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Abstract 
This paper has evaluated the bending performance of a novel prefabricated MVFT steel-concrete composite 
girder. 9 meters pilot MVFT girder was analyzed by validated finite element model. In the pilot test, the height 
of web, the length of grouted concrete in the girder and net spacing between webs were parametrically 
modeled to discuss their effect to the bending strength. An ultimate bending strength formula has been 
obtained, which was based on the regression of parametric results. In the meantime, the two Machine 
Learning (ML) models, BP neural network and Least Squares Support Vector Machine, have been also 
implemented to train and then predict the ultimate strength of MVFT girder. Three factors were selected as 
input in ML models: the distance between steel girder’s Tensile Centroid(TC) and slab’s Compressive 
Centroid(CC), the distance between steel girder’s TC and its CC, the compressive area of steel girder. After the 
completion of the ML training, the ultimate strength predictions of 30 meters MVFT girder by BP model and 
the formula have been compared, which agrees well with each other and validates their accuracy. 
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1 INTRODUCTION 

Steel-concrete composite bridge has the merits of light weight and excellent fatigue performance in long-span 
bridges, therefore, they are widely employed in Bridge Engineering (Svensson, 2013; Liu et al., 2015). With respect to the 
small-span bridges, German scholars have reformed the shear connections of conventional steel-concrete composite 
girder and proposed VFT (Verbund- Fertigteil-Trager) composite girder, which has been used in Germany and other 
European countries since 1998 (Petzek and Bancila, 2010). Hechler et al. (2011) and Kołakowski and Lorenc (2015) 
introduced the construction technology and its engineering practices. Zanon et al. (2021) proposed the VFT-RS(Rolled 
Section) composite girder on the basis of VFT technology, which can further improve the structural efficiency and take 
full advantages of high strength of steel. The composite dowel as shear connector is the innovation of VFT girder, which 
is different from typical steel-concrete composite girder. Harnatkiewicz et al. (2011) and Berthellemy et al. (2018) 
studied the fatigue performance of composite dowel, and they suggested an optimized dowel’s shape to improve its 
fatigue performance. 

For the cold and high-altitude region, the authors proposed a small-span prefabricated MVFT steel-concrete 
composite girder, which is evolved from VFT girder. The steel girder and the concrete slab of MVFT girder are both 
prefabricated in the mill, without secondary casting (Xiong et al., 2018; Xiong, 2021; Chen et al., 2021). MVFT composite 
girder has the merits of convenient fabrication, light weight, fast construction and time-saving. 

The ultimate bending capacity of steel-concrete composite girders is the focus of theoretical analysis and 
engineering design. Non-plastic and plastic analysis are the two typical methods to calculate the flexural capacity of the 
composite girder. Yang et al. (2018) proposed a formula for calculating the flexural capacity of composite girders in the 
sagging moment region by adopting the elastoplastic section analysis method and introducing the reduction coefficient 
of flexural capacity. Liang et al. (2005) studied the flexural and shear bearing capacity of simply supported composite 
girders under combined moment and shear; Liu et al. (2019) studied the flexural strength of steel-concrete simply 
supported composite girders under hogging bending moment. Ryu et al. (2006) studied the stiffness and strength of 
composite girders with Class 3 section under bending moment through 4-point flexural test. Zhang et al. (2020) studied 
the degradation process of flexural capacity of composite box girders under fire through numerical simulation. In this 
paper, the plastic method is adopted to calculate the ultimate bending capacity of MVFT girder due to its clear concept, 
concise form and extensive use. 

In recent years, machine learning (ML) has developed rapidly and been applied to damage detection and fire 
resistance evaluation of composite girders. Abdeljaber et al. (2018) estimated the actual amount of vibration-based 
structural damage by using an enhanced CNN-based approach. Tan et al. (2020) used the normalized value of modal 
strain energy-based damage index Z as the input layer to locate and quantify the damage of composite girders, and the 
feasibility of this method through several numerical examples were verified. Hakim and Razak (2013) used the first five 
natural frequencies as the input layer to train neural networks, and then used them to predict the severity of damage. 
Tadesse et al. (2012) proposed three neural networks with the number of input layer parameters of 3, 7 and 8 
respectively, to predict mid-span deflection of simply supported, two-span and three-span composite girder bridges. 
Li et al. (2021) used the neural network with 7 inputs, 3 outputs and 2 hidden layers to predict the fire resistance of 
concrete encased steel (CES) composite columns with concrete grade up to C120. In addition, machine learning has also 
been applied in other fields (Bağcı Daş and Birant, 2021; Calderón et al., 2020). In light of these previous research, the 
ML approaches are implemented in this paper to predict the bending strength of the MVFT girder. 

