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Abstract 
The suitability of employing the second-order shear deformation theory to static bending problems of thin 
and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial 
second-order displacement models were considered. Both models account for quadratic expansions of the 
surface displacements along the shell thickness, although the second model (SSODM) was augmented by the 
initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier 
analytical solutions were obtained under simply supported boundary conditions. The results of the 
displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of 
the bending response of thin and moderately thick shells and are in close agreement with those of the first 
and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first 
model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be 
significantly affected by changes in length to radius of curvature (l/a) ratios. 
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1 INTRODUCTION 

Shells are three dimensional (3D) material solids bounded by two closely spaced arbitrary curved surfaces. Structural 
shells are known for possessing great capacity in carrying external loading on account of their high strength and rigidity. 
The curved geometry of the shell permits the development of in-plane membrane forces which acts as the dominant 
resistance to imposed loading in thin shells, and together with its continuity, the shell can transfer this loading in different 
directions without the help of a moment frame. Thus, the shell possesses a broad mechanical advantage over other 
structural elements. Shells are categorized as singly curved, doubly curved and combined shells. The cylindrical shell has 
received the most attention among the singly curved shells and its everyday application includes being used as liquid 
transport and storage facilities. These shells are also utilized in covering large spaces such as roofs of buildings, garages 
and warehouses, in cases where no interior roof supporting elements (columns and walls) are needed. Most studies on 
the static bending (flexural) behavior of elastic isotropic shells are formulated on the kinematic hypothesis of Love – 
Kirchhoff, in which the transverse shear effect on the deformation of the elastic shell is neglected. An assumption proven 
to be reasonable when applied to thin isotropic shells with thickness to radius ratio h/Ri ≤ 1/20 (Ugural, 2010). The 
classical (Love – Kirchhoff) shell theories have been found to provide excellent results with regards to the bending, 
dynamic and buckling responses of isotropic thin shells subject to external loading. Although, for shells considered thick, 
utilized mostly on account of obtaining increased flexural (torsional) rigidity, especially in cases where the shell span, 
loading or induced deflection are significantly large, likewise, in cases where the shell is of an anisotropic or composite 
material, the neglect of the transverse shear in modeling the response (static or dynamic) of these laminated composites 
or thick shells to external forces by the classical shell theories (CSTs) leads to considerable errors in deflections and 
fundamental frequencies. On this regard, first and higher-order shear deformation theories had been developed with 
the aim of improving upon the limitations in application associated with the Love – Kirchhoff hypothesis and extending 
the classical shell theory to thick isotropic and anisotropic structural shells. 

