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Abstract 
This work presents two fast isogeometric formulations of the Boundary Element Method (BEM) applied to heat 
conduction problems, one accelerated by Fast Multipole Method (FMM) and other by Hierarchical Matrices. The 
Fast Multipole Method uses complex variables and expansion of fundamental solutions into Laurant series, while 
the Hierarchical Matrices are created by low rank CUR approximations from the k−Means clustering technique 
for geometric sampling. Both use Non-Uniform Rational B-Splines (NURBS) as shape functions. To reduce 
computational cost and facilitate implementation, NURBS are decomposed into Bézier curves, making the 
isogeometric formulation very similar to the conventional BEM. A description of the hierarchical structure of the 
data and the implemented algorithms are presented. Validation is performed by comparing the results of the 
proposed formulations with those of the conventional BEM formulation. The computational cost of both 
formulations is analyzed showing the advantages of the proposed formulations for large scale problems. 
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1 INTRODUCTION 

In general, numerical methods, such as Finite Element Method (FEM) and BEM, are based on the transformation of partial 
differential equations into integral equations and on the discretization of these integral equations through the creation of 
elements. There are some characteristics that are common to the numerical methods, among which we can mention the loss 
of precision of the results with the use of less refined meshes and the increase in processing time with the use of more refined 
meshes. These mentioned characteristics are partly due to the approximation of the geometry and field variables by the 
Lagrange polynomials. Lagrange polynomials are not able to accurately represent the geometry of most of the boundary of 
continuum mechanics problem domains such as circles, ellipses and hyperboles. Furthermore, there is no continuity of the 
derivatives of functions approximated by Lagrange polynomials between an element and its neighbors. With a view to solving 
problems like these, the idea was to use the same basis functions used in the Computer Aided Design (CAD) packages, called 
NURBS, to describe the geometry and to approximate the field variables. Thus arises the isogeometric analysis, which is widely 
discussed in the literature (Beer et al., 2019; Peigl and Tiller, 1996; Rogers, 2000; Hughes et al., 2005; Cottrell et al., 2009; Kagan 
and Fisher, 2000). With this new form of analysis, a segment in the parametric space corresponds to an isogeometric element 
located in the geometric space. Therefore, there is an elimination of the mesh generation step. In turn, the refinement is 
achieved without much additional effort (Li and Qian, 2011; Shene, 2011; Abramowitz and Stegun, 1972). 

It is noteworthy that isogeometric analysis is more adaptable to BEM than to FEM specially for linear problems, as 
both the CAD system and BEM share surface definitions and do not need the domain discretization for linear problems. 
Even for some nonlinear problems, as contact mechanics, for example, the BEM doesn’t require domain discretization. 
In the work of Loyola et al. (2022), an isogeometric boundary element formulation was successfully applied to contact 
mechanics problems. Another difficulty with the joining of CAD and FEM is the decrease in the sparsity of their matrices 
due to the high continuity of the NURBS basis functions (Collier et al., 2012). Note that the matrices of BEM are already 
full and this is not an extra problem. Thus, the isogeometric formulation of BEM brought encouraging results in terms of 
accuracy and efficiency. Some benefits can be observed in the literature (Beer et al., 2019), such as smoother geometries 
easily obtained, non-linear problems are solved without additional effort, among others. 

Despite the known dimension reduction due to the fact that only the boundary is discretized, BEM has 
disadvantages due to the fact that its matrices are full and not symmetrical, imposing a high cost in the assembly and 
resolution of the linear system of equations. Several techniques were developed in order to face these problems, such 
as the Adaptive Cross Approximation (ACA) technique, which approximates the dense matrices of the BEM by a 
representation through hierarchical matrices. This representation is based on a binary tree structure that partitions the 
full matrix into smaller blocks, where each block will either be approximated by a low-rank matrix or the original block 
will be exactly used in the resolution of the linear system (Hackbusch, 2016). Other techniques were also developed, such 
as wavelets (Bucher et al., 2002), block methods (Rigby and Aliabadi, 1995; Crotty, 1982; Kane et al., 1990), agglutination 
processes and iterative techniques (Mansur et al., 1992; Barra et al., 1992). 

Another well-known technique is the Fast Multipole Method (FMM) which has its roots in gravitational calculus of 
particle simulation models (Rokhlin, 1985; Greengard and Rokhlin, 1987). FMM improves the performance of the BEM 
due to the fact that the kernel of the fundamental solution can be expanded in series, which allows the separation of the 
relationship between the source point and the field point by inserting an intermediate point. There is also a decrease in 
the number of interactions due to the clustering of boundary elements in cells of a tree structure (Barnes and Hut, 1986). 
Due to its performance wherever it is applied, FMM is considered one of the top ten algorithms of the 20th century 
(Dongarra and Sullivan, 2000; Liu, 2009). There are other FMM methods developed for purely numerical kernels or for 
kernel-independent methods where there is no expansion of analytical kernels. Instead, they use an interpolation 
method like, for example, Chebyshev. These methods also make use of a matrix compression methods like Singular Value 
Decomposition (SVD) or Fast Fourier Transform (FFT) (Ying et al., 2004; Fong and Darve, 2009). 

Techniques such as hierarchical matrices and FMM make use of iterative methods to solve the linear system of equations 
because in these techniques matrices of BEM cannot be calculated explicitly in order to save memory and allow large-scale 
simulations (Greenbaum, 1997). Some well-known iterative methods are the Gauss-Jacobi, Gauss-Seidel, minimum residue (MIN-
RES), conjugate gradient, bi-stabilized conjugate gradient (BICGSTAB) and Generalized Minimal Residual Method (GMRES). These 
methods adapt very well to low rank approximation techniques such as those mentioned at the beginning of this paragraph. 

Regarding the accelerated isogeometric formulation by the FMM, there are some related works. For example, in 
Matsumoto and Takahashi (2012), the FMM is coupled to an isogeometric formulation of the BEM, where B-splines of 
degree 2 and 3 are used explicitly as basis functions, applied to an infinite domain problem with Neumann boundary 
conditions and smooth boundary. In Wang et al. (2019), an element-free method (meshless method) coupled with 
isogeometric analysis and accelerated by the FMM is applied to potential problems. In Simpson and Liu (2016), a FMM 
coupled to Isogeometric Boundary Element Method (IGABEM) is presented for 3D problems, which uses Chebyshev 
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interpolation and the M2L operators are approximated by SVD. In the literature, no other article was found where the FMM, 
with an analytical kernel, was used together with the Bézier extraction operator for the isogeometric analysis in BEM. 