The high-performance construction material also gives rise to the development of the steel-concrete composite 
girders. Especially on the issue of ultra high-performance concrete (UHPC)-steel composite member, these researches 
mainly focus on the subjects: negative bending moment of steel-UHPFRC composite girders (Qi et al., 2020; 
Hamoda et al., 2017), flexural strength of UHPC-concrete composite members (Shirai et al., 2020). In addition, there are 
some findings on new type of composite girders, such as the post-installed shear connector aiming to strengthen 
composite bridge (Hällmark et al., 2019), bending capacity of U-shaped steel-concrete composite girders (Zhou et al., 
2019) and straight-side U-shaped steel-encased concrete composite girders (Yan et al., 2021). Besides, some researchers 
have performed the dynamic analysis of the plate structure by using FE method (Das and Gonenli, 2022; Gonenli and 
Das, 2021; Das et al., 2020; Sahoo and Barik, 2020; Jafarpour and Khedmati, 2020). 

In this paper, a series of pilot MVFT composite girders are established numerically and are analyzed theoretically to 
obtain the formula of the ultimate bending capacity, the capacity of MVFT girder is then predicted by the machine 
learning regressors (MLR). The accuracy of the two methods is verified by comparing the results of the fitting formula 
and the prediction results by machine learning approach. Therefore, this study combining FE method and MLR has 
reliable results and can avoid a large number of numerical calculations, which provides a new approach for MVFT girder’s 
engineering design. 
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2 Configuration of the pilot MVFT girder 

The steel girder and concrete plate of MVFT girder are both prefabricated in the mill, without secondary casting. 
The section near the support of MVFT girder is grouted. To reduce the dead weight, there is no grouted concrete in the 
mid-span section. The general section of MVFT girder is shown in Figure 1. 

In this paper, 3:10 scaled pilot MVFT simply supported composite girder was investigated numerically. The reduced 
scale span of MVFT girder is 9m. The cross-section of the model is shown in Figure 2, and Figure 3 presents the detailed 
geometry of steel dowel. The overall and detailed finite element model are demonstrated in Figure 4 and Figure 5, 
respectively. 

 
Figure 1 MVFT section. 

 
Figure 2 Geometric parameters of MVFT girder(unit:mm). 

 
Figure 3 Details of steel dowel(unit:mm). 
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Figure 4 Elevation of pilot MVFT girder (unit:mm). 

 
Figure 5 Details of FE model. 

To explore the influence of web height(hw), clear spacing between webs(w), and length of concrete filled steel 
tube(lc) on the bending capacity of MVFT girders, the parametric studies are conducted based on the validated FE model 
as tabulated in Table 1. (Note: All dimensions in Table 1 are full-scale values.) 

Table 1 Schemes for the parametric study. 

Scheme No. hw(mm) w(mm) lc(m) 

NS1 700 452 0 
NS2 700 452 3 
NS3 700 452 4 
NS4 700 452 5 
NS5 700 467 0 
NS6 700 467 3 
NS7 700 467 4 
NS8 700 467 5 
NS9 700 482 0 

NS10 700 482 3 
NS11 700 482 4 
NS12 700 482 5 
NS13 700 497 0 
NS14 700 497 3 
NS15 700 497 4 
NS16 700 497 5 
NS17 700 512 0 
NS18 700 512 3 
NS19 700 512 4 
NS20 700 512 5 



Ultimate Bending Strength Evaluation of MVFT Composite Girder by using Finite Element Method and 
Machine Learning Regressors 

Zhihua Xiong et al. 

Latin American Journal of Solids and Structures, 2022, 19(3), e438 5/20 

Scheme No. hw(mm) w(mm) lc(m) 

NS21 800 452 0 
NS22 800 452 3 
NS23 800 452 4 
NS24 800 452 5 
NS25 800 467 0 
NS26 800 467 3 
NS27 800 467 4 
NS28 800 467 5 
NS29 800 482 0 
NS30 800 482 3 
NS31 800 482 4 
NS32 800 482 5 
NS33 800 497 0 
NS34 800 497 3 
NS35 800 497 4 
NS36 800 497 5 
NS37 800 512 0 
NS38 800 512 3 
NS39 800 512 4 
NS40 800 512 5 
NS41 900 452 0 
NS42 900 452 3 
NS43 900 452 4 
NS44 900 452 5 
NS45 900 467 0 
NS46 900 467 3 
NS47 900 467 4 
NS48 900 467 5 
NS49 900 482 0 
NS50 900 482 3 
NS51 900 482 4 
NS52 900 482 5 
NS53 900 497 0 
NS54 900 497 3 
NS55 900 497 4 
NS56 900 497 5 
NS57 900 512 0 
NS58 900 512 3 
NS59 900 512 4 
NS60 900 512 5 

In this paper, the ultimate load and bending strength of MVFT girder were obtained through the 3-point flexural 
test. And the failure mode of MVFT girder were identified by the concrete slab’s load-strain curve and the steel girder’s 
load-strain curve. 