The first-order shear deformation theories initiated by Mindlin (1951) using a displacement based approach 
accounts for transverse shear deformation by postulating that: the straight normals to the reference (middle) surface 
would still remain straight even after deformation occurs, but are now no longer required to lie normal to the deformed 
reference surface. These first-order shear deformation theories (FSDTs) had been found to be quite accurate in the 
estimation of parameters like deflection and fundamental frequencies. However, the first-order theories which expand 
the surface displacements as linear functions of the thickness coordinate result in a constant through thickness 
distribution of the transverse shear, which as a consequence fails to satisfy the zero transverse shear/traction 
requirements on the top and bottom boundary surfaces of the shell. The above phenomenon is found to be in 
contradiction to the parabolic distribution of the transverse shear as required by the theory of elasticity, hence 
necessitating the need for the introduction of transverse shear correction factors in order to correct this abnormality. 
These setbacks however, had been remedied by the higher-order shear deformation theories (HSDTs), which are based 
on displacement models generated from the Taylor series expansion of the surface displacements as higher order 
functions of the thickness coordinate truncated at the desired order. Albeit introducing additional mathematical 
complexities with increasing order of expansion. These higher-order expansions have been utilized in both linear and 
non-linear structural shell studies. Higher-order expansions employed in linear shell studies can be found in works by 
Reddy and Liu (1985), Soldatos (1986), Di and Rothert (1995) and Cho, Kim and Kim (1996). Non-linear higher-order shell 
theories, in which the non-linear terms in the kinematic parameters are retained, are presented in works by Amabili and 
Reddy (2010, 2020). The higher-order expansions truncated at the third-order has been the most utilized in modeling 
the transverse shear deformation in isotropic, laminated composites and functionally graded materials by many 
researchers. This is as a consequence of its ease of transformation to satisfy requirements like the need for a traction 
free upper and lower boundary surfaces of the beam, plate or shell element without necessarily having to refer to the 
particular element’s equilibrium equations associated with 3D elasticity, and also due to the fact that the parabolic 
distribution of the transverse shear can easily be achieved by these constrained third-order displacement models as 
found in Reddy (1984), Reddy and Liu (1985) and Onyeka et al. (2018). The constrained displacement model of third-
order expansions of the surface displacements as proposed by Reddy and Liu (1985) had successfully been utilized by 
Oktem and Chaudhuri (2007) to study the deformation of shallow moderately thick cross-ply doubly curved panels of 
finite dimensions; Harle and Asha (2013) to investigate the buckling and vibratory response of laminated cross-ply circular 
cylindrical panels; and more recently by Nwoji et al. (2021) to study the effect of transverse shear deformation on the 
static flexural behavior of isotropic circular cylindrical shells through varying length to radius of curvature ratios (l/a). In 
the work by Oktem and Chaudhuri (2007), a previously unavailable Levy-type solution procedure was used to obtain the 
analytical solutions of the deformation problem. The constrained form of the third-order displacement model which 
satisfied the zero transverse shear surface condition was also used by Lim and Liew (1995) to study the dynamic 
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characteristics of isotropic cylindrical shallow shells and by Soldatos (1986) to study the free vibration problem of 
moderately thick isotropic oval cylindrical shells. In the studies conducted by Di and Rothert (1995) and Cho et al. (1996) 
on the deformation of laminated composite cylindrical shells, an unconstrained third-order displacement model 
superimposed by a zig – zag linear function was adopted in order to obtain a parabolic distribution of the transverse 
shear that satisfies the requirements of a stress free laminate surface as well as continuity of the transverse shear stresses 
on the interface between the laminate surfaces. Di and Rothert (1995) however attained these requirements by use of 
the equilibrium equations associated with three – dimensional (3D) elasticity. Ali, Alsubari and Aminanda (2015) also 
considered an unconstrained third-order displacement model augmented by a zig – zag function to investigate the effect 
of moisture and temperature on the bending deformation of cross-ply laminated simply supported cylindrical shell strips. 
The HSDTs have generally been found to result in more acceptable through thickness distribution of the transverse shear 
strains; together with satisfying the traction free surface condition, hence these theories avoid the utilization of shear 
correction coefficients and have been known to provide excellent numerical results when employed in the analysis of 
thin and moderately thick beams, plates and shells. 

