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Abstract 
The propagation of longitudinal and shear elastic waves through a multi-phase material was studied and the 
effective elastic properties of the medium were evaluated. The distribution of the reinforcing inclusions was 
considered random throughout the matrix. The effective dynamic properties of the composites, including 
their effective bulk and shear moduli and effective densities, were examined along with the effective phase 
velocity and attenuation of the incident P and S waves. The Sabina–Willis model was employed to study the 
wave propagation behavior, and the model performance was analyzed through comparison with 
experimental data from the literature. The results indicated that wave propagation significantly depended on 
the physical and mechanical properties of inclusions relative to those of the matrix and the normalized wave 
number of the propagated elastic wave. Moreover, despite the fact that the elastic properties of the incidence 
in the P and S waves exhibited a similar trend, their values differed significantly. The results can serve as a 
design criterion for composite materials under dynamic loading. 
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1 INTRODUCTION 

Having a wide range of industrial applications, composite materials have become quite prevalent owing to their 
substantial lightweight and the fact that their mechanical properties can be tailored to intended loading situations. 
Despite the unique advantages of fiber composites, their higher costs have made other composites such as particulate 
composites more attractive for research. Particulate composites are widely used in aerospace structures, including 
commercial and military aircrafts and spaceships. The importance of understanding the dynamic behavior of such 
composites becomes evident by considering the dynamic nature of loading conditions in most of the mentioned 
applications. Furthermore, understanding the elastic wave propagation behavior in such media helps with non-
destructive fault and crack detection substantially. 

Wave propagation through inhomogeneous media leads to scattering, which causes the velocity and attenuation of 
the mean wave to be dependent on the frequency of the propagated wave. Foldy (1945) and Lax (1951), estimated the 
phase velocity and attenuation of a coherent wave in terms of filler concentration and scattering of the wave from a 
particle along the propagation direction. Their results were later improved by Waterman and Truell (1961). They 
estimated the multiple scattering behavior by using the scattering amplitude in a backward direction and the scattering 
amplitude along the propagation direction. 

The resulting model was extended by Lloyd and Berry (1967), who showed that the equations derived by Waterman 
and Truell contained an integration error. They adopted an energy density approach to derive the wave number in an 
inhomogeneous medium. Their final equation included one additional integral term compared to Waterman and Truell’s 
model. The results were, to some extent, more reliable for higher volume fractions. 

Additionally, various studies based on the above models were focused on the interface effects. Aiming to analyze 
such effects, Datta et al. (1988) used Foldy’s theory to analyze longitudinal and shear plane-wave propagation in 
composites containing randomly distributed spherical inclusions. Sato and Shindo (2003) used Lax’s approximation (QCA) 
to analyze the scattering of harmonic waves in a metal-matrix composite considering graded interfaces. Wei and Huang 
(2004), revealed that the viscoelastic interface had a noticeable effect on the wave number and the elastic moduli of the 
composites. They also showed that, while attenuation effects dominated at low frequencies, the multiple scattering 
effects dominated at high frequencies. These approaches to modeling the multiple scattering phenomenon offer 
acceptable accuracy at low volume fractions of inclusions and low propagation frequencies. Nevertheless, they are 
unable to provide a satisfactory estimate of the final static properties of the inhomogeneous medium in the frequency 
ranges close to zero. Therefore, one cannot ensure the validity of the results obtained from these approaches when low 
frequencies are involved. 

Following Waterman and Truell’s work, Bringi et al. (1982) and Varadan et al. (1985) developed the T-matrix 
approach to study multiple scattering using the QCA and a pair correlation function. Mal and Bose (1974) analyzed the 
propagation properties of the mean wave using a statistical method. They also analyzed the effects of inclusion’s slip on 
the average parameters of the inhomogeneous media. Determining a correlation function between two particles in the 
multiple scattering phenomenon has been the focus of many research works, examples of which are Markov and Willis 
(1998), Markov (1999), and Liu and Turner (2008). 

Willis (1980) presented the relations for solving elastodynamic problems of wave scattering through 
inhomogeneous media in terms of integral equations. Among the difficulties associated with the implementation of the 
above methods is the determination of a pair correlation function for high concentration cases. The effective 
elastodynamic constants of such media are entirely dependent on this function determination. However, such methods 
are capable of determining the final dynamic properties of inhomogeneous media at low frequencies and volume 
fractions. Berryman (1980) analyzed the wave propagation through a multi-phase medium to determine its effective 
static properties. His approach was to set the scattering wave field equal to zero to determine the final elastic constants. 
He showed that the results obtained from this approach were more accurate compared with those obtained from Kuster 
and Toksöz's (1974) method. The model outputs were compared with other methods, such as those reported by Hill 
(1965) and Budiansky (1965). 