Table 1 Continued... 
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3 Numerical test and result 

3.1 Validation of FE model 

In the start of numerical test, the FE model was validated by the pull-out experimental data of composite dowels in 
UHPC slabs, which was conducted by Gallwoszus and Claßen  (2015). The test steel dowels had a web thickness of 20 mm 
and were made of S460 structural steel. The dimensions of the puzzle-shaped steel dowel and the UHPC slab are shown 
in Figure 6, where h is the embedment depth of steel dowel. 

 
Figure 6 Dimensions of test specimen(unit:mm). 

The FE analysis was performed in ABAQUS to simulate the pull-out test. The steel dowel and UHPC slab were 
discretized with a uniform mesh of solid elements C3D8R. Surface-to-surface contact was employed to describe the 
interaction between the steel dowel and UHPC slab. The surface of steel dowel and UHPC slab were chosen as the master 
surface and the slave surface, respectively. Contact properties were defined along with both the normal and tangential 
directions. The penalty friction algorithm with the friction coefficient of 0.3 was used to characterize the tangential 
behavior between the steel dowel and UHPC slab. Hard contact algorithm was employed in the normal direction. The 
numerical simulation results are demonstrated in Figure 7. The comparison between test and numerical simulation 
results is listed in Table 2. It can be found from Table 2 that the simulation results by FE agree with the test results. 

 
Figure 7 Results of numerical modeling. 

Table 2 Comparison between the results obtained by numerical simulation (NS) and static pull-out tests. 

h(mm) Scheme No. Pmax(kN) δ(mm) 

60 Test1 118 0.35 
NS1 113.27 0.375 

50 Test2 96 0.36 
NS2 99.63 0.362 
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3.2 Ultimate load of MVFT girder 

Similarly with the previous validation model, the concrete slab, steel girders, stiffening ribs and concrete filled steel 
tube were simulated by three-dimensional eight-node solid elements (C3D8R) with one integration point. And 
three-dimensional two-node truss elements (T3D2) were used for the rebars in concrete slab. The loading device and 
supports were set as rigid bodies. The bilinear constitutive model was adopted for the steel with the value of yield 
strength(fy) of 345MPa, Young's modulus (Es) of 2.06x105MPa, and tangent modulus of strengthening stage of 0.01Es. 
The material characteristics of concrete can be represented by the concrete damage plasticity (CDP) model in ABAQUS. 
The design value of concrete compressive strength(fc) is 23.1MPa, the value of Young's modulus (Ec) is 3.42x104MPa. 

According to the numerical simulation results, the P-δ curve is plotted in Figure 8, where P is the loading force, δ is 
the mid-span vertical deflection. 

 
Figure 8 Load-deflection curves of MVFT girder. 

To further exhibit the effect of w and lc on the ultimate load(Pu) more directly, Table 3 summaries the results by 
controlling variables. 

Table 3 Effect of w and lc on the ultimate load. 

Group No. 
Groups of w 

Group No. 
Groups of lc 

Label Pu(kN) Label Pu(kN) 

1 NS1 270.54 2 NS1 270.54 
 NS5 271.11  NS2 282.84 

 NS9 271.48  NS3 291.06 
 NS13 270.40  NS4 293.28 
 NS17 270.34  NS5 271.11 
 NS2 282.84  NS6 283.96 

 NS6 283.96  NS7 291.99 
 NS10 284.47  NS8 294.26 
 NS14 283.86  NS9 271.48 

 NS18 277.37  NS10 284.47 
 NS3 291.06  NS11 293.00 
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Table 3 Continued... 

Group No. 
Groups of w 

Group No. 
Groups of lc 

Label Pu(kN) Label Pu(kN) 
 NS7 291.99  NS12 295.40 
 NS11 293.00  NS13 270.40 
 NS15 292.41  NS14 283.86 