The series expansion truncated at the second-order has been used by many researchers to extend the classical Love 
– Kirchhoff theories to include the thickness stretching (normal strain) and transverse shear strain effects on the 
deformation of the structural element by virtue of the fact that, models of second-order expansions are analytically less 
complex as well as less computational demanding than models of the third and further higher-order expansions. The 
beam/plate/shell theories formulated on the second-order displacement models which accommodate the effect of the 
transverse shear but neglect the normal strain effect are called second-order shear deformation theories (SSDTs). Naghdi 
(1957) had utilized a second-order representation of the displacement model to present a suitable formulation of the 
stress – strain relations and appropriate boundary conditions associated with the small deflection theory of thin shells, 
which included the effects of the transverse normal and shear as well as rotary inertia on the shell deformation. These 
second-order displacement models which permitted the retention of the transverse normal and shear effects were also 
used by Pister and Westmann (1962) to develop a two dimensional elastostatic plate theory; Whitney and Sun (1973) to 
develop a laminated plate theory applicable to fibre reinforced composite materials under impact loading; Nelson and 
Lorch (1974) to model the static and dynamic response of laminated orthotropic plates. Khdeir and Reddy (1999) had 
studied the free vibrational response of laminated composite cross-ply and anti-symmetric angle-ply plates using the 
second-order shear deformation theory (SSDT). The work was reported to have close results to those of the FSDT and 
third-order shear deformation theory (TSDT) for the vibrational frequencies, albeit different from those of the classical 
shell theories for the case of thick laminates. However, for thin laminates all theories were reported to be in excellent 
agreement. The SSDT was also used by Shahrjerdi and Mustapha (2011) to analyze the free vibrational response of 
functionally graded quadrangle plates, the results revealed that the SSDT slightly over predict the natural frequencies. 
However, it was concluded that the results obtained were in good agreement with those of the TSDT and exact solutions. 
Shahrjerdi et al. (2010) had successfully applied the SSDT to the analysis of the stress distributions in solar functionally 
graded plates; the SSDT was shown to obtain acceptable results of the displacements and in-plane stresses when 
compared to other shear deformation theories available in literature. The effects of material compositions, temperature 
fields and geometry on the free vibration response of solar functionally graded plates was investigated by 
Shahrjerdi et al. (2011) using the SSDT. The results of the study were reported to be in considerable agreement with the 
HSDT. Szekrenyes (2013) utilized the SSDT in calculating the stress and energy release rates in delaminated orthotropic 
composite plates with symmetric lay-up and straight delamination front. The results were reported to have very good 
agreement with those of the 3D finite element model solution. Shahrjerdi et al. (2010), Shahrjerdi and Mustapha (2011), 
Shahrjerdi et al. (2011) and Szekrenyes (2013) had employed the polynomial second-order displacement model proposed 
by Khdeir and Reddy (1999) in their studies, the model permitted the accommodation of the transverse shear effect but 
neglected the thickness stretching effect. A detailed review of the displacement and stress based shear deformation 
theories of plates can be found in the work of Ghugal and Shimpi (2002), while a review of the shear deformation theories 
of laminated composite shells in application to buckling, flexure and dynamic responses can be found in the work of 
Reddy and Arciniega (2004). 

This study is aimed at investigating the suitability of using the second-order shear deformation theory to analyze 
the static bending response of thin and moderately thick isotropic circular cylindrical shells. This is accomplished through 
the development of two second-order shear deformation theories formulated on two variant forms of the polynomial 
second-order displacement models already existing in literature. Results of the displacements and stresses generated 
from both second-order theories are compared to those of the classical shell theory, first and higher-order shear 
deformation theories in order to ascertain their efficacy in usage. 
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2 THEORETICAL FORMULATION OF THE SECOND-ORDER SHEAR DEFORMATION THEORIES (SSDTs) 

The SSDTs developed in this study are based on a displacement approach and are formulated on two variant 
polynomial second-order displacement models which individually consist of seven (7) independent displacement 
parameters (u, v, w, ϕ1, ϕ2, ψ1, ψ2). These models account for an expansion of the surface displacements as quadratic 
functions of the thickness coordinate; together with a constant through thickness out-of-plane displacement component 
(deflection). The theoretical formulation of the present work is governed by the displacement field (also known as the 
displacement model), kinematics (strain–displacement relations) and material constitutive relations. 

The assumptions of this study which dictate the choice of the displacement models are: 

(1) The shell is moderately thick and falls within the order of approximations of Love first approximation shell 
theories )11(;1/( )3 ≈+<< RαRh . 

1. (2) The deformations of the shell are small. 

(3) The shell thickness is considered small enough for the validity of the plane stress assumption )0( 33 =σ . 

(4) The transverse normal does not stretch so that the normal strain is zero )0( 33 =ε . 