Sabina and Willis (1988) reported the first classic self-consistent analysis using an effective medium approach, which 
yielded acceptable results at high filler concentrations. In their approach, the mean wave properties were gained through 
an iterative method. They showed that the resulting self-consistent equations, yielded acceptable results when the elastic 
wavelength was at least four times the radius of the inclusions in the inhomogeneous medium. Based on a self-consistent 
approach, Kim et al. (1995) presented an approach analogous to the approximation in alloy physics. Compared with the 
Waterman and Truell model, the analytical results reported by Kim et al. were more consistent with Kinra’s experimental 
results. These methods presented zero-frequency elastic properties similar to those obtained from Hill and Budiansky’s 
static analysis. 
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Various micromechanics methods such as generalized self-consistent, and Mori–Tanaka methods exist for the 
approximation of elastostatic moduli of composites. Christensen (1990) showed that the generalized self-consistent 
method is more accurate even at high filler concentrations. Yang (2003) further extended this method to study the plane-
wave multiple scattering through random media. He showed that, for dense composites, the model performed better 
than the mean-field methods. In addition, Kanaun and Levin (2007) used the effective field and medium approaches to 
derive the equations describing elastic wave scattering through such composites. Rahimzadeh and Daneshjoo (2014) 
conducted a comparative study on four different theoretical models for the prediction of propagation behavior of the 
elastic P-wave in composites reinforced by randomly distributed inclusions. Luppé et al. (2017) studied the effects of the 
correlation among scatterers on the propagation of the average wave through a viscoelastic medium containing spherical 
or cylindrical inclusions. 

Various experimental studies have also been published on the plane propagation of elastic waves through 
particulate composites. Kinra et al. (1982, 1998) conducted some experimental studies to analyze the ultrasonic wave 
propagation in composites with inclusions randomly distributed through the matrix. Layman et al. (2006) experimentally 
measured the wave properties in such composites. Through a comparison, they showed that the dynamic generalized 
self-consistent model was more accurate for higher volume fractions. Using experimental data, Li et al. (2017) showed 
that particle interactions played a major role in the propagation behavior of ultrasonic waves and their attenuation, 
which heavily affects the viscoelastic properties of particulate composites. Other research works considered different 
particle geometries. Mykhas’kiv et al. (2010, 2018) considered composites containing penny-shaped inclusions and 
analyzed variations in the wave properties with respect to the normalized wave number. Using a Foldy-type relation and 
the boundary-element method for a single inclusion, they proposed an approach to analyzing the effective dynamic 
parameters of the two-phase media. Both random and parallel aligned inclusion distributions were considered. 

The present study analyzed the effective dynamic properties of particulate composites containing inclusions softer, 
stiffer, lighter, and heavier than the matrix. The analysis was carried out for the two different incidences of the P or S 
waves, and the effective elastic properties were examined for the two cases. The effective phase velocity and effective 
attenuation were examined at a moderate volume fraction of 30%c = . Next, the effective properties were analyzed 

based on the normalized wave number of 
2 2pk a =  for various volume fractions. The Sabina–Willis model results were 

also compared against published experimental data. 

2 Solution Approaches to Multiple Scattering Problems 

Since the exact solutions are impossible in the case of media containing randomly distributed inhomogeneity, 
approximate methods have become the primary approach to solving these problems (Rahimzadeh, 2013). Among other 
approximate methods, self-consistent methods are more widely used owing to their remarkable benefits. These methods 
are based on some simplifying assumptions, which transform a multiple scattering problem and the mutual effects of 
inhomogeneities into a simple issue of scattering from a single inhomogeneity. The self-consistent methods are superior 
in that they are able to convert a complex multi-particle problem to a simple problem with only one particle. The 
assumptions used by these methods were examined and improved by many researchers so that the model’s prediction 
of the final behavior of composite materials can be enhanced and validated against experimental data. These methods 
can be classified into two main groups, namely the effective field and medium methods. 

2.1 Effective Field Methods 

These methods use the following assumptions: 

• Each inclusion behaves similarly to an isolated inclusion inside the matrix. 