 NS19 283.93  NS15 292.41 
 NS4 293.28  NS16 294.67 
 NS8 294.26  NS17 270.34 
 NS12 295.40  NS18 277.37 

 NS16 294.67  NS19 283.93 
NS20 286.12  NS20 286.12 
NS21 314.29  NS21 314.29 
NS25 315.40  NS22 329.15 

NS29 315.33  NS23 339.50 
NS33 314.90  NS24 342.74 
NS37 314.63  NS25 315.40 

NS22 329.15  NS26 329.48 
NS26 329.48  NS27 340.77 
NS30 330.27  NS28 343.67 
NS34 329.35  NS29 315.33 

NS38 326.31  NS30 330.27 
NS23 339.50  NS31 340.94 
NS27 340.77  NS32 344.47 
NS31 340.94  NS33 314.90 

NS35 340.70  NS34 329.35 
NS39 330.46  NS35 340.70 
NS24 342.74  NS36 344.39 
NS28 343.67  NS37 314.63 

NS32 344.47  NS38 326.31 
NS36 344.39  NS39 330.46 
NS40 332.84  NS40 332.84 
NS41 355.35  NS41 355.35 

NS45 356.56  NS42 371.66 
NS49 356.78  NS43 385.57 
NS53 362.55  NS44 388.46 

NS57 354.83  NS45 356.56 
NS42 371.66  NS46 379.90 
NS46 379.90  NS47 387.73 
NS50 374.19  NS48 396.18 

NS54 380.32  NS49 356.78 
NS58 372.87  NS50 374.19 
NS43 385.57  NS51 388.73 
NS47 387.73  NS52 392.33 

NS51 388.73  NS53 362.55 
NS55 393.64  NS54 380.32 
NS59 388.21  NS55 393.64 
NS44 388.46  NS56 397.64 

NS48 396.18  NS57 354.83 
NS52 392.33  NS58 372.87 
NS56 397.64  NS59 388.21 
NS60 391.91  NS60 391.91 
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It can be observed from Figure 8, when the hw increases from 700mm to 800mm and 900mm, the ultimate load (Pu) 
shows an obvious increase. As shown in Table 3, with the increase of w, the Pu increases first and then decreases overall; 
and the Pu increases gradually with increasing lc. 

3.3 Failure mode of MVFT girder 

The bending failure modes of steel-concrete composite girders with full shear connection are mainly classified into 
concrete slab compressive failure and steel girder tensile failure. In this paper, the failure mode is determined under the 
assumption of plastic theory. The concrete will be crushed when the maximum compressive strain of concrete 
slab(εcc,max) exceeds the ultimate compressive strain of concrete(εcu), and εcu is set to be 0.0033, according to the Code 
for design of concrete structures (GB 50010-2010); the steel will be yielded when the maximum tensile strain of steel 
girder(εst,max) exceeds the ultimate tensile strain of steel(εsu), and εsu=15εy, which is defined by the Eurocode 3. For the 
steel involved in the analysis, εsu is 0.02803. In order to discuss the failure mode of MVFT girder, load-concrete slab 
compressive strain curves (P-εcc curves) and load-steel girder tensile strain curves (P-εst curves) are plotted in Figure 9 
and Figure 10. As shown in Figure 9 and Figure 10, εcc,max exceeds 0.0033, and εsu is less than 0.02803, when the web 
height of MVFT girders is 700mm, 800mm and 900mm, respectively. Therefore, the failure mode of MVFT composite 
girder is due to the concrete slab’s crush. The compression damage of concrete slab is shown in Figure 11, and the tensile 
strain of steel girder corresponding is shown in Figure 12, while steel girder has turned into plastic stage. 

 
Figure 9 Load-concrete slab’s compressive strain curves. 
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Figure 10 Load-steel girder’s tensile strain curves. 

 

 
Figure 11 Contour plot of concrete slab compression damage. 
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Figure 12 Tensile strain of the steel girder corresponding to the concrete slab compression damage. 

4 Formula of ultimate bending strength 

For MVFT girder, there is no design formula for its ultimate bending strength at present, while the design formulas 
for ultimate flexural capacity of conventional steel-concrete composite girder under the assumption of plastic theory are 
provided by the Code for design of composite structures (JGJ 138-2016) and the Standard for design of steel structures 
(GB 50017-2017). There is no essential or formal difference between the two formulas. Considering that the steel girder 
is inserted into the concrete and cooperates with the concrete, the concrete will be strengthened based on the formula 
from the code (JGJ 138-2016, GB 50017-2017). Therefore, a concrete strengthening coefficient(α) is proposed to modify 
the existing code formula. With the assumption that the plastic neutral axis is located in the steel girder, and the 
calculation model is shown in Figure 13. 

 
Figure 13 Calculation model of ultimate bending strength. 

The calculation formula for ultimate bending capacity of MVFT girder is proposed by Equation (1): 

1 1 2e c c ac aM b f h y A f yα≤ +  (1) 

where α is the concrete strengthening coefficient, fc is the design value of concrete compressive strength, fa is the design 
value of steel compressive and tensile strength, be is the effective width of MVFT composite girder, hc1 is the thickness 
of concrete slab, y1 is the distance between steel girder’s tensile centroid and slab’s compressive centroid, y2 is the 
distance between steel girder’s tensile centroid and its compressive centroid, Aac is the compressive area of steel girder, 
Aa is the area of steel girder. 

The ultimate bending moments of MVFT girders were calculated by FEM(MNSU) , design formula (McodeU) are 
presented in Table 4. 
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Table 4 Comparison of FEM and design formula predicted ultimate moment capacity of MVFT girders. 