2. (5) The transverse normals to the un-deformed reference surface no longer remain straight or normal after bending 
deformation. 

3. (6) The elastic material is considered to be homogenous, isotropic and Hookean. 

The assumption (1) permits the formulation of the present second-order shear deformation shell theories on the 
kinematic relations of linear elasticity, while assumption (5) represents the most significant deviation from Love theory 
and permits the retention of the transverse shear stresses and strains in the formulation of the governing equations of 
the fundamental shell element. The assumptions (2), (3), (4) and (5) of the present study had been found to be adequate 
for the study of the elastic deformation behavior of thin and moderately thick shells with radius of curvature to thickness 
ratios within 10100 ≥≥ hRi (Amabili and Reddy, 2020; Viola et al., 2013). 

Figure 1 refers to an isotropic doubly curved shell, where ),( 21 αα  are curvilinear coordinate lines aligned with the 
shell reference surface )0( 3 =α . The thickness and principal radii of curvature are denoted by h and Ri (i = 1, 2) 
respectively. The thickness coordinate denoted by α3 defines the distance of a point from the shell reference (middle) 
surface along the normal direction. The fundamental form of the reference surface as in Soedel (2004) is given as: 

2
2

22
1

22)( αdBαdAds +=  (2.1) 

where the quantities A and B are the fundamental form parameters or Lame’s parameters. 

 
Figure 1 Differential element of a doubly curved shell 

2.1 A SSDT based on the Displacement Field by Khdeir and Reddy 

2.1.1 First Second-order Displacement Model – FSODM 

The first second-order displacement model (FSODM) is assumed in the form by Khdeir and Reddy (1999) as: 
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313),, ψαφαuααα(U 321 ++=  (2.2) 
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2

323),, ψαφαvααα(V 321 ++=  (2.3) 

wααα(W 321 == )0,,  (2.4) 

where (U , V , W ) are components of displacement of the 3D-shell element along the (α1, α2, α3) directions. (u, v, w) 
represent displacements of a generic point (α1, α2, 0) on the reference surface of the shell in the (α1, α2, α3) directions 
respectively. ( 1φ , 2φ ) are rotation of normals to the reference surface (α3 = 0) about the α2 and α1 directions. ( 1ψ , 2ψ ) 
are the second-order rotations. 

2.1.2 Kinematic Relations and Strain Field 

The equations of kinematics relating the strains (ε) and displacements for the 3D-shell element in linear elasticity 
(Viola et al., 2013) are given as: 
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Assumptions (1) and (4) permit the neglect of the term iRα3  (i = 1, 2) as well as the neglect of the through thickness 
stretching of the shell normal (normal strain effect, 033 =ε ). The strain field associated with the shell element under 
consideration is obtained by the substitution of Eqs. (2.2) – (2.4) into Eqs. (2.5) – (2.9) as: 
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The components of strain expressed in generalized displacements (u, v, w, ϕ1, ϕ2, ψ1, ψ2) are obtained as: 
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2.1.3 Stress – Strain Relations, Stress field and Stress Resultants 

The material constitutive relations consistent with an isotropic material under plane stress assumption (Soedel, 
2004) are given as: 

( )2211211 1
μεε

μ
E

σ +
−

= ; ( )1122222 1
μεε

μ
E

σ +
−

= ; 1212 εGσ = ; 1313 εGσ = ; 2323 εGσ =  (2.13) 

where ( 2211 ,σσ ) are normal stresses, ( 231312 ,, σσσ ) are shear stresses, μ  is the poisons ratio, E is the elastic modulus and 
G is the modulus of rigidity expressed as )1(2 μE + . It should be noted that the shear stresses 
( 322331132112 ;; σσσσσσ === ) are symmetric. 