For the accelerated formulation by the hierarchical matrices method, some related works are: Ozdemir and Lee 
(2004) presents an algorithm IE-QR that builds an approximation QR of low rank using the modified Gram-Schmidt 
algorithm with cost 3/2( )O N , where max( , )N m n=  with m  and n  being the admissible matrix block dimensions. In 
Kapur and Long (1998), an algorithm IES3 is presented, which consists of a kernel-independent method for 
electromagnetic simulations and costs ( log )O N N⋅ . An interpolative decomposition method based on QR rank-
revealing factorization and costs ( )O m n k⋅ ⋅  is known, where k  is the rank of the matrix block (see (Boutsidis et al., 
2009; Gu and Eisenstat, 1996; Voronin and Martinsson, 2017)). In Campos et al. (2017), a fast isogeometric formulation 
of the BEM is adapted to the hierarchical matrices method using ACA for low rank approximation. In Ayala et al. (2020), 
an approximation method CUR is presented for matrices corresponding to the admissible blocks, through a geometric 
sampling technique. To the best of the author’s knowledge, there is no other article in the literature where the 
hierarchical matrix method, coupled with IGABEM with Bézier extraction, was subjected to a low-rank matrix 
compression method using the k -Means clustering technique for geometric sampling. 

This paper presents two fast isogeometric formulations of the BEM, one using the FMM (Fast Multipole Accelerated 
Isogeometric BEM (IGAFMBEM)) and the other using hierarchical matrices with specific matrix compression. Both 
formulations use NURBS as shape functions and the Bézier decomposition method which, in turn, brings speed in the 
generation of NURBS and simplicity in the computational implementation. The boundary conditions are generic and are 
treated as Cabral et al. (1990 and 1991) and Campos et al. (2017). 

2 ISOGEOMETRIC FORMULATION 

The parametric curves of the isogeometric analysis are related to each other as can be seen in Figure 1. All of them 
have a common core, which are the Bézier curves, and from then on they specialize according to the properties of each one. 

 
Figure 1: Curves. 

2.1 Bézier curves 

The i −th Bernstein polynomial base function, ,i pB , of degree p  is defined by the expression: 

, ( ) ( , ) (1 )i p i
i pB C p iξ ξ ξ −= − ,  (1) 

with 
( )

!( , )
! !

iC p i
p p i

=
−

 . 

A Bézier curve of degree p  can be written as the linear combination of 1p +  Bernstein polynomial basis functions, 
dependent on the real parameter ξ , with 0 1ξ≤ ≤ , like: 

( ) ( )
1

,
1

P
p

i i p
i

Bβ ξ ξ
+

=

=∑ , (2) 

where Pi  are control points that form its control polygon. 
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2.2 NURBS 

B-spline curves are a generalized form of Bézier curves. It is composed of one or more Bézier curves or segments 
with a commitment to continuity between the curves. Each control point influences only some segments of the B-spline 
curve and thus has local control of the curve. A base of univariate B-spline functions is defined from a set of knots or 
parametric domain U , which is a set of non-descending parametric coordinates written as { }0 1 2U= , , , , n pξ ξ ξ ξ +

 

where iξ ∈  is the i −th parametric knot, p  is the polynomial degree of the B-splines basis functions and n  is the 

number of basis functions. The B-splines base functions of degree p , ,i pN , are defined recursively on U  through the 

Cox-de Boor recursive formula of significant computational cost (Peigl and Tiller, 1996). 
A B-spline curve of degree p  in 2  is defined by 

( ) ( ),
0

P
n

i i p
i

Nγ ξ ξ
=

=∑ , (3) 

where Pi  are the control points. 

A NURBS curve is also defined from the set of knot U  and a set of control points Pi  , of the form 

( ) ( )
( )
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where ,i pR  are the NURBS basis functions and are defined as 

( ) ( )
( )
,
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and 

( ) ( ),
0

n

i p i
i

W N wξ ξ
=

=∑  (6) 

is the weight function with iw  being the weight corresponding to the i -th B-spline base function, ,i pN , or associated 

with the i -th control point. 

2.3 Bézier decomposition 

New knots can be inserted in the set of knots, U , without changing the parametric or geometric properties of the 
curve, provided that for each knot inserted a new control point is added. Thus, inserting a new knot [ ]1,k kξ ξ ξ +∈ , with 

k p> , in the knot set, requires that 2n +  new B-spline basis functions are defined with the new set of knot 

{ }0 1U= , , , , , ,k k n pξ ξ ξ ξ ξ+ + 
. So that there is no change in the continuity of the curve, these 2n +  new control 

points, { } 2

1
P

n
i i

+

=
 , are formed from the original control points and are given by: 
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where 

1, if 1

, if 1

0, if 1

i
i

i p i

i k p

k p i k

i k

ξ ξα
ξ ξ+

 ≤ ≤ −


−= − + ≤ ≤ −
 ≥ +

. (8) 

(see (Peigl and Tiller, 1996; Borden et al., 2011)). 
The Bézier decomposition is obtained by inserting repeated knot together with all knots inside the knot set, U , 

until they have a multiplicity equal to the degree of the curve. After the insertions, the NURBS curve is decomposed into 
a set of Bézier curves, where each curve corresponds to a knot span of U . Considering a curve with n  control points 
and calling jξ  the r  we need to perform a decomposition, we can define jα  according to Eq. (8). One can then write a 

matrix that relates the new control points to the old ones: 

1 2

2 3

3 4

( 1) ( )

1 0 0 0
0 1 0 0
0 0 1 0C

0 0 0 0 1

j

n j n j

α α
α α

α α
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− 
 − 
 −=
 
 
 − 







     

. (9) 

Writing 1P P= , we can rewrite Eq. (7) in matrix form in order to represent the sequence of control points created by 
the h −refinement, 

( )T1P C Pj j j+ = . (10) 

By repeating this operation r  times, the final form of the decomposition is obtained: 

TP C Pb = , (11) 

where ( ) ( ) ( ) ( )T T T TT 1 2 1C C C C Cr r r− −=  , P  is the original set of control points and Pb  is the final set, which can 

be called the Bézier control points. Remember that P  has dimension n d× , C  is ( )n n r× +  and Pb  is ( )n r d+ × , 
where 2d =  in the applications of this article. 