• The effects of other inclusions are taken into account by considering an effective field applied to the isolated 
inclusion (Kanaun and Levin, 2005). 

The second assumption forms the basis of many research works on the topic. The most straightforward approach, 
known as the QCA, is to consider the effective field as a planar wave field that is uniformly exerted on all of the inclusions. 
Contrary to the effective medium methods, the effective field methods depend on how inclusions are distributed through 
the medium. The reason is because these methods employ a correlation function to estimate the effective field. 

2.2 Effective Medium Methods 

Effective medium methods rely on the following two simplifying assumptions (Kanaun et al., 2004): 
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• Each particle in the inhomogeneous medium behaves similarly to separate inclusion inside a homogeneous medium 
whose properties are similar to those of the inhomogeneous medium. 

• The average wave field in the inhomogeneous medium is consistent with the wave field propagated through the 
homogeneous medium (self-consistency condition). 

The first assumption implies that, material properties in an inclusion surrounding are replaced by a homogeneous 
medium whose properties are equivalent to the effective properties of the entire inhomogeneous medium. In other 

words, if the elastic property tensor and the density of the matrix are represented by 2L  and 2 , respectively, and the 

properties of the spherical inhomogeneities inside this medium is represented by 1L  and 1 , then it is assumed that any 

inclusion inside the medium is placed in a homogeneous medium having the final properties of the entire composite 

material, i.e., effL  and eff . The second assumption used by this family of methods has other versions too. These methods 

are shown in Figure 1. 

 
Figure 1: Schematics of a) elastic wave propagation through the composite material containing scatterers, b) effective medium 

schematic model, and c) effective field schematic model. 

3 The Sabina–Willis Model 

Consider an inhomogeneous composite material consisting of a matrix and a random distribution of n  
different kinds of other particles. In other words, the material is composed of 1n  different phases. The density 

and elastic moduli tensor of the matrix are represented by 1nr  and 1nL , respectively, and the density and 

elastic modulus tensor of each inclusion of type r  are represented by r  and rL  with 1,2,...,r n . It is assumed 

that inclusions of type r  are the same shape and size. In addition, each inclusion of kind r  occupies the region 

rx +  of space, where x  is the inclusion center, which is considered a random variable, and r represents the 

shape and size of the inclusion. 

The probability density function of inclusions of type r  is denoted by rn , which is independent of the 

random variable x  This function defines the probability of finding the center of any inclusion of kind r  at x . 

Additionally, the probability of any point in space being in a medium of kind r  is r r rc n , which is the 

concentration of inclusions of type r . The volume fraction 1nc  of the matrix is: 
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For a determined load, the displacement field u  of a multi-phase composite depends on how the inclusions are 

distributed. Therefore, given the random distribution of inclusions in the problem, the mean displacement field u  was 

deemed instead of exact displacements. The response of the medium to an arbitrary loading satisfies the equation of 
motion, which, when body forces are neglected, is given by: 

p  (2) 

According to linear elasticity and the momentum–velocity relations: 

Le   (3) 

Where  is the density and u  is the velocity. The elastic modulus tensor L  and , which are functions of x , are 

given by: 
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The equation governing the average response of the composite is obtained by averaging Eq. (2) as follows: 

p  (8) 

Accordingly, u  can be determined if effective constitutive relations similar to Eqs. (3) and (4) can be established 

between  and p  on the one hand, and e  and u  on the other. If the total average of e  at the point x  in the 

studied medium is denoted by 
re , and x  is located in a phase of type r , then: 
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In a similar fashion, the following relations are obtained for the other parameters: 
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Similar to what Hill did in his static analysis, eliminating 
1 1n nc e  from Eqs. (9) and (11), and 

1 1n nc u  from 

Euations (10) and (12) leads to: 
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Therefore, the fundamental relations of the problem can be derived if 
re  and 

ru  can be written in terms of 

e  and u . A common method to tackling this problem is to deem an isolated inclusion inside a homogeneous medium 

with the same properties as the composite material. Based on the above equations, the effective elastic properties of 
the multi-phase material can be obtained as below: 
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The general equations above can be rewritten for the special case of identical inclusions with radius 𝑎 
randomly distributed throughout the matrix. Denoting the effective shear modulus and bulk modulus of the 

matrix by 2  and 2 , respectively, and those of the inclusions by 1  and 1 , respectively, one obtains the 

following relations based on the general equations of the Sabina–Willis model: 
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The function 1( )h g  for a spherical inclusion is defined as: 