The stress – strain relations of the present theory are obtained by the substitution of Eq. (2.11) into the constitutive 
relations (Eq. (2.13)) as: 

[ ])()(
1

)1(
22

)1(
11

2
3

)0(
22

)0(
113

)0(
22

)0(
11211 μκκαμκκαμεε

μ
E

σ +++++
−

=  (2.14) 

[ ])()(
1

)1(
11

)1(
22

2
3

)0(
11

)0(
223

)0(
11

)0(
22222 μκκαμκκαμεε

μ
E

σ +++++
−

=  (2.15) 

( )
[ ])1(

12
2
3

)0(
123

)0(
1212 12

κακαε
μ

E
σ ++

+
=  (2.16) 

( )
[ ])1(

13
2
3

)0(
133

)0(
1313 12

κακαε
μ

E
σ ++

+
=  (2.17) 

( )
[ ])1(

23
2
3

)0(
233

)0(
2323 12

κακαε
μ

E
σ ++

+
=  (2.18) 

The stress resultants are defined as: 
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where N, M, L, Q, R, T represent stress resultants. 
By substituting Eqs. (2.14) – (2.18) into Eq. (2.19), we may then obtain the relationship between the stress resultants 

and strains as: 
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where K, D and F are the shell stiffnesses obtained as: 
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2.1.4 Stress – Stress Resultant Relations 

Solving Eq. (2.20) for the strains, the stresses (Eqs. (2.14) – (2.18)) are obtained in terms of stress resultants as: 
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2.1.5 Equations of Static Equilibrium 

We now utilize the principle of virtual work to derive the equations of equilibrium appropriate to the displacement 
field (Eqs. (2.2) – (2.4)). The principle of virtual work is expressed mathematically (Reddy and Arciniega, 2004) as: 
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0=+= EI wδwδwδ  (2.27) 

where the virtual work due to internal forces is given as: 
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while the virtual work due to external forces is given as: 
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q1, q2 and q3 are the distributed load terms. 

The principle of virtual work when applied to the present FSODM theory results in: 
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Substituting the strains (Eq. (2.12)) into Eq. (2.30) and integrating by parts the displacement gradients, the equations 
of equilibrium are obtained by the vanishing of the coefficients of variations uδ , vδ , wδ , 1δφ , 2δφ , 1δψ and 2δψ as: 
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It should be noted that from the above equilibrium equations (Eqs. (2.31) – (2.37)), if Eqs. (2.36) and (2.37) 
introduced by 21 ,δψδψ are taken to be zero. The equations of equilibrium would then reduce to Love’s equilibrium 
equations as in Soedel (2004). 
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2.1.6 Application of the Theory based on the FSODM to Circular Cylindrical Shells of Revolution 

The derived governing equations of the moderately thick shell element associated with the FSODM theory are now 
applied to the particular case of circular cylindrical shells (See Figure 2). 

 
Figure 2 A circular cylindrical shell 

The fundamental form of the reference surface (Soedel, 2004) is given as: 

2222 )()()( θdadxds +=  (2.38) 

The Lame parameters are gotten by the comparison of Eq. (2.38) and Eq. (1) as: 
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On account of the circular cylindrical shell being of single curvature, the surface parameters are obtained as: 
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where a is defined as the constant radius of the circular cylindrical shell and the subscripts 1,2,3 are now replaced by x,
θ  and z respectively. 

In order to obtain the differential equations of static equilibrium for the circular cylindrical shell element, Eqs. (2.39) 
and (2.40) are substituted into Eqs. (2.31) – (2.37) to obtain: 
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The components of strain for the circular cylindrical shell are obtained by substituting Eqs. (2.39) and (2.40) into Eq. 
(2.12) as: 
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The stress resultant – displacement relations are obtained by the substitution of Eq. (2.48) into Eq. (2.20) as: 
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The equilibrium equations are expressed in terms of the generalized displacement components (u, v, w, xφ , θφ ,

xψ and θψ ) by the substitution of the stress resultant – displacement relations (Eqs. (2.49) – (2.53)) into Eqs. (2.41) – 
(2.47) as: 
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2.2 A SSDT based on a Truncated Form of the Unconstrained Third-order Displacement Field by Reddy and Liu 

