, 
but with less intense reduction of the deflection among cycles. Consequently, we understand that exist a range of friction 
parameters, in combination with this particular mechanism mass and stiffness, resulting in a very particular cycle-
alternating nonlinear response. The physical interpretation of this response can be realized as slider N friction force 
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affecting link NA force transmission to the flexible arm AB in a way that excites its transverse deflection at each two 
cycles and in the opposite direction of the crank (constant) excitation. This indicates the existence of a transverse motion 
along the arm (with a period twice as long as the duration of the mechanism cycle) decreasing the contact force in a cycle 
and increasing it on the next. 

Cases with only viscous friction presented the expected reduction of vibration of the arm deflection, Fig. 13c) and 
d), and slider velocity, Fig. 14c) and d). For the larger friction coefficient case, although vibrations were quickly damped, 
higher values of arm deflection were observed indicating the difficulty of the crank to move the arm for the intensity of 
the friction force developed at slider N, Fig. 15d). 

Independently of the friction force evolution aspect, Fig. 15, smoother for the velocity proportional viscous cases or 
discontinuous in dry friction cases, the mechanism response was correctly depicted showing sense alternance for its 
return and that the proposed improved friction model was capable of producing limited solutions for a system with 
several degrees of freedom. 

 
Fig. 13. Arm tip (point A) deflection for the quick-return mechanism. 
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Fig. 14. Slider N horizontal velocity for the quick-return mechanism. 

 
Fig. 15. Friction force at slider N for the quick-return mechanism. 
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10.3 Vehicle motion on bridge 

A two-span bridge is analyzed considering the effect of a vehicle motion, Fig. 16. Pavement irregularities are 
considered by a roughness profile along the path of the wheels, modeled as cylindrical joints, Fig. 17. Before entering the 
bridge, the vehicle moves at a constant 100 km/h speed, after this moment its movement is released. Friction between 
the wheels and pavement is present during the whole analysis, which is performed until the car stops or reaches the end 
of the path. 

 
Fig. 16. Initial configuration of the vehicle on a two-span bridge. 

 
Fig. 17. Vehicle geometry and contact with the path. 

The vehicle is modeled by 42 cubic finite elements with 6.73 cm squared cross section and has E  = 200.0 GPa, 
except for the suspension elements with E  = 1.5 GPa. Mass density 0ρ  = 7800.0 kg/m3 is adopted resulting in a total 
mass of 1500.0 kg. Each bridge span is modeled with 5 cubic frame elements. To have appropriate mass and stiffness, 
the bridge has a rectangular cross section, 0h  = 0.50 m and 0b  = 3.50 m, E  = 20.0 GPa and 0ρ  = 2500.0 kg/m3. The paths 
before and after the bridge are fixed and discretized by one finite element each. Shear elastic modulus for the whole 
system is half the value of its corresponding longitudinal one. 

Structural damping, as Rayleigh type, is considered solely on the bridge to account for its proper dissipative 
behavior. Considering the bridge made of reinforce concrete, a damping ratio of 2,5% (Papageorgiou and Gantes, 2010) 
is employed for its first (1.03 Hz) and fourth (5.19 Hz) vibration modes. All four initial modes are related to bending. Thus, 
its Rayleigh damping matrix (mass and stiffness proportional) can be obtained as presented in classic dynamics textbooks, 
such as Paultre (2011). Since the present formulation is geometrically nonlinear, the bridge stiffness matrix, used for the 
modal analysis and to calculate a constant damping matrix, is assumed as the initial Hessian matrix. 

Dry friction parameters were adopted to consider contact between tire and asphalt as sµ  = 0.4, kµ  = 0.3, vσ  = 1.0 
m/s and σδ  = 1.0. The pavement imperfection is obtained by a random roughness profile generated from a series of 
cosines as proposed by Yang and Lin (1995) using ISO 8608 (ISO, 1995) parameters for roads classes A and B, considered 
as in good traffic condition. The standard coefficients are the power spectral density function of 16.10-6 m3, for class A, 
and 64.10-6 m3, for class B. Both profiles were calculated employing 20 spatial frequencies equally distributed in the range 
from 1.0 to 10.0 cycle/m as recommended by Coussy et al. (1989) and Camara and Ruiz-Teran (2015). Also, as an actual 
wheel has finite dimensions, and its contact is not done in all the points of the path, a rigid tread band model is employed 
in order to maintain wheel tread band contact to the nearest point of the surface following Captain et al. (1979) and 
Chang et al. (2011). Both wheels have a 30.0 cm radius and the resulting roughness profiles are depicted in Fig. 18 for a 
representative part of the bridge path. 

Both vehicle and bridge are subjected to their own weight during the whole analysis. Simulations were performed 
with a time increment t∆  = 0.1 ms and the generalized-α method parameter ρ∞  = 0.7. The front wheel curvilinear 
position evolution is depicted in Fig. 19 where is clear that the presence of friction stopped the vehicle before reaching 
the end of the bridge. 

The pavement imperfections considered act primarily increasing vertical displacements of the vehicle, Fig. 20, and 
also the bridge, Fig. 21, but without friction dissipation the vehicle does not stop. For a frictionless situation, in presence 
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of roughness, some resistance is found in its horizontal motion, as can be observed in Fig. 19 by the additional time 
(depicted for class A) the vehicle takes to reach the end of the path when compared to an smooth trajectory. The increase 
in the roughness of the road profile (from road class A to B) increases the friction force as depicted by Fig. 22. 

 
Fig. 18. Pavement roughness profiles for different ISO 8608 road classes. 

From the vehicle midpoint horizontal position, Fig. 20, it can be observed that it stopped before the central support 
in all three cases where friction was considered. Thus, the bridge left mid-span deflection is not alleviated as for the 
frictionless situations, Fig. 21, when the vehicle passes on the right span. The vertical movement, manifested in the bridge 
even in the situation without roughness, is due to the horizontal friction force not aligned with the center of gravity of 
the vehicle, which generates a low frequency rotational vibration causing vertical movement in the region of the wheels, 
resulting in vertical forces transferred to the bridge. This aspect could only be captured due to the geometrically 
nonlinear description of the employed formulation. 

 
Fig. 19. Front wheel curvilinear position. 

 
Fig. 20. Vehicle midpoint vertical displacement. 

 
Fig. 21. Bridge left span midpoint vertical displacement. 
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Fig. 22. Friction force at the front wheel. 

11 CONCLUSIONS 

Friction dissipation was successfully introduced in sliding connections commonly present in structures and 
mechanisms employing a total Lagrangian FEM formulation for plane frames based on a positional description of its 
kinematics. An improvement on a Coulomb friction model with Stribeck effect and viscous friction was proposed for a 
smoother description of the transition between motion and rest states of the joints. The improved model avoided 
instabilities for the friction force at null speed and is able to correctly represents frictional dissipation and capture the 
stick-slip effect since the resultant force could be calculated properly for the connections in the finite element system. 
The improved friction model is coupled with a mesh independent roughness strategy enabling general applications. 
Benchmarks and additional examples are used to verify the proposed model and to analyze engineering applications. 
Results were presented with successful responses for dynamical systems in which the consideration of friction is 
important. Future studies intent to extend this formulation to 3D applications. 
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