3
1( ) 3(sin cos ) ( )h g ga ga ga ga  (20) 

where g  is replaced by the longitudinal wave number k  if there is a longitudinal incident wave and by the shear 

wave number K  if there is a shear incident wave. In addition, from the above equations: 

3

3(1 ) sin( ) cos( )

( )

effik a
eff eff eff eff

eff

ik a k a k a k a e

k a
 (21) 

3

3(1 ) sin( ) cos( )

( )

effiK a
eff eff eff eff

eff

iK a K a K a K a e

K a
 (22) 

 
The longitudinal and shear wave numbers of the effective medium based on the obtained elastic properties can be 

expressed as: 

1 2
(3 4 ) 3eff eff eff effk  (23) 

1 2

eff eff effK  (24) 

These equations can be solved through iteration. Numerical methods for nonlinear equations, such as the Guass–
Newton method, can also be used for this purpose. 

4 Results and Discussion 

Equations (17)– (20) were solved through iteration. First, the model was solved for the composite consisting 
of steel spherical inclusions and a polymetilmetacrelate (PMM) matrix. The filler concentration was 15.2%c  
The physical and mechanical properties of each constituent part of the composite are listed in Table 1. Figure 2 
shows the normalized phase velocity results with respect to the normalized wave number and compares them 
with the experimental data reported by Kinra (1985). It is observed that the model provided a better prediction 
of wave propagation behavior at lower normalized wave numbers. Based on the assumptions of the Sabina–Willis 

model, the results are valid up to 2ka . Since 2ka , where a , the maximum wavelength can be up to 

two times of the inclusions diameter. In other words, the Sabina–Willis model can be employed for long and moderate 
wavelengths; the modeling error grows at shorter wavelengths. To investigate the effective dynamic properties, different 
combinations of reinforcing inclusions and matrix were considered (Table 1). Four composites of Glass/Epoxy, 
Lead/Epoxy, SiC/Al, and Steel/PMM were considered at 30%c  volume fractions. Their normalized phase velocity and 
attenuation as functions of the normalized wave number are shown in figure 3. The phase velocity curve is observed to 
exhibit a higher sensitivity to variations in the normalized wave number for Steel/PMM. This composite also experienced 
the highest attenuation value of 0.2274, which occurred at 

2 0.63pk a  Understanding the effects of the constituents of 

a composite is necessary for the analysis of their behavior during the propagation of shear and longitudinal waves. 
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Table 1 Physical and mechanical properties of the constituents of the studied composite materials. 

Case Volume fraction 

Inclusions Properties Matrix Properties 

1  

(GPa) 

1  

(GPa) 

1  

(Kg/m3) 

2  

(GPa) 

2  

(GPa) 

2  

(Kg/m3) 

Steel/PMM 15.2%, 30% 167.38 80.87 7800 5.33 2.02 1160 

Lead/Epoxy 30% 44.05 8.35 11300 6.07 1.73 1202 

SiC/Al 30% 223.40 188.10 3181 75.17 26.50 2706 

Glass/Epoxy 30% 34.59 26.16 2492 5.50 1.59 1180 

Soft Inc. 30% 
2 4  2 4  2  75.20 26.50 2706 

Stiff Inc. 30% 
24  24  2  75.20 26.50 2706 

Low Density Inc. 30% 
2  2  

2 4  75.20 26.50 2706 

High Density Inc. 30% 
2  2  24  75.20 26.50 2706 

 
Figure 2: Comparison of the (a) normalized phase velocity and (b) attenuation results as a function of the normalized wave number 

obtained from the analytical Sabina–Willis model with Kinra et al. experimental data for the Steel/PMM composite. 

Accordingly, these parameters were studied in four different cases in what follows. First, the elastic properties of 
inclusions, such as their bulk and shear moduli, were considered lower than those of the matrix (soft inclusions). The next case 
considered them to be higher than the elastic properties of the matrix (stiff inclusions). In the third case, the elastic properties 
of both the inclusions and the matrix were considered the same, but the density of inclusions was lower and higher than that 
of the matrix (light and heavy inclusions). For the analysis of the normalized propagated wave number, the volume fraction of 
inclusions was selected to be 30%c . All of the parameters of the average wave were normalized with respect to the matrix 
medium. Similarly, the frequency axis in all of the graphs was considered as the normalized longitudinal wave number. 