2.2.1 Second Second-order Displacement Model – SSODM 

The second second-order displacement model (SSODM) is a truncated form to the second-order of the 
unconstrained third-order displacement model proposed by Reddy and Liu (1985), taken as: 
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wααα(W 321 == )0,,  (2.63) 

where R1 and R2 are the radii of curvature of the mid-surface. 
The modification of the first displacement field/model (Eqs. (2.2) and (2.3)) by the terms i3 Rα+1 (i = 1, 2) as seen 

in Eqs. (2.61) and (2.62) is to accommodate the initial curvature of the shell’s cross section. However, this has no effect 
on the expressions of the strain components related to the in-plane normal and shear strains ( 122211 ,, εεε ) due to the 
assumption of the terms 13 <<iRα  as being negligible. 

2.2.2 Strain – Displacement Relations 

The kinematic relations for the in-plane normal and shear strains 122211 ,, εεε  are given as Eqs. (2.5) – (2.7). However, 
the expressions of the transverse shear strain – displacements relations consistent with the adopted displacement field 
(Eqs. (2.61) – (2.63)) for an elemental shell are given by Reddy and Liu (1985) as: 
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2.2.3 Strain Field 

The displacement field (Eqs. (2.61) – (2.63)) are introduced into the strain – displacement relations (Eqs. (2.5) – (2.7) 
and Eq. (2.64)) in order to obtain the corresponding strain field for the present SSODM theory as: 
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where the expressions of the in-plane normal and shear strain components )0(
12
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12κ  
remain unmodified and are obtained in terms of displacement components as given in Eq. (2.12). 

The transverse shear strain components are now obtained as: 
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2.2.4 Stress Field, Stress Resultants and Stress – Stress Resultant Relations 

The in-plane normal and shear stresses 122211 ,, σσσ are gotten by the substitution of Eq. (2.65) into their 
corresponding stress – strain laws (refer to Eq. (2.13)). This also results in the same expressions as given in Eqs. (2.14) – 
(2.16). 

The transverse shear stresses in this case are now obtained by the substitution of Eq. (2.66) into the stress – strain 
laws for the transverse shear (see Eq. (2.13)) as: 
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The stress resultants are now defined as: 
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The substitution of Eqs. ((2.14) – (2.16) and (2.68)) into Eqs. (2.69) – (2.71) results in expressions of the 
stress resultants in terms of strain components for the SSODM theory. The equations of the stress resultants N11, 
N22, N12, M11, M22, M12, L11, L22 and L12 expressed in strain components also remain unmodified and are as given 
in Eq. (2.20). 

The stress resultants associated with the transverse shear stresses are now obtained as: 
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The expressions for the stress – stress resultant relations for the in-plane normal and shear stresses remain 
unmodified and are as given in Eqs. (2.22) – (2.24). 

The stress – stress resultant relations associated with the transverse shear stresses are obtained by solving Eq. (2.72) 
for the strain components and substituting the resulting expressions into Eq. (2.68) to obtain: 
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2.2.5 Equations of Equilibrium 

The equations of equilibrium associated with the SSODM (Eqs. (2.61) – (2.63)) are also derived using the principle 
of virtual work. 

The principle of virtual work yields for the present SSODM theory: 
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 (2.74) 

By integrating by parts the displacement gradients associated with Eq. (2.74), the governing equations of static 
equilibrium are obtained from the resulting expressions by similarly setting the coefficients of variations uδ , vδ , wδ ,

1δφ , 2δφ , 1δψ and 2δψ to zero separately as: 
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2.2.6 Application of the Theory based on the SSODM to Circular Cylindrical Shells of Revolution 