Scheme No. MNSU(kN·m) McodeU(kN·m) MNSU/McodeU 
NS1 248.3 208.82 1.19 
NS2 246.8 208.82 1.18 
NS3 244.8 208.82 1.17 
NS4 243.9 208.82 1.17 
NS5 249.3 209.80 1.19 
NS6 248 209.80 1.18 
NS7 245.6 209.80 1.17 
NS8 244.5 209.80 1.17 
NS9 250.2 210.78 1.19 

NS10 248.3 210.78 1.18 
NS11 246.1 210.78 1.17 
NS12 244.9 210.78 1.16 
NS13 246.9 211.76 1.17 
NS14 246.2 211.76 1.16 
NS15 243.7 211.76 1.15 
NS16 243 211.76 1.15 
NS17 246.6 212.74 1.16 
NS18 239.8 212.74 1.13 
NS19 238.9 212.74 1.12 
NS20 237.8 212.74 1.12 
NS21 287.8 245.32 1.17 
NS22 285.1 245.32 1.16 
NS23 285 245.32 1.16 
NS24 287.3 245.32 1.17 
NS25 298.9 246.36 1.21 
NS26 297.6 246.36 1.21 
NS27 294.7 246.36 1.20 
NS28 293.3 246.36 1.19 
NS29 289.2 247.41 1.17 
NS30 288.4 247.41 1.17 
NS31 285.4 247.41 1.15 
NS32 284.3 247.41 1.15 
NS33 297.3 248.45 1.20 
NS34 295.7 248.45 1.19 
NS35 292.7 248.45 1.18 
NS36 291.5 248.45 1.17 
NS37 287.4 249.49 1.15 
NS38 290.5 249.49 1.16 
NS39 279 249.49 1.12 
NS40 277.8 249.49 1.11 
NS41 355.8 283.80 1.25 
NS42 351.8 283.80 1.24 
NS43 347.7 283.80 1.23 
NS44 346.2 283.80 1.22 
NS45 355 284.91 1.25 
NS46 354.4 284.91 1.24 
NS47 349.1 284.91 1.23 
NS48 348.6 284.91 1.22 
NS49 356.2 286.01 1.25 
NS50 353.7 286.01 1.24 
NS51 349.3 286.01 1.22 
NS52 347.5 286.01 1.21 
NS53 355.1 287.11 1.24 
NS54 353.9 287.11 1.23 
NS55 349.5 287.11 1.22 
NS56 348.4 287.11 1.21 
NS57 353.1 288.22 1.23 
NS58 346.2 288.22 1.20 
NS59 346.8 288.22 1.20 
NS60 345.2 288.22 1.20 
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As shown in Table 4, the length of grouted concrete in the girder ( lc) has little influence on the ultimate flexural 
strength of MVFT girder. Therefore, all 60 groups of MNSU can be used to fit the proposed correction formula of MVFT 
girder, and the concrete strengthening coefficient α=1.221 was obtained. In terms of the coefficient of determination 
R2=0.9483, the fitting results were precise. In addition, it can be seen from Table 4 that the calculation results of the 
ultimate moment resistance using the present code are slightly conservative. 

5 Ultimate bending strength by Machine Learning 

In the calculation formula for ultimate bending capacity of MVFT girder, Aac, y1, y2 are variables that have influence 
on the MNSU. Therefore, the three factors that Aac, y1, y2 are determined as the independent variables of the prediction 
model while the corresponding MNSU is set as the dependent variable of the model. A total of 60 samples were listed 
from the former study. 48 sets of samples are randomly selected as training set, and the remaining 12 sets of sample 
data served as the test part for the reliability of prediction models. Considering that the units of different uncertain 
parameters and the numerical magnitude may have different degrees of influence on the prediction results, all the 
extracted samples are normalized and collated. The normalization formula is expressed in Equation (2). 

min

max min

i
i

x x
P

x x
−

=
−  (2) 

where Pi is the normalized data of a variable xi in the training sample; xmin is the minimum value of that group of data in 
the sample; xmax is the maximum value of that group of data in the sample. 

5.1 BP neural network-based ultimate bending strength prediction model 

BP neural network is a multi-layer feed-forward network trained by back propagation of error. The single hidden layer 
network structure is chosen for the prediction model in this paper, due to the fact that the neural network can approximate any 
complex continuous mapping if the single hidden layer feed-forward neural network is continuous and the transfer function is 
sigmoid (Hornik et al., 1989). It will lead to underfitting or overfitting respectively because of deficiency or surplus hidden layer 
neurons. And the error of the prediction model can be minimized when the number of hidden layer neurons is 3 according to a 
large number of artificial neural network modeling experience and computational data comparison results. Hence, the number 
of hidden layer neurons is determined to be 3 here, and the flow chart of the BP neural network is shown in Figure 14. 