Figure 4 shows the variations in the dimensionless velocity of the longitudinal and shear waves with respect to the 
normalized wave number for the composites containing the above mentioned inclusions. It is observed from the figure that 
in all of the cases, when the propagated wave frequency was in the low-frequency or long-wavelength range, the phase 
velocity variations were negligible compared to the frequency variation. In fact, when exposed to long wavelengths, the 
composite exhibited static behavior. This can be justified by considering the decrease in scattering in the case of long 
wavelengths. As the propagated wave frequency reached the moderate-frequency or moderate-wavelength range, 
especially in the case with high density inclusions, the phase velocity became highly sensitive to the normalized wave 
number. Multiple scattering was dominated owing to the wavelength of the propagated wave. Therefore, this case 
experienced the largest variations in the composite phase velocity with frequency. The composite with stiff inclusions had 
the highest normalized phase velocity, which was equal to 1.198 and 1.228 for the incident P and S waves respectively. As 
the frequency increased and reached the moderate-frequency range, the normalized phase velocity curve of the composites 
containing inclusions heavier and lighter than the matrix assumed decreasing and increasing slopes, respectively. In all cases, 
as the normalized wave number increased (and the wavelength of the propagated wave became smaller compared to the 
inclusion dimensions), the normalized phase velocity approached unity. 
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Figure 5 shows the normalized longitudinal and shear wave attenuation as a function of the normalized wave number. 
Starting from zero, the curve followed an increasing trend with frequency until it reached a maximum, after which it 
exhibited a downward slope as the frequency increased. With heavy inclusions, the normalized attenuation for the incident 

P and S waves, peaked at 0.2633 for 
2 0.71pk a  and 0.1849 for 2 1.3sk a  respectively. The normalized attenuation for 

the cases with soft and stiff inclusions was remarkably lower than for the other cases. With soft inclusions, the normalized 

attenuation for the incident P and S waves peaked at 0.0649 for 
2 1.23pk a  and 0.0397 for 2 1.37sk a  respectively. 

 
Figure 3: Variations in the (a) normalized phase velocity and (b) attenuation of Glass/Epoxy, Lead/Epoxy, SiC/Al and Steel/PMM 

composites as a function of the normalized wave number. 

 
Figure 4: Variations in the normalized phase velocity as a function of the normalized longitudinal wave number for the cases with 

soft, stiff, light, and heavy inclusions and 30% volume fraction. (a) P wave incidence. (b) S wave incidence. 

 
Figure 5: Variations in the normalized attenuation as a function of the normalized longitudinal wave number for the cases with soft, 

stiff, light, and heavy inclusions and 30% volume fraction. (a) P wave incidence. (b) S wave incidence. 
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For the cases containing soft and stiff inclusions, the attenuation peaks can be attributed to the elastic resonance 
of inclusions inside the medium. Given the fact that the constituent phases were of equal density, this resonant mode 
cannot be considered the rigid-body resonant mode of the inclusions. Moreover, based on the Kramers–Kronig relations, 
variations in the attenuation curve changed the phase velocity curve. From the fact that the elastic properties of the two 
constituent parts were the same and that there was a significant density difference between the light and heavy 
inclusions, the curve peak can be concluded to belong to the rigid-body resonance of the spherical inclusion inside the 
medium. The lowest resonant frequency is observed in the curve of the composite that contained heavy inclusions. 

Figure 6 shows variations in the normalized bulk modulus of the effective medium as a function of the normalized wave 
number for 30%c  volume fraction. The variations in the bulk modulus of the material were insignificant in the low-
frequency range. As the incident wave frequency increased, the values grew larger, whereas the corresponding variations in 
the composite containing stiff inclusions exhibited a decreasing trend. It is observed that as the frequency of the propagated 
wave increased or the reinforcing inclusions became smaller, the effective bulk modulus approached the bulk modulus of the 
matrix. At low frequencies, the effective bulk modulus was almost the same as the static bulk modulus of the composite 
material, which was equal to 0.6264 and 1.4037 in the cases that contained soft and stiff inclusions, respectively. 

 
Figure 6: Dependence of the normalized effective bulk modulus on the normalized wave number for the cases with soft and stiff 

inclusions and 30% volume fraction. (a) P wave incidence. (b) S wave incidence. 