The differential equations of static equilibrium for the circular cylindrical shell based on the SSODM theory are now 
obtained by substituting Eqs. (2.39) and (2.40) into Eqs. (2.75) – (2.81) as: 
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The equations of the strain components )0()0()1()0()0()1()0()0( ,,,,,,, θxθxθθθθθθxxxxxx κεκκεκκε  and )1(
θxκ  expressed in terms of 

displacements are also obtained as given in Eq. (2.48). 
The transverse shear strain components expressed in terms of displacements for the circular cylindrical shell are 

now obtained with reference to Eq. (2.67) as: 
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The expressions for the stress resultant – displacement relations for the stress resultants Nxx, Nθθ, Nxθ, Mxx, Mθθ, 
Mxθ, Lxx, Lθθ and Lxθ are also obtained as given in Eqs. (2.49) – (2.51). 
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The expressions for the stress resultant – displacement relations associated with the transverse shear are now 
obtained as: 
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The equations of equilibrium (Eqs. (2.82) – (2.88)) are now expressed in terms of displacement components as: 
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3 SOLUTION PROCEDURE 

3.1 Boundary conditions 

Here we consider a scenario where a circular cylindrical shell of finite length l is simply supported at its ends (x = 0, 
x = l) by shear diaphragms and subject to applied loading, the boundary conditions at both ends (Leissa, 1973; Nosier and 
Reddy, 1992; Di and Rothert, 1995) are of the form: 

Nxx = Mxx = Lxx = θφ = θψ = v = w = 0 (3.1) 

Nosier and Reddy (1992) referred to Eq. (3.1) as a simply supported boundary type S3 and further classified a 
combination of boundary conditions that can be assumed to exist at the edges of a shell for clamped, simply supported 
and free edges. The boundary condition Eq. (3.1) reasonably represent in physical application an attachment of a thin 
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perpendicular plate element possessing considerable stiffness in its plane to the boundary ends of the shell such that the 
ends are considerably stiffened to restrain the shell out-of-plane displacement component (w), in-plane tangential 
displacement component (v) and the generalized rotations ( θφ , θψ ) about the x – axis. On account of the thinness of 
the attached plate element, very little stiffness is expected to be possessed in the x – axis transverse to its plane, thereby 
resulting in negligible axial moment resultants (Mxx, Lxx) and axial membrane force (Nxx) at the shell ends during 
deformation (Leissa, 1973). 

3.2 Applied loading and method of solution 

The solution of the equilibrium equations (Eqs. (2.54) – (2.60) and Eqs. (2.91) – (2.97)) for the FSODM and SSODM 
theories are obtained by use of the Navier solution approach. This approach requires that the applied load and 
displacement components be expanded in a double trigonometric Fourier series. 

The applied load is assumed to be in the following form: 

0;cos ===∑∑
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θx
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mnz qq
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xπmSinθnqq  (3.2) 

where l is the length (span) of the cylindrical shell. 
When the shell loading is uniformly distributed (UDL) the terms m, n are n = 0, 1 and m being a series of odd numbers 

(m = 1, 3, 5, 7, 9…………), the coefficient mnq  of the Fourier trigonometric series (Eq. (3.2)) is given as πmaγqq mm 410 ==
(Timoshenko and Woinowsky-Krieger, 1987; Ugural, 2010). However, for the case where the loading is of a sinusoidal 
nature (SDL) the coefficient is taken as qqmn = for m = 1 and n = 4, where q and γ represents the loading intensities and 
a represent the radius of the shell. 

The Navier solutions of the displacement variables satisfying the equilibrium equations (Eqs. (2.54) – (2.60) and Eqs. 
(2.91) – (2.97)) and the force and essential boundary conditions (Eq. (3.1)) at the simply supported ends (x = 0, x = l) are 
introduced as: 
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where Amn, Bmn, Cmn, Dmn, Emn, Fmn and Gmn are undetermined coefficients. 
Substituting Eqs. (3.2) and (3.3) into the equilibrium equations (Eqs. (2.54) – (2.60)) of the FSODM theory results in: 
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The coefficients of the matrix bij (i, j =1, 2,. . .5) are: 



Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells Clifford Ugochukwu Nwoji et al. 