Let ( ) ( ){ } 1
B

n r
i i

Bξ ξ
+

=
=  be the set of Bernstein basis functions defined by the final set of knots. As the insertion of 

extra knots does not cause any geometric or parametric changes, the Bézier curve described by the new control points 
must coincide with the initial B-spline curve. So, from Eq. we have that: 

( ) ( ) ( ) ( ) ( ) ( ) ( )T TT b T TP N P B C P B P CBγ ξ ξ ξ ξ ξ= = = = . (12) 

Since P  is arbitrary: 

( ) ( )N C Bξ ξ= , (13) 
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where C , called the Bézier extraction operator, relates the B-spline basis functions with the Bézier basis functions and, 
in this way, the NURBS curve can be generated directly from the Bézier base. 

Figure 2a shows a cubic B-spline curve with the set of knots { }U= 0,0,0,0,1,2,3,4,4,4,4 . Its decomposition is 

given in Figure 2b with the new set of parametric knots { }U= 0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4 , and the Bezier 

control points 1 2 13Q , Q , …, Q . In Figure 3a we have the B-spline basis functions of the curve in Figure 2a, which are 
transformed into Bézier basis functions by parts given in Figure 3b. The procedure described in Eq. (7) and Eq. (8) ensures 
continuity for the curve of at least 2C  at breakpoints 1, 2 and 3. The numbers in Figure 3b denote the numbering scheme 
of the Bézier basis functions. 

 
Figure 2: Bézier decomposition. 

 
Figure 3: Basis functions. 
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3 BOUNDARY INTEGRAL EQUATIONS 

The proposed formulations are in line with the concept of the collocational boundary element method, but uses 
NURBS as shape functions for both geometry and numerical analysis. Let 2Ω∈  be a bounded domain with the 
boundary :Γ = ∂Ω , which may contain non-smoothness points. We propose to solve the following mixed boundary 
value problem for the Laplace equation: 

( )2

1

2

, 0, for ( , )  
in   

in   n

u x y x y
u u
u u
n

∇ = ∈Ω
= Γ

∂
= Γ

∂

, (14) 

where n  represents the outer normal to Γ , 1 2Γ = Γ Γ  and u  is a function that satisfies Laplace’s equation in the 

domain Ω . After an algebraic reduction process, this problem is solved using the following Boundary Integral Equation 
(BIE): 

( ) ( ) ( , )( ) ( ) ( , ) y y

u y u x yc x u x u x y d u y d
n n

∗
∗

ΓΓ

∂ ∂
= Γ − Γ

∂ ∂∫∫ , (15) 

where ( )c x is a jump term that arises from the integration process of the integral equation and depends on the 

geometry at the source point x∈Γ . The second integral on the right side of Eq. (15) has its value given according to 

Cauchy’s definition of principal value. Furthermore, ( )u y  and 
( )u y
n

∂
∂

 are the nodal values of the potential and the 

derivative of the potential, while u∗  and 
u
n

∗∂
∂

 refer to the fundamental solutions of the potential and the potential 

derivative, respectively, calculated on the boundary Γ . 

For discretization purposes, the continuous fields u  and 
u
n
∂
∂

 are written for each Bézier element, whose boundary 

conditions are interpolated by the corresponding collocation points. In the isogeometric method, the variables are 
approximated using the same geometry functions, in this case, the NURBS and from Eq. (4) we can rewrite Eq. (15) in the 
form: 

( ) ( )( ), ,
1 1

( ) ( )
j j

j jk

n nc
ci

i p i i p
e j i j i

u uc x u x u R t d u R t d
n n

Γ Γ ∗
∗

Γ Γ= =

  ∂ ∂
= Γ − Γ   ∂ ∂  
∑ ∑ ∑ ∑ ∑∫ ∫ , (16) 

where c
iu  and 

c
iu

n
∂
∂

 are nodal values of potential and its corresponding derivative at the i −th control point, k
k

e = Γ


 

and j k
j

eΓ =


. It is worth noting that in Eq. (16) there is no approximation in geometry, but only in the variables u  and 

u
n
∂
∂

. In turn, with the boundary being parameterized by t , we can rewrite Eq. (16) as: 
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( ) ( ) ( )
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∑ ∑ ∑

∑ ∑ ∑

∫

∫
, (17) 

where the transformation to a standard domain was performed, hence 
d
dt
Γ

 is the Jacobian of the transformation from 

physical coordinate space to parametric space. 
It is still necessary one more change of variable in Eq. (17), in order to standardize the integration intervals for using 

the Gauss-Legendre quadrature, obtaining: 

( ) ( )

( )

1

, ,
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1

,
11
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j
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n
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i i p i p
e j i

n c
yi

i p
e j i

du dtu R d c x R t
n dt d
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n dt d
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−=

   Γ  ∂ + =     ∂    
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∑ ∑ ∑

∑ ∑ ∑ ∫

∫
 (18) 

where 
dt
dξ

 is the Jacobian of the transformation from parametric space to local coordinate. The Bézier decomposition 

operation together with the Bézier extraction operator promotes a structure of boundary elements very similar to the 
elements in the conventional BEM. Each knot span in the parametric space corresponds to an independent isogeometric 
element of the adjacent isogeometric elements in the physical coordinate space, which correspond to the adjacent 
parametric knot spans to the initial one. 

3.1 Numerical calculation of integrals 

A very important part of the proposed formulations here, which is responsible for the convergence of the iterative 
process, refers to the accurate calculation of the integrals in Eq. (15) when the source point is located in the element 
over the which integration takes place. The first integral on the right-hand side has a weak singularity kernel, because of 
the fundamental solution of the potential, while the second integral has a strong singularity kernel, because of the 
fundamental solution of the potential derivative, making both integrals singular. It is also important to consider the 
occurrence of quasi-singular integrals, where the source point is very close to the element where the integration. 

To treat singular, quasi-singular, and regular integrals, a transformation based on the hyperbolic sine function was 
used, which takes into account the position of the orthogonal projection of the source point on the element in which the 
integration occurs, as well as the distance from the source point to the element (Johnston and Elliott, 2004). The 
hyperbolic sine transformation has the ability to distinguish and satisfactorily handle each case as will be seen in the 
numerical results. For regular integrals, the transformation coincides with the Gauss-Legendre quadrature. 

3.2 Definition of collocation points 

The most appropriate way to distribute the collocation points is through the definition of Greville abscissas, because 
it is on which the control points have maximum influence (Simpson et al., 2012; Farin, 1996; Scott et al., 2013). They are 
defined as the average of p  parametric coordinates: 

1 2i i i p
i p

ξ ξ ξ
λ + + ++ + +
=



, (19) 

where p  is the degree of NURBS and they are in quantity equal to the control points. 



Two accelerated isogeometric boundary element method formulations: fast multipole method and 
hierarchical matrices method 

Emerson Bastos et al. 