 
Figure 14 Flow chart of the BP neural network 

This model applies the L-M algorithm to optimize the search direction of the network weight vector so that the network 
quickly approaches the objective function. The iterative equation of the L-M algorithm is expressed in Equation (3), (4). 

( 1) 1[ ]k k T Tx x J J uJ J e+ −= − +  (3) 

TH J J=   (4) 

where x (k), x (k+1) are the vectors composed of weights and thresholds among the layers in the kth and k+1th iterations of 
the neural network, respectively; e is the error vector of each layer of the network; u is the coefficient, Equation (4) is 
the Newton method when u is 0; Equation (4) is the gradient descent method; H is the Hessian matrix when u is large. 



Ultimate Bending Strength Evaluation of MVFT Composite Girder by using Finite Element Method and 
Machine Learning Regressors 

Zhihua Xiong et al. 

Latin American Journal of Solids and Structures, 2022, 19(3), e438 14/20 

The network learning rate is set to 0.01 and the maximum training round is 1000 times. In order to ensure the 
general vadility of the prediction results, the BP neural network is randomly performed five times. Some of the results 
predicted by BP neural network with MATLAB are shown in Table 5. 

Table 5 BP neural network prediction results. 

Group No. Test No. Mpre MNSU relative error 
1 Test1 245.1 247.3 0.0090 

Test2 291.3 290.5 0.0027 
Test3 351.4 348.4 0.0085 
Test4 292.0 289.2 0.0098 
Test5 245.8 248.3 0.0100 
Test6 351.1 348.6 0.0073 
Test7 351.3 353.7 0.0069 
Test8 291.3 287.4 0.0135 
Test9 292.0 284.3 0.0272 

Test10 351.4 345.2 0.0181 
Test11 291.6 291.5 0.0005 
Test12 246.6 245.6 0.0039 

2 Test1 288.28 288.4 0.0004 
Test2 246.93 249.3 0.0095 
Test3 245.28 246.9 0.0066 
Test4 246.09 248.3 0.0089 
Test5 287.51 295.7 0.0277 
Test6 287.51 292.7 0.0177 
Test7 350.72 356.2 0.0154 
Test8 287.51 297.3 0.0329 
Test9 244.48 239.8 0.0195 

Test10 350.47 348.6 0.0054 
Test11 286.78 287.4 0.0022 
Test12 350.47 355 0.0128 

3 Test1 244.58 246.9 0.0094 
Test2 290.78 293.3 0.0086 
Test3 238.14 239.8 0.0069 
Test4 238.14 246.6 0.0343 
Test5 247.17 246.8 0.0015 
Test6 290.78 294.7 0.0133 
Test7 248.44 245.6 0.0116 
Test8 348.84 355.8 0.0196 
Test9 247.17 243.9 0.0134 

Test10 247.81 246.1 0.0069 
Test11 248.44 244.5 0.0161 
Test12 247.17 248.3 0.0045 

4 Test1 288.78 293.3 0.0154 
Test2 286.83 295.7 0.0300 
Test3 350.56 347.5 0.0088 
Test4 348.96 346.2 0.0080 
Test5 289.77 287.3 0.0086 
Test6 288.78 297.6 0.0296 
Test7 288.78 298.9 0.0339 
Test8 349.74 353.9 0.0118 
Test9 350.56 353.7 0.0089 

Test10 287.80 284.3 0.0123 
Test11 244.43 246.6 0.0088 
Test12 287.80 288.4 0.0021 

5 Test1 349.89 346.8 0.0089 
Test2 244.74 243.7 0.0043 
Test3 289.53 285.4 0.0145 
Test4 349.80 348.4 0.0040 
Test5 289.53 284.3 0.0184 
Test6 349.61 349.1 0.0015 
Test7 349.89 353.1 0.0091 
Test8 288.41 285.1 0.0116 
Test9 290.12 292.7 0.0088 

Test10 245.26 249.3 0.0162 
Test11 244.55 246.6 0.0083 
Test12 349.61 354.4 0.0135 
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5.2 LSSVM-based ultimate bending strength prediction model 

The primary principle of least squares support vector machine (LSSVM) regression is to map the input data to a high-
dimensional feature space through certain nonlinear mapping, and then construct the optimal linear regression equation 
in the high-dimensional space. The LSSVM approach’s advantages include high accuracy (Wang and Hu, 2005), a fast-
solving speed, and consumes less computational resources. According to the principle of Structure Risk Minimization 
(SRM), the training objective of LSSVM can be expressed as Equation (5), (6). 

2 2

1

1 1min
2 2

l

i
i

eω γ
=

= ∑
 (5) 

. . ( ) 1, 2, ,T
i i is t x b e y i lω ϕ + + = =   (6) 

where γ is the regularization parameter that controls the degree of penalty on the error; ω is the weight vector; φ(xi) is 
the kernel function; b is the offset; and ei is the error variable. 