Variations in the normalized shear modulus are shown in Figure 7. As expected, the effective shear modulus was 
reduced by adding soft inclusions and increased by stiff inclusions; the resulting values were 0.815 and 1.23, respectively, 
in the static case (zero frequency). In addition, in the case of P incident wave, the effective shear modulus curve appeared 
to be more sensitive to the wave frequency. 

Figure 8 shows the dimensionless effective density as a function of the normalized wave number for the cases 
containing light and heavy inclusions at 30% volume fraction. In the static case, the effective densities of the composites 
containing light and heavy inclusions were 0.7750 and 1.9002, respectively. It is observed that changes in the low frequency 
range led to an insignificant change in the effective density for both cases. For the case with heavy inclusions, the changes 
in moderate wavelengths are observed to be more pronounced; from 

2 0.3pk a  to 1, the effective density dropped by 

43% in the case of the P wave. 
Figure 9 shows variations in the dimensionless velocity and attenuation as a function of inclusions concentration for

2 2pk a . It is observed that, as the concentration of stiff and low-density inclusions increased, the normalized phase 

velocity exhibited an upward slope and it had a downward slope for higher volume fractions of the soft and high-density 
inclusions. This is explained by the fact that the effective wave number of the medium is directly proportional to the 
density of the effective medium squared and inversely proportional to the elastic constants of the effective medium. 
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Figure 7: Dependence of the normalized effective shear modulus on the normalized wave number for the cases with soft and stiff 

inclusions and 30% volume fraction. (a) P wave incidence. (b) S wave incidence. 

 
Figure 8: Dependence of the normalized effective density on the normalized wave number for the cases with light and heavy 

inclusions and 30% volume fraction. (a) P wave incidence. (b) S wave incidence. 

 
Figure 9: Variations in the(a) normalized phase velocity and (b) attenuation as a function of the volume fraction of composite 

material for the cases with soft, stiff, light, and heavy inclusions and the wave number 2 2pk a . 

At a zero volume fraction, for which the composite material can be considered as the matrix, the normalized phase 
velocity was correctly equal to one. In addition, at low volume fractions, the curves of the normalized phase velocity of the 
light and stiff inclusions and that of the heavy and soft inclusions exhibited only a small difference. It is observed that the 
highest attenuation occurred for the case containing light inclusions. Starting from zero value, the normalized attenuation 
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variation curve followed a mostly increasing trend. The lowest attenuation is observed in the case containing heavy 
inclusions. The increasing trend of these curves is due to the increased multiple scattering through the composite material 
as a result of an increase in the number of scatterers. One of the downsides of the Sabina–Willis model is that it cannot 
predict the resonant frequency shift due to variations in the inclusions concentration. Furthermore, the model is unable to 
predict other elastic resonant modes of the inclusions inside the matrix and hence gives rise to a single curve peak only. 

4 CONCLUSION 

This work analyzed the effective dynamic properties of composite materials containing randomly distributed 
inclusions for the incident P and S waves. From the methods, the Sabina–Willis model was selected for the analysis. The 
model performance was examined through a comparison with experimental results from the literature. Analyses were 
performed for different values of the physical and mechanical properties of inclusions relative to those of the matrix; 
more specifically, the cases with inclusions softer, stiffer, lighter, and heavier than the matrix were considered. The 
results indicated that, as the inclusion volume fraction increased, the normalized phase velocity increased in the 
composites with stiff or light inclusions but decreased in those with soft or heavy. Additionally, at a constant volume 
fraction in this model, the normalized attenuation in the composites containing soft and stiff inclusions was similar; 
whereas the attenuation of the composite with heavy inclusions was remarkably higher than that of the one containing 
soft inclusions. Furthermore, the model predicted the elastic resonant frequency in the composite containing stiff 
inclusions higher than that in the composite with soft inclusions. The rigid-body resonant frequency of the case with 
heavy inclusions was also observed to be lower than that of the case with light inclusions. It was shown that, in all of the 
cases, the effective dynamic properties of the medium were heavily affected by the propagated wave frequency and the 
inclusion volume fraction. However, such influence was insignificant at low volume fractions and low frequencies. 
Analysis of the effective dynamic properties for the two incidences of the P or S waves showed that, despite the different 
values obtained for the effective properties, their variation trends were closely similar. 
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Software, M Rahimzadeh; Validation, M Rahimzadeh; Writing - original draft, M Rahimzadeh; Writing - review & editing, 
M Rahimzadeh. 

Editor: Marco L. Bittencourt 

References 

Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions. The Journal of the 
Acoustical Society of America, 68(6), 1820-1831. 