Latin American Journal of Solids and Structures, 2022, 19(7), e463 9/26 

In the case of problems with boundary presenting corners, the Greville abscissas as defined in Eq. (19) have the 
inconvenience of locating collocation points at these corners. One way to avoid this inappropriate occurrence is to change 
the positions of the first and last abscissa as follows: 

( )
( )

1 1 2 1

1n n n n

s
s

λ λ λ λ
λ λ λ λ −

= + ⋅ −
= − ⋅ −

, (20) 

where s  is a coefficient that defines the displacement of the two extreme abscissas and, consequently, of the two 
corresponding collocation points. Here the value used was 0.5s = , as recommended by the results presented by Wang 
and Benson (2015). 

Isogeometric formulations have an important particularity, which is the fact that the boundary integral equation 
given in Eq. (15) is written in terms of the control points. In Figure 2a it can be seen, for an example, that the control 
points may not be on the boundary of the problem and, therefore, they do not constitute a suitable place for the 
installation of the collocation points. 

3.3 Treatment of boundary conditions 

The variation of the potential and its derivative can also be represented by NURBS, thus gaining smoothness 
between adjacent isogeometric elements. For this, a concept analogous to that of control points for the representation 
of geometry is used for the representation of the field variable (Cabral et al., 1990; Campos et al., 1997). 

Since the values of the boundary conditions are given at the collocation points that are on the boundary of the 
problem, then this conditions cannot be directly enforced on Eq. (15) still. To solve this impasse, we apply a 
transformation matrix, , constituted by the NURBS shape functions to relate the values of the boundary conditions at 
the collocation points with the values at the control points: 

E 

E 

c

c

u u
uu

n n

=
∂∂

=
∂ ∂

, (21) 

where the subindex indicates the values at the control points. By inverting the systems of equations given in Eq. (21), we 
can now solve Eq. (15). The solution is then obtained at control points and later through the system given in Eq. (21), the 
solution is obtained at the boundary. This procedure is carried out in each patch NURBS that composes the geometric 
boundary of the problem, each one with its type of boundary condition. 

4 APPLICATION OF FMM TO ISOGEOMETRIC BEM 

The Bézier decomposition operation and the Bézier extraction operator provided a simplification such that the FMM 
coupled to the isogeometric BEM practically does not differ from the FMM coupled to the conventional BEM using 
traditional elements (Liu, 2009). 

The method starts with the construction of the quaternary tree from a square covering the entire boundary of the 
problem and from then on, each square is subdivided into four subsquares until each square has a number of Bézier 
elements, CΓ , limited by a prefixed value and each subdivision corresponds to a level change, starting from zero where 
the square covers the entire original boundary. Each square is known as a cell and a leaf cell is a square that will not be 
further subdivided. For an illustrative example, Figure 4 shows the transition of operations from level 3  to level 2  and 
vice versa. A CΓ  element will belong to a cell if its center is inside that cell. In Figure 4a we have the upward process, 

step where the expansions of the multipole moments of the element CΓ  around the center of the cell of the lowest level 

are calculated, which is transferred by translation M2M to the center of the cell level 2 . The downward process starts 
with the M2L translation transferring the moments accumulated in the center of the cell from the level 2  , Cz ′ , to the 

local expansion point Lz , from there to Lz ′  by the L2L translation and finally the contributions of the element CΓ , from 
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a distant cell, will constitute the actions of the source points 0z , 1z , and 2z , see Figure 4b. The acronyms uFC  and 

uLC  ( u  meaning upward) stand for parent cell and child cell, respectively. 

 

Figure 4: Validity condition: L L Ciz z z z− << −  and C C iz z z z− << −  for 0,1, 2, ,i r=  . 

 

 
Figure 5: Expansion points. 

In order to perform the matrix-vector product from Eq. (15), basically two expansions are performed, each one 
referring to the integrals on its right side. To define the algebraic scenario, the following notations and associations must 
be established: source point ( ) 2

1 2,x x x= ∈  with 0 1 2z x ix= + ∈  and field point ( ) 2
1 2,y y y= ∈  with 

1 2z y iy= + ∈ , where i  is the imaginary unit, see Figure 5. With the properties of complex variable differential and 
integral calculus in mind one can write: 
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( ) ( ){ }0, Re ,u x y u z z∗ ∗= , (22) 

where 

( ) ( )0 0
1, ln

2
u z z z z

π
∗ = − −  (23) 

is the fundamental solution of the potential in complex notation and { }Re +  represents the real part of the argument 

+ . As well as: 

( ) ( )0, ,
Re

u x y u z z
n n

∗ ∗ ∂ ∂ =  ∂ ∂  
, (24) 

where 

( ) ( ) ( )0 0
1 2

, ,u z z u z z
n in

n z

∗ ∗∂ ∂
= +

∂ ∂
 (25) 

is the fundamental solution of the potential derivative also in complex notation and 1 2n n in= +  is the outer normal 
vector at point z  of Γ . 

Therefore, the following equivalences are obtained: 

( ) ( ) ( ) ( ) ( )
C C

0, Re ,y

u y u z
u x y d u z z dS z

n n
∗ ∗

Γ Γ

∂ ∂ 
Γ ≡  ∂ ∂ ∫ ∫  (26) 

and 

( ) ( ) ( ) ( ) ( )
C C

0, ,
Rey

u x y u z z
u y d u z dS z

n n

∗ ∗

Γ Γ

 ∂ ∂ Γ ≡  ∂ ∂  ∫ ∫  (27) 

where 
( )u z
n

∂
∂

 and ( )u z  come from the interpolation of the values of the boundary conditions corresponding to the 

element CΓ  with the NURBS basis functions from Eq. (4), as well as 0z  and z  are also given by the same equation. 

One of the fundamental ideas that speed up the matrix-vector product is the separation of the relationship between 
the source point 0z  and the field point z . For this purpose, the kernel function ( )0 ,u z z∗  given in Eq. (24) is expanded. 

Introducing an expansion point Cz  close to the point z  such that the validity condition, C 0 Cz z z z− << − , is obeyed, 

see Figure 5, the following equation is obtained after an algebraic effort: 

( ) ( ) ( ) C
0 0 0

0 C

1 1, ln ln ln 1
2 2

z zu z z z z z z
z zπ π

∗   −
= − − = − − + −  −  

. (28) 

Applying Taylor series to the second logarithm on the right side of Eq. (28), we arrive at: 
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( ) ( ) ( )0 0 C C
0

1,
2 k k

k
u z z O z z I z z

π

∞
∗

=

= − −∑ , (29) 

where the auxiliary functions ( )kI z  and ( )kO z  are defined as: 

( )

( ) ( ) ( ) ( )0

, for 0
!
1 !