The normalized data was used to build a system numerical model in MATLAB for simulation analysis, where LSSVM 
offline training was implemented with algorithmic programming. To ensure the general vadility of the prediction results, 
the LSSVM is randomly performed five times as well. The predicted values are listed in Table 6. 

Table 6 LSSVM prediction results. 

Group No. Test No. Mpre MNSU relative error 

1 Test1 349.90 355 0.0144 
Test2 298.19 294.7 0.0118 
Test3 250.25 246.1 0.0168 
Test4 298.19 293.3 0.0167 
Test5 250.25 244.9 0.0218 
Test6 347.40 346.8 0.0017 
Test7 240.56 246.6 0.0245 
Test8 351.64 349.3 0.0067 
Test9 240.56 237.8 0.0116 

Test10 245.04 246.9 0.0075 
Test11 284.39 287.4 0.0105 
Test12 284.39 279 0.0193 

2 Test1 286.30 288.4 0.0073 
Test2 246.03 249.3 0.0131 
Test3 244.30 246.9 0.0105 
Test4 247.07 248.3 0.0050 
Test5 291.50 295.7 0.0142 
Test6 291.50 292.7 0.0041 
Test7 350.17 356.2 0.0169 
Test8 291.50 297.3 0.0195 
Test9 241.10 239.8 0.0054 

Test10 351.75 348.6 0.0090 
Test11 282.43 287.4 0.0173 
Test12 351.75 355 0.0092 

3 Test1 352.33 349.1 0.0092 
Test2 288.88 285.4 0.0122 
Test3 352.12 349.3 0.0081 
Test4 345.71 353.1 0.0209 
Test5 291.51 297.3 0.0195 
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Group No. Test No. Mpre MNSU relative error 

Test6 352.48 348.4 0.0117 
Test7 351.36 346.2 0.0149 
Test8 288.88 284.3 0.0161 
Test9 248.09 246.1 0.0081 

Test10 291.51 292.7 0.0041 
Test11 291.51 295.7 0.0142 
Test12 247.54 245.6 0.0079 

4 Test1 245.89 249.3 0.0137 
Test2 244.70 246.9 0.0089 
Test3 247.31 248.3 0.0040 
Test4 352.76 349.1 0.0105 
Test5 241.62 238.9 0.0114 
Test6 244.70 243 0.0070 
Test7 354.58 349.5 0.0145 
Test8 354.58 348.4 0.0177 
Test9 352.87 347.5 0.0155 

Test10 245.36 248.3 0.0118 
Test11 349.37 346.8 0.0074 
Test12 349.37 345.2 0.0121 

5 Test1 294.49 295.7 0.0041 
Test2 241.34 239.8 0.0064 
Test3 349.02 353.9 0.0138 
Test4 355.01 348.6 0.0184 
Test5 246.54 244.8 0.0071 
Test6 355.01 349.1 0.0169 
Test7 294.49 291.5 0.0103 
Test8 351.04 347.7 0.0096 
Test9 349.02 355.1 0.0171 

Test10 286.69 288.4 0.0059 
Test11 355.01 354.4 0.0017 
Test12 294.87 298.9 0.0135 

The mean absolute percentage error (MAPE) and root mean square error (RMSE) are assigned to measure the 
accuracy of the prediction model for training and prediction of existing data. In the light of the error judgment rule, the 
prediction effect of the model is more accurate as MAPE and RMSE get closer to zero. Defining the predicted output 
value to be Prei, the true value to be P, then the MAPE and RMSE are calculated as follows in Equation (7), (8). 

1
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The error analysis of the prediction results by the above equations is listed in Table 7. 

Table 6  Continued... 
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Table 7 Error comparison of two ML models. 

ML model Group No. Maximum relative error MAPE RMSE 

BP(L-M) 1 0.0272 0.0095 0.5454 
2 0.0329 0.0132 0.7386 
3 0.0343 0.0122 0.6068 
4 0.0339 0.0148 0.8233 

5 0.0184 0.0099 0.5012 
average 0.0293 0.0119 0.6431 

LSSVM 1 0.0245 0.0136 1.1766 
2 0.0195 0.011 1.0519 

3 0.0209 0.0122 1.2067 
4 0.0177 0.0112 1.0754 
5 0.0184 0.0104 1.1281 

average 0.0202 0.0117 1.1277 

As shown in Table 7, it is clear that the mean value of MAPE and RMSE of the two prediction models are both close to 0, but 
the prediction model based on the BP neural network obtains smaller mean MAPE and RMSE, while the prediction model based 
on LSSVM obtains smaller mean maximum relative error. And both their results show high precision and strong stability. 