Bringi, V. N., Varadan, V. V., & Varadan, V. K. (1982). Coherent wave attenuation by a random distribution of particles. Radio 
Science, 17(5), 946-952. 

Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 
13(4), 223-227. 

Christensen, R. M. (1990). A critical evaluation for a class of micro-mechanics models. Journal of the Mechanics and Physics of 
Solids, 38(3), 379-404. 

Datta, S. K., Ledbetter, H. M., Shindo, Y., & Shah, A. H. (1988). Phase velocity and attenuation of plane elastic waves in a 
particle-reinforced composite medium. Wave Motion, 10(2), 171-182. 

Foldy, L. L. (1945). The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed 
scatterers. Physical review, 67(3-4), 107. 

Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213-222. 

Kanaun, S. K., & Levin, V. M. (2005). Propagation of shear elastic waves in composites with a random set of spherical inclusions 
(effective field approach). International Journal of Solids and Structures, 42(14), 3971-3997. 



Analysis of the Effective Dynamic Properties of Particulate Composites with Respect to Constituent 
Properties 

Mohammad Rahimzadeh 

Latin American Journal of Solids and Structures, 2022, 19(2), e429 13/15 

Kanaun, S. K., & Levin, V. M. (2007). Propagation of longitudinal elastic waves in composites with a random set of spherical 
inclusions (effective field approach). Archive of Applied Mechanics, 77(9), 627-651. 

Kanaun, S. K., Levin, V. M., & Sabina, F. J. (2004). Propagation of elastic waves in composites with random set of spherical 
inclusions (effective medium approach). Wave Motion, 40(1), 69-88. 

Kim, J. Y., Ih, J. G., & Lee, B. H. (1995). Dispersion of elastic waves in random particulate composites. The Journal of the 
Acoustical Society of America, 97(3), 1380-1388. 

Kinra, V. K. (1985). Dispersive wave propagation in random particulate composites. In Recent Advances in Composites in the 
United States and Japan. ASTM International. 

Kinra, V. K., & Anand, A. (1982). Wave propagation in a random particulate composite at long and short wavelengths. 
International Journal of Solids and Structures, 18(5), 367-380. 

Kinra, V. K., Day, N. A., Maslov, K., Henderson, B. K., & Diderich, G. (1998). The transmission of a longitudinal wave through a layer 
of spherical inclusions with a random or periodic arrangement. Journal of the Mechanics and Physics of Solids, 46(1), 153-165. 

Kinra, V. K., Ker, E., & Datta, S. K. (1982). Influence of particle resonance on wave propagation in a random particulate 
composite. Mechanics research communications, 9(2), 109-114. 

Kuster, G. T., & Toksöz, M. N. (1974). Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical 
formulations. Geophysics, 39(5), 587-606. 

Lax, M. (1951). Multiple scattering of waves. Reviews of Modern Physics, 23(4), 287. 

Layman, C., Murthy, N. S., Yang, R. B., & Wu, J. (2006). The interaction of ultrasound with particulate composites. The Journal 
of the Acoustical Society of America, 119(3), 1449-1456. 

Li, R., Xia, H., Xu, Z., Ni, Q. Q., & Fu, Y. (2017). U-DMA measurement and dynamic analysis of ultrasonic wave propagation in 
particulate composites. Composites Science and Technology, 151, 174-183. 

Liu, D., & Turner, J. A. (2008). Influence of spatial correlation function on attenuation of ultrasonic waves in two-phase 
materials. The Journal of the Acoustical Society of America, 123(5), 2570-2576. 

Lloyd, P., & Berry, M. V. (1967). Wave propagation through an assembly of spheres: IV. Relations between different multiple 
scattering theories. Proceedings of the Physical Society (1958-1967), 91(3), 678. 

Luppé, F., Valier-Brasier, T., Conoir, J. M., & Pareige, P. (2017). Coherent wave propagation in viscoelastic media with mode 
conversions and pair-correlated scatterers. Wave Motion, 72, 244-259. 

Mal, A. K., & Bose, S. K. (1974, November). Dynamic elastic moduli of a suspension of imperfectly bonded spheres. In 
Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 76, No. 3, pp. 587-600). Cambridge University Press. 

Markov, K. Z. (1999). On the correlation functions of two-phase random media and related problems. Proceedings of the Royal 
Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1983), 1049-1066. 