, for 1 and ln

k

k

k k

zI z k
k

k
O z k O z z

z

= ≥

−
= ≥ = −

. (30) 

4.1 Multipole moments 

The integral in Eq. (26) can now be calculated by the following expansion in multipole moments: 

( ) ( ) ( ) ( ) ( )
C

0 0 C C
0

1,
2 k k

k

u z
u z z dS z O z z M z

n π

∞
∗

Γ =

∂
= −

∂ ∑∫ , (31) 

on what 

( ) ( ) ( ) ( )
C

C Ck k

u z
M z I z z dS z

nΓ

∂
= −

∂∫  (32) 

are called moments of the CΓ  element around the Cz  pole and independent of 0z . 

Analogously in Eq. (27), the calculation of the expansion at multipole moments is given as follows: 

( ) ( ) ( ) ( ) ( )
C

0
0 C C

1

, 1
2 k k

k

u z z
u z dS z O z z M z

n π

∗ ∞

Γ =

∂
= −

∂ ∑∫  , (33) 

where 

( ) ( ) ( ) ( ) ( )
C

C 1 Ck kM z n z I z z u z dS z−
Γ

= −∫ , 1, 2,k =   (34) 

are the moments of CΓ  around the Cz  pole, now referring to the kernel integral 
u
n

∗∂
∂

. 

4.2 Moment-to-Moment (M2M) translation 

This operation is responsible for transporting the moment of CΓ  around the center of the lowest level cell until it 
reaches the center of the cell at the level 2 of the tree. Figure 4a illustrates the translation of the calculated moment in 

Cz , center of the uLC  cell at the level 3, to Cz ′ , center of the uFC  parent cell at level 2, and the calculation is done as 
follows: 

( ) ( ) ( )C C C C
0

k

k k l l
l

M z I z z M z′ ′−
=

= −∑ . (35) 
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4.3 Moment-to-Local (M2L) translation 

The multipole moment of CΓ  is carried from the center, Cz ′ , from uFC  cell, at level 2, to the center Lz  of dFC  

cell, also at level 2, by moment-to-local (M2L) translation, where uFC  is found in the interaction list of dFC , through 
the local expansion coefficient given below: 

( ) ( ) ( ) ( )L L C C
0

1 l
l l k k

k
L z O z z M z

∞

′ ′+
=

= − −∑ . (36) 

4.4 Local-to-Local (L2L) translation 

The calculated local expansion coefficient at the center Lz  of the dFC  cell, at the level 2, needs to be translated to 

the center Lz ′  of the dLC  child cell, at the level 3, considering the example in Figure 4b. In the general case, the 
translation must happen to the lowest level, so that the contribution can be attributed to the actions of the source points 
of the leaf cell. The translation responsible for this step is the L2L given below: 

( ) ( ) ( )L L L Lm l l m
l m

L z L z I z z
∞

′ ′−
=

= −∑ . (37) 

4.5 Contribution of distant elements 

Finally, the integrals referring to Eq. (26) and Eq. (27) when CΓ  is far from the source points are calculated by FMM 
as follows: 

( ) ( )L L
0

m i m
m

I I z z L z
∞

′ ′
=

= −∑ , with { }0,1,2,i∈  . (38) 

All M2M, M2L and L2L translations can be written using kM  in the same way as done with kM . 
FMM is used to calculate the contributions of elements from cells far from the cell holding the source point. The 

calculation of the contributions of the elements of neighboring cells is performed with the conventional integration of 
BEM. The number of levels in the quaternary tree favors the validity conditions of the upward and downward processes, 
expressed in the legend of Figure 4, and contributes to the precision and speed of FMM as can be inferred from the 
results. 

5 HIERARQUICAL MATRICES METHOD WITH CUR APPROXIMATION 

BEM, as is known, produces full and non-symmetric matrices, but due to the characteristic of asymptotic 
smoothness of the fundamental solutions of the potential and the potential derivative, these matrices have the property 
that part of their submatrices can be represented by low-rank matrices. These submatrices are the final product of the 
hierarchical matrices method applied to BEM. The hierarchical form divides the matrices into blocks of sub-matrices and 
it all starts with structuring the nodes and boundary elements of the problem in the form of two binary trees, one tree 
for nodes and another for the boundary elements represented by their central points (Hackbusch, 2016; Bebendorf, 2000 
and 2008; Börm, 2010). From then on, each submatrix block will correspond to a group, which in turn is made up of two 
subgroups, one of source points { }1 2, , , mX x x x=   and another of boundary elements { }1 2, , , nY y y y=  , these 

being central points of the elements. The construction of these groups is done by the hierarchical clustering process from 
the two binary trees and is governed by the criterion called geometric admissibility condition, which takes into account 
the size and distance between the subgroups mentioned above and results in the largest possible blocks of low-rank 
submatrices, as follows: 

( ) ( ){ } ( )max diam ,diam dist ,X Y X Yη≤ ⋅ . (39) 



Two accelerated isogeometric boundary element method formulations: fast multipole method and 
hierarchical matrices method 

Emerson Bastos et al. 

Latin American Journal of Solids and Structures, 2022, 19(7), e463 14/26 

If a group is considered admissible, then its submatrix or block will be represented by a low-rank matrix providing 
the memory saving, otherwise, the submatrix will not be approximated and in this case there will be no savings because 
the representation will be full. The hierarchical matrices method applied to the matrices of BEM and coupled with a low-
rank representation method seeks to obtain the largest possible number of admissible blocks or the largest possible 
blocks and this makes large-scale problems manageable both in terms of storage costs and in time spent on floating point 
arithmetic operations, as it can present linear or logarithmic-linear complexity depending on the implementation 
(Bebendorf and Rjasanow, 2003). 

Let A m n×∈  be a matrix block of a BEM matrix corresponding to an admissible group, with m  and n  being the 
amounts of source points and boundary elements, respectively. A k −rank CUR  approximation (or skeleton) is defined as 

A CURkξ≈ = , (40) 

where, in Julia language notation, [ ]C=A :, J , [ ]R=A I,:  and [ ]1U=A I,J k k− ×∈ , where { }1 2I= , , , ki i i  and 

{ }1 2J= , , , kj j j  sets of row and column indexes, respectively, with cardinality k , adaptively selected to ensure that 

[ ]A I,J  is invertible and has the largest absolute value of possible determinant of all submatrices k k×  of A  (Mahoney 

and Drineas, 2009; Kumar and Schneider, 2017). There are different methods of selecting J  such as the Nearest-
Neighbors criterion (NN) and which has been evaluated in high-dimensional problems showing good accuracy (March 
and Biros, 2017). Another method is Gravity Centers Sampling (GCS) with accuracy comparable to the ACA  method 
(Ayala et al., 2020). The approach of this work is to select J  through the k −Means clustering technique (MacQueen, 
1967), which presents good performance as will be seen in the results. A brief outline of the k -Means clustering 
technique is presented in appendix A. 