5.3 BP neural network-based ultimate bending strength extrapolation prediction model 

It can be seen from Table 5, 6 and 7 that the two ML models can fit the historical data with high accuracy, in general, the BP 
neural network model is more precise than LSSVM. On this basis, the BP model is developed to predict the ultimate bending 
capacity of MVFT girders with new section, and to compare the calculation results of the fitting formula. The section properties of 
30 meters MVFT girder are shown in Table 8. The ultimate bending strength prediction of 30 meters MVFT girder by BP neural 
network model (MEU) and the formula (MFU) are listed in Table 9 and have been compared, which correlates well with each other 
and validates their precision. Assuming the accuracy of the formula, it is employed to calculate the ultimate flexural capacity of 
MVFT girder with other span length, without using the BP neural network to make predictions. Then, the fitting formula is used 
to predict the ultimate flexural strength of 40 meters MVFT girder, and the results are shown in Table 10. (Note: Where b is the 
width of concrete slab, hc1 is the height of concrete slab, hw is the height of web, tw is the thickness of web, wf is the width of flange, 
tf is the thickness of flange, w is the clear spacing between webs.) 

Table 8 Section Properties of 30 meters MVFT girder. 

Section No. 
Section Properties 

b(mm) hc1(mm) hw(mm) tw (mm) wf (mm) tf (mm) w (mm) fa (MPa) fc (MPa) 

Sec1 2200 250 700 24 600 20 497 295 23.1 
Sec2 2200 250 800 24 600 20 482 295 23.1 
Sec3 2200 250 900 24 600 20 467 295 23.1 

Sec4 2200 250 700 24 600 20 472 295 23.1 
Sec5 2200 250 800 24 600 20 492 295 23.1 
Sec6 2200 250 900 24 600 20 432 295 23.1 

Table 9 Ultimate bending strength prediction of 30 meters MVFT girder. 

Section No. 
MEU (kN·m) 

MFU (kN·m) 
1 2 3 4 5 average 

Sec1 9085 9097.3 9119.9 9049 9122.5 9094.74 9193.69 

Sec2 10763 11030 10715 10519 10796 10764.6 10697.03 
Sec3 12671 12927 12877 12905 12966 12869.2 12266.75 
Sec4 9089.2 9078.5 9087.5 9069.1 9095.2 9083.9 9126.74 
Sec5 10588 10686 10870 10632 10760 10707.2 10725.28 

Sec6 12959 12939 12789 12970 12958 12923 12162.69 
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Table 10 Ultimate bending strength prediction of 40 meters MVFT girder. 

Pre No. 
Section Properties 

MFU (kN·m) 
b(mm) hc1(mm) hw(mm) tw (mm) wf (mm) tf (mm) w (mm) fa (MPa) fc (MPa) 

Pre1 2200 300 1150 24 600 20 512 295 23.1 17195.61 
Pre2 2200 300 1100 24 600 20 452 295 23.1 18402.37 
Pre3 2200 300 1200 24 600 20 482 295 23.1 19299.22 

6 CONCLUSION 

In this paper, a series of pilot MVFT composite girders are established numerically and the finite element models 
are validated against background experiment. The ultimate bending capacity and failure mode of MVFT girder are studied 
through the verified numerical models, the capacity of MVFT girder is then predicted by MLR. The following conclusions 
are drawn: 

1. Owing to the steel web of MVFT girder embedding in concrete, the concrete resistance part will be reinforced 
compared with typical steel-concrete composite girder. Therefore, a concrete strengthening coefficient is proposed 
based on the existing code formula, and the formula of ultimate bending strength of MVFT girder is proposed 
accordingly. According to the fitting results, the concrete strengthening coefficient α=1.221 has been obtained. In 
terms of the coefficient of determination R2=0.9483, the fitting formula is precise. 

2. With the ascending clear spacing between webs, the ultimate load shows a trend of initial increasing and then 
decreasing. The rule can be used as a reference for the preliminary section design of MVFT girder. Under the 
assumption of plastic theory, both the load-strain curves of concrete and steel girder disclose that: the failure of 
MVFT girder under bending is owing to the concrete crushing. 

3. The two ML models, BP neural network and LSSVM, can fit the historical data of the ultimate bending moment of 
the MVFT girder with high precision: The mean maximum relative errors of the two ML models are less than 3%, 
and the mean values of MAPE and RMSE of the two ML models are close to 0. On this basis, the BP neural network 
is developed to predict the ultimate bending capacity of MVFT girders with new section, and the prediction results 
are in good agreement with the calculation results of the fitting formula, which validates their accuracy. The ML 
models are capable of an accurate prediction of the strength of MVFT section with a sufficient database, which is 
essential for the steel-concrete composite bridge design. Furthermore, this approach combining FE method and 
MLR provides a reliable result and can avoid a large number of numerical simulations, which is highly efficient in 
engineering design. 
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