Markov, K. Z., & Willis, J. R. (1998). On the two-point correlation function for dispersions of nonoverlapping spheres. 
Mathematical Models and Methods in Applied Sciences, 8(02), 359-377. 

Mykhas’kiv, V. V., Khay, O. M., Zhang, C., & Boström, A. (2010). Effective dynamic properties of 3D composite materials 
containing rigid penny-shaped inclusions. Waves in Random and Complex Media, 20(3), 491-510. 

Mykhas’kiv, V., Kunets, Y., Matus, V., & Khay, O. (2018). Elastic wave dispersion and attenuation caused by multiple types of 
disc-shaped inclusions. International Journal of Structural Integrity, 9(2), 219-232. 

Rahimzadeh, M. (2013). Elastic wave propagation in nano-composites with random distribution of spherical inclusions. Latin 
American Journal of Solids and Structures, 10, 813-831. 

Rahimzadeh, M., & Daneshjoo, K. (2014). A comparative study on propagation of elastic waves in random particulate 
composites. Latin American Journal of Solids and Structures, 11(9), 1565-1590. 

Sabina, F. J., & Willis, J. R. (1988). A simple self-consistent analysis of wave propagation in particulate composites. Wave 
motion, 10(2), 127-142. 

Sato, H., & Shindo, Y. (2003). Multiple scattering of plane elastic waves in a particle-reinforced-composite medium with graded 
interfacial layers. Mechanics of Materials, 35(1-2), 83-106. 



Analysis of the Effective Dynamic Properties of Particulate Composites with Respect to Constituent 
Properties 

Mohammad Rahimzadeh 

Latin American Journal of Solids and Structures, 2022, 19(2), e429 14/15 

Varadan, V. K., Ma, Y., & Varadan, V. V. (1985). A multiple scattering theory for elastic wave propagation in discrete random 
media. The Journal of the Acoustical Society of America, 77(2), 375-385. 

Waterman, P. C., & Truell, R. (1961). Multiple scattering of waves. Journal of Mathematical Physics, 2(4), 512-537. 

Wei, P. J., & Huang, Z. P. (2004). Dynamic effective properties of the particle-reinforced composites with the viscoelastic 
interphase. International journal of solids and structures, 41(24-25), 6993-7007. 

Willis, J. R. (1980). Polarization approach to the scattering of elastic waves—I. Scattering by a single inclusion. Journal of the 
Mechanics and Physics of Solids, 28(5-6), 287-305. 

Yang, R. B. (2003). A dynamic generalized self-consistent model for wave propagation in particulate composites. J. Appl. 
Mech., 70(4), 575-582. 

Nomenclature 

,p eff  Effective bulk modulus of the multi-phase medium in the case of P wave incidence. 

,p eff  Effective shear modulus of the multi-phase medium in the case of P wave incidence. 

,p eff  Effective density of the multi-phase medium in the case of P wave incidence. 

,s eff  Effective bulk modulus of the multi-phase medium in the case of S wave incidence. 

,s eff  Effective shear modulus of the multi-phase medium in the case of S wave incidence. 

,s eff  Effective density of the multi-phase medium in the case of S wave incidence. 

2  Matrix bulk modulus. 

2  Matrix shear modulus 

2  Matrix density. 

1  Bulk modulus of inclusions. 

1  Shear modulus of inclusions. 

1  Density of inclusions. 

,p effC
 Wave velocity in the multi-phase medium in the case of P wave incidence. 

,s effC
 Wave velocity in the multi-phase medium in the case of S wave incidence. 

2pC  P wave velocity in the matrix. 

2sC  S wave velocity in the matrix. 

,p effk a
 Normalized wave number in the multi-phase medium in the case of P wave incidence. 

,s effk a
 Normalized wave number in the multi-phase medium in the case of S wave incidence. 

2pk a  Normalized wave number of the incident P wave. 

2sk a  Normalized wave number of the incident S wave. 
c  Volume fraction. 
a  Inclusion’s radius. 

1nr  Matrix density. 

1nL  Matrix tensor of elastic moduli. 

r  Density of each inclusion of type r . 

rL  Tensor of elastic moduli of each inclusion of type r . 

x  Inclusion center. 

r  Shape of inclusion of type r . 
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rn  probability density function of inclusions of type r . 

1nc  Matrix volume fraction. 

rc  Inclusion’s volume fraction. 

u  Displacement field. 

u  Mean displacement field. 

 Stress tensor. 
p  Momentum density. 