To select I  specifically, the k −Means clustering partitions the subgroup of boundary elements of the admissible 
group into k  clusters and then selects the closest k ’s boundary elements to the centroids of the k  clusters, where 
k n<< . The indices of the selected k ’s boundary elements will make up the set J . Then the pivoted partial QR  

decomposition is used to find I  and, in short, proceeds as follows: calculate the factors 1p , 1Q  and 1R  through the QR 

factorization of the matrix A[:,J]  and through the permutation vector 2p  of the factorization QR of the factor T
1Q , one 

finds the indices of the set I  referring to the source points of the subgroup of the source points of the admissible group, 
which in turn correspond to the largest singular values of the A  matrix, that is, the main source points (Golub and Loan, 
2013). From now on, BEM builds a submatrix with the most significant rows and columns of the A  matrix, that is, the 
[ ]A I,J  submatrix. There are also other ways to obtain I  in linear time, such as the Strong RRQR  routines (Gu and 

Eisenstat, 1996) or maxvol (Goreinov et al., 2008). So getting a good set of column indexes J  is critical. 

The computational cost of CUR  approximation with k −Means is given as follows: ( )O n k t⋅ ⋅  floating point 

operations to obtain J , with t  being the number of iterations of the k −Means algorithm (Han et al., 2012); 2( )O m k⋅  

complexity of operations to perform the factorization QR  truncated over C ; 2n k⋅  complexity of operations to 

perform the factorization QR  truncated over TQ . So the total cost is 2(( ) )O m n k+ ⋅  (Ayala et al., 2020). A summary 
of the definition of the QR  decomposition can be seen in appendix B. 

The fact that the kernel of the integrals of the matrix entries H  is the fundamental solution of the potential 
derivative, which in turn is asymptotically smoother than the fundamental solution of the potential, makes its 
submatrices have the tendency to have rank lower than the submatrices of the G  matrix. So it makes sense to base the 
partial factorization QR  pivoted from the submatrices of the H  matrix. The qualitative information about the 
factorizations made on the submatrices of the H  matrix, are used to obtain the submatrices of low rank of the G  matrix. 
Consequently, there is an important reduction in the number of rows and columns in relation to the original submatrix. 

The implementation of the isogeometric formulation of BEM coupled with the hierarchical matrices method, 
proposed in this work, also experienced a simplification due to the use of the Bézier extraction operator derived from 
the Bézier decomposition operation. The integration did not undergo any changes and was carried out as is done in 
conventional BEM. Singular, quasi-singular and regular integrals were satisfactorily treated with the hyperbolic sine 
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transformation (Johnston and Elliott, 2004). The linear system is also solved with the GMRES iterative method restarted 
and unpreconditioned (Saad and Schultz, 1986). 

5.1 Discussion of the effectiveness of k −Means clustering in the CUR approximation 

The accuracy of the CUR  approximation, of rank k , depends on the good conditioning of the matrix [ ]A I,J  which, in 

turn, depends on adequate choices for the indices J  of columns and I  of rows, both with cardinality k . Such conditioning is 
directly related to the maximal volume of the simplex formed by the j −th column vectors, m

jc ∈ , of the A  matrix 

(Goreinov and Tyrtyshnikov, 2001). The volume of this simplex is given by the Cayley-Menger determinant as follows: 

( )
( )

2 2
12 1

2 2
21 21 2

2 2
1 2

0 1 1 1
1 0

1
1 0

2 1 !

1 0

k k

k kk

k k

d d
d d

k

d d

ν −

−
=

−







    



, (41) 

where 
2jl l jd c c= −  for , 1, ,j l k=   (Sommerville, 1958). 

For a simple argument, suppose :u × →   , that is, the fundamental solution of the potential relating real 
domains and remembering that it is used to calculate the matrix A  entries. Without much algebraic effort, it can be 
deduced from the mean value theorem that 

( ) 222
1

,m
jl j l y i lji

d y y u x ψ
=

= − ∂∑ , (42) 

where ix ’s and jy ′s are source points and field points corresponding to subgroups of an admissible group, 

respectively, and ljψ  is a real number between ly  and jy  . It can be noted that the values of 2
jld  are related to 

the distance between the field points y ’s selected by the set J . Therefore, if the field points are very close to each 

other, then a small value of kν  will result, which harms the conditioning of the [ ]A I,J  matrix and decreases the 

performance of the CUR  approximation. The k −Means clustering, due to its concept of intracluster similarities and 
intercluster differences, in terms of the distance metric, acts to keep these field points y ’s as far apart as possible and, 

consequently, guarantying 2
jld  that are different from zero preserving the linear independence of the lines as much as 

possible, which favors the maximal volume of the simplex and the conditioning of the [ ]A I,J  matrix. 

6 NUMERICAL RESULTS 

In the results that follow, the two proposed formulations are evaluated and compared with the conventional BEM 
using constant elements. All are applied to problems with known analytical solution, with the exception of the plate with 
many hole problem where only the processing time was analyzed. The simulation was performed on an Acer notebook 
with an Intel i5 processor at 2.3 GHz with Turbo Boost up to 2.8 GHz, 8 Gigabytes of RAM. In this work, the Julia 
programming language in version 1.5.3 was used. 

6.1 Numerical setup 

The number of degrees of freedom is given as a function of the h −refinement, which in turn inserts parametric knots 
into the U  knot set. At each insertion of knots, an additional control point is created respecting Eq. (7). So, there is no 
change in geometry and smoothness between the Bézier curves. The degree p , or order 1p + , of the NURBS curves will 
be explained in each case. The npg  is the number of parametric Gauss-Legendre coordinates and these will be readapted 
by the hyperbolic sine transformation for the calculation of integrals. In this work, for the two proposed formulations, it was 
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sufficient to set 8npg = . The tolerance 610ε −=  was used as a weight for the stopping criterion for the preconditioned 
and restarted GMRES method (Saad and Schultz, 1986), which criterion is the defined relative residual 

( )
( )

2

2

A b
R

b

i

i
x −

= , (43) 

where ( )ix  represents a candidate solution of the linear system in the i −th iteration and 
2

∗  denotes the 2L  norm for 

a finite dimensional space. 
The instrument that will be used to evaluate the performance of the methods is the calculation of the approximation 

error by the 2L  norm, for the continuous case, between the numerical solution hu  and the exact solution u  on the 
boundary Γ = ∂Ω  of the problem: 

( )2
error hu u d

Γ
= − Γ∫ . (44) 

6.1.1 FMM parameters: 

1.  nexp is the number of terms of the expansion of moments in multipoles and ntylr  is the number of terms in 
the local expansion. nexp  and ntylr , for simplicity, they were considered equal to , which value can be 

estimated according to the formula ( )2log ε− , deducted from the calculation of the error estimate of the 

expansion of moments (Liu, 2009). 
2. maxl is the maximum number of elements in a leaf cell: 30maxl = . 
3. levmx is the maximum number of levels in the quaternary tree: 15levmx = . 
4. To calculate the multipole moments, 3npg = . 

6.1.2 Parameters of the hierarchical matrices method: 

1. nnucleos is the number of clusters produced by k -Means technique: 5nnucleos = . 
2. _max elem is the maximum number of elements in a leaf cell: _ 30max elem = . 

3. η  is the parameter of the geometric admissibility condition: 1η = . 

6.2 Heat transfer in a hollow cylinder 

This is a heat transfer problem, by conduction, in a hollow cylinder modeled as a 2D problem as shown in Figure 6. 
This problem has an analytical solution that will be used to verify the results obtained by the proposed formulations in 
this work using NURBS of order 3. The results of conventional BEM using quadratic elements will also be compared. The 
known boundary conditions are temperature at the inner boundary, Si , and flux at the outer boundary, Se . The 
analytical solution for the temperature is given by: 

( ) logi e e
i

rT r T q r
r

 
= − ⋅ ⋅  

 
, (45) 

and for the flux: 

( ) e
e

rq r q
r

= − , (46) 

where iT  and eq  are the temperature and flux in the inner and outer boundary, respectively, and r , ir  and er  are given 
in Figure 6. The data for the simulation are from Table 1. 
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In Figure 7, it is possible to observe the approximation error, by the norm 2L , for the temperature, calculated along 
the boundaries Si  and Se . It is observed that the three methods converge to the exact solution, however, the 
isogeometric formulations with fewer degrees of freedom reach greater accuracy in relation to the conventional BEM. 
Figure 8 presents the result for calculation of the approximation error for the heat flux and it is also possible to observe 
the convergence of the three methods for the exact solution. 

 
Figure 6: Potential problem in an annular region. 

Table 1 T Parameters for the hollow cylinder simulation. 

Input variables 
ir  

1m 

er  2 m 

iT  100 K  

eq  200−  2W/m  

Thermal Conductivity 1 ( )W/ mK  

Analytical results 
eT  377.2588722 K  

iq  400 2W/m  

 
Figure 7: Hollow Cylinder: temperature results. 
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Figure 8: Hollow Cylinder: Flux results. 

6.3 Moulton problem 

Consider the problem of heat transfer, by conduction, now in a rectangular plate AOBCD  as shown in Figure 9, 
with constant thermal conductivity of value 1 1 1W m K− −⋅ ⋅ . 

 
Figure 9: Domain for the Moulton problem. 

The boundary, although simple, has the boundary conditions now variable point by point and are given as follows, 
where u  represents the temperature and q  the heat flux in terms of the polar coordinates r  and θ : 

( ) ( ) ( )1
1, cos cos sin sin

2 22
q r

r
θ θθ θ θ    = − +        

 in BC , (47) 

( ) ( ) ( )2
1, cos cos sin sin

2 22
q r

r
θ θθ θ θ    = − −        

 in CD , (48) 

( ) ( ) ( )3
1, cos cos sin sin

2 22
q r

r
θ θθ θ θ    = +        

 in DA  (49) 

( )4 , 0q r θ =  in OB . (50) 
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and 

( ), 0u r θ =  in AO . (51) 

The analytical solution to this problem is given by: 

( ), cos
2

u r r θθ  =  
 

, (52) 

( )
cos

2,
2xq r

r

θ

θ

 
 
 = , (53) 

and 

( )
sin

2,
2yq r

r

θ

θ

 
 
 = . (54) 

The approximation error was calculated, by the 2L  norm, given in Eq. (44), for the temperature in the segment 
OB , whose result can be seen in Figure 10, and for the heat flux in the segment AO , whose result can be seen in 

Figure 11. For the two proposed formulations, NURBS of order , degree , were used and for the conventional BEM 
constant elements were used. It is worth noting that the boundary conditions imposed are not constant, but vary from 
point to point, including an important singularity at point O  for the boundary conditions of heat flux. It should be noted 
that the boundary geometry is quite simple, and can be represented exactly by low order elements such as NURBS degree 
 for the isogeometric and constant elements for the conventional BEM. 

For the temperature result, it can be seen in Figure 10 that the three methods converge asymptotically to the 
analytical solution. Convergence is a little slower for the case of the heat flux given in Figure 11, which can be explained 
by the singularity at point O . In terms of accuracy and precision, here we also highlight the isogeometric formulations 
in relation to the conventional BEM. 

 
Figure 10: Moulton Problem: temperature results. 
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Figure 11: Moulton Problem: flux results. 

6.4 Problem of heat transfer in a square plate with many holes 

In order to complement the verification of the efficiency of the presented formulations, it is proposed to simulate, 
in order to access processing time, the problem of heat transfer in a square plate of 21 m  area and constant thermal 
conductivity of 1 11 W m K− −⋅ ⋅ , with an increasing number of evenly distributed circular holes. The size of the holes is 
modified so that the sum of the areas of the holes makes up the proportion of 12.47%  of the plate area, which 
proportion is kept constant throughout the simulation. This problem has been analyzed in the reference (Liu, 2009), using 
Fast Multipole Accelerated BEM (FMBEM) with constant elements. 

Boundary conditions are applied with thermal insulation on the lower and upper outer boundary and temperatures 
T=0  and T=1  for the left and right outer boundary, respectively. Zero flux is also defined on the inner boundary. For 
an example of a plate with 16 holes see Figure 12. 

The simulation was performed by varying the number of holes between 1 and 10000. It was observed the need to maintain 
a uniformity in the length of the elements between the NURBS patches of the external and internal boundary. Otherwise, there 
would be two problems to deal with: first, there would be a need to use different amounts of Gauss-Legendre points on the outer 
and inner boundary for numerical integration, in order to prevent loss of precision; second, non-uniformity could weaken the 
validity conditions of FMM. The h −refinement was applied only on the external boundary to guarantee the uniformity mentioned 
above, while in each hole the amount of source points and boundary elements were kept constant. Thus, the number of degrees 
of freedom is given as a function of the number of holes and the refinement of the outer boundary. 

The processing time was considered from the assembly of the matrices until the end of GMRES. The evaluation 
involved the conventional BEM, the FMBEM with constant elements (Liu, 2009) and the two proposed formulations in 
this article. Results can be seen in Figure 13. It is worth noting the suitability of fast formulations for large problems. The 
changes in the slopes of the curves show the improvement in speed for the proposed formulations: ( )O N  for Fast 
Multipole Accelerated Isogeometric BEM (IGAFMBEM) and FMBEM; ( log )O N N⋅  for the formulation with hierarchical 

matrices and 2( )O N  for the conventional BEM. The time difference between IGAFMBEM and FMBEM can be explained 
by the complexity of numerical operations performed. 

 
Figure 12: Plate with 16 4 4= ×  holes. 
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Figure 13: Execution time between assembly and GMRES. 

7 CONCLUSIONS 

In this work two fast isogeometric formulations of the accelerated boundary element method were presented, one 
by the Fast Multiple Method and the other by the Hierarchical Matrices Method with low rank CUR  approximation 
coupled to a geometric sampling method. 

The NURBS were used as shape functions and generated by the Bézier extraction operator obtained by the Bézier 
decomposition which, in turn, reduced the computational cost and brought simplicity in the implementation, making the 
isogeometric formulations very similar to the formulation of the conventional BEM regarding the structure of elements. 

The results show that the proposed formulations have high accuracy and efficiency while dealing with generic 
geometries and boundary conditions. The effectiveness of the boundary conditions imposition method is also shown. 

Regarding the processing time, the method coupled to FMM presented a complexity order close to ( )O N  as it is 
known in the literature. While the complexity order of operations of the isogeometric formulation of BEM with the 
Hierarchical Matrices Method was estimated close to ( log )O N N⋅ . It is worth mentioning that using 2  matrices, a 
better result is expected for the hierarchical matrices in terms of memory savings and computational complexity 
(Hackbusch et al., 2000; Hackbusch and Börm, 2002; Löhndorf, 2003; Börm and Hackbusch, 2004; Börm, 2006 and 2013; 
Börm and Garcke, 2007; Hackbusch, 2016). The use of 2  matrices will be investigated in future work. 

Therefore, the proposed formulations in this work show a promising horizon for scientific computing regarding mesh 
generation, precision, accuracy, storage cost and processing speed of large-scale problems.  
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Appendix A. k − Means algorithm 

University of California researcher James B. Macqueen was the first to use the term " k − means" in 1967, although 
ten years earlier the conceptual idea was conceived by Polish mathematician Wladyslaw Hugo Dyonizy Steinhaus. Since 
then, the concept has gone through many heuristic developments making it computationally viable. Today, it is an 
unsupervised learning and clustering algorithm used to partition n  data into distinct k  clusters. It groups data that share 
important and similar characteristics so that, empirically, any two groups are different with respect to these 
characteristics. In this work, the characteristic or metric that will define the clusters will be the Euclidean distance. 

To fix the ideas, let’s consider a dataset with n  points, 1P={x }n
i i= . The goal is to partition P  into k  subsets 

1 2C {C ,C , ,C }k=  , where each Ci  is called a cluster of the set. For each Ci  we will associate a iy , named centroid, 
which will represent and redefine the cluster, being calculated as: 

C

1

j j

i j
ì x

y x
n ∈

= ∑ , (A.1) 

where in  will be the number of elements of Ci . 
To verify the fit of the clusters with their respective elements, a function, called similarity function, is defined, given 

as: 

1 C
( ) ( , )

j i

k

S j i
i x

F P D x y
= ∈

=∑ ∑ , (A.2) 

where D  is the Euclidean distance. The SF  function represents the sum of all distances between each element and the 
centroid of its cluster, but it can also be seen as a measure of clustering dispersion. As an ultimate goal, the algorithm 
seeks to minimize SF  by finding a local solution. Given a set of points, the algorithm steps are as follows: 

1. Initially, all points in the set P  are distributed into random k  clusters. 
2. Calculates through Eq. (A.1), the centroid of each cluster Ci . 
3. Assigns each point Pjx ∈  to a cluster C

i∗
, with centroid 

i
y ∗  closest to the point, that is, 

2

1,2, ,
arg min ( , )j i

i k
i D x y∗

=
=



. 

4. After the previous step, many points will have changed groups, so it is necessary to update the centroids of each 
cluster, so the 2º step is repeated, where we will find a new centroid iy  for the cluster Ci . 

5. The last two steps will be repeated iteratively, until the respective centroids no longer change or satisfy the 
established precision, then this iteration will be the local minimum. 

6. The stopping test is based on the analysis of the differences between the centroids of the current iteration and 

the previous one, that is, 1
1

k t t
i ii

y y ε−
=

− ≤∑ , t
iy  represents the centroid of the current iteration and ε  the fixed 

precision. 
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Appendix B. Pivoted partial  factoring 

Every matrix A m n×  of rank k , with min{ , }k m n< , admits a decomposition A=QR , where Q  is a matrix 
m k×  with orthonormal columns and R  is a k n×  upper quasi-triangular matrix (Golub and Loan, 2013). For R  to be 
upper triangular, the decomposition will require pivoting columns of the matrix A  and this introduces a permutation 
matrix P , hence TAP=QR  A=QRP⇔ . The permutation matrix P  is such that the diagonal elements of R  are non-
increasing, thereby improving precision and providing a basis for a more accurate knowledge of the numerical rank of 
A  with lower computational cost than SVD . 

To calculate a pivoted partial QR  decomposition, successive orthogonalizations with pivoting over the columns of 
the A  matrix one by one are performed. This task is terminated when the Frobenius norm of the remaining columns is 
less than a given computational tolerance ε . Let   be the smallest number of steps for which this tolerance is reached, 
hence the process results in partial factoring 

A=QR+E , 

where Q  is an orthonormal m×  matrix, R  is an n×  upper triangular matrix, and E  is a residue matrix satisfying 

F
E ε≤ . The computational cost of this partial decomposition is ( )O m n⋅ ⋅ , which in turn is less than 

( min{ , })O m n m n⋅ ⋅  for the SVD  decomposition (Halko et al., 2011). 