Latin American Journal of Solids and Structures, 2022, 19(3), e437 17/27 


















 −

+





−=

2
1

2

22

11
μ

a
n

l
πm

b ; 
a
μ

l
πm

nbb
2

1
2112

+
== ; 

l
πm

a
μ

bb == 3113 ;

















 −

+





−==

2
1

12 2

222

6116
μ

a
n

l
πmh

bb ; 

l
πm

a
nμh

bb 





 +

==
2

1
12

2

7117 ; 

















 −

++





−

−= 22

22

22 2
1

2
1

a
μ

a
n

l
πmμ

b ; 
23223 2

3
a
nμ

bb 





 −
−== ; 

a
μ

bb
2

1
5225

−
== ; 

l
πm

a
nμh

bb 





 +

==
2

1
12

2

6226 ; 

















 −

++





−

−== 22

222

7227 2
1

2
1

12 a
μ

a
n

l
πmμh

bb ; 

















 −

++





−

−= 2
22

2

33 2
11

2
1

n
a

μ
al

πmμ
b ; 

l
πmμ

bb 





 −
−==

2
1

4334 ; n
a
μ

bb 





 −

==
2

1
5335 ; 

l
πm

a
μh

bb
12

2

6336 == ; 
2

2

7337 2
3

12 a
nμh

bb 





 −

−== ; 

2

2222

44 24
)1(

122
)1(

a
nμh

l
πmhμ

b
−

−





−

−
−= ; 

l
πm

a
nμh

bb 





 +

==
2

1
12

2

5445 ; 
22

2

22

55 24
)1(

122
)1(







−

−−
−

−=
l
πmμh

a
nhμ

b ; 

a
μh

bb
24

)1(2

7557
−

== ; 











−+






 −

+





−= )1(

3
40

2
1

80 2

222

66 μ
μ

a
n

l
πmh

b ; 
l
πm

a
nμh

bb 





 +

==
2

1
80

2

7667 ; 


















 −

+−++





−

−= 22

222

77 2
1

)1(
3

40
2

1
80 a

μ
μ

a
n

l
πmμh

b  (3.5) 

Also, substituting Eqs. (3.2) and (3.3) into the equilibrium equations (Eqs. (2.91) – (2.97)) of the SSODM theory 
results in: 
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The coefficients of the matrix dij (i, j =1, 2,. . .5) are: 
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From the coefficients of the resulting displacement matrices (Eqs. (3.5) and (3.7)), one can easily observe 
that the displacement components in the derived equations of static equilibrium (Eqs. (2.54) – (2.60) and Eqs. 
(2.91) – (2.97)) associated with both developed second-order shear deformation theories are symmetric on 
account of symmetry of the shear stresses. By solving the complete matrices for the undetermined parameters 
Amn, Bmn, Cmn, Dmn, Emn, Fmn and Gmn, the numerical values of the displacements and stresses can then be 
computed. 

4 RESULTS AND DISCUSSION 

In this section, the developed second-order shear deformation theories (FSODM and SSODM theories) are employed 
in solving problems associated with the static bending response of circular cylindrical shells under simply supported 
boundary conditions. The numerical results of the displacements and stresses are presented in tables. Comparisons are 
made to results of the classical shell theory – CST (Soedel, 2004), first-order shear deformation theory – FSDT 
(Khdeir et al., 1989) and higher-order shear deformation theory – HSDT (Nwoji et al., 2021) in order to ascertain their 
suitability in usage. 

The illustrative examples considered by Nwoji et al. (2021) are adopted here. 
Example one: The maximum deflection, axial and circumferential stresses for a simply (diaphragms) supported 

circular cylindrical shell of elastic modulus E filled with liquid (UDL) of specific weight γ are to be obtained for the following 
parameters: a = 50cm; l = 25cm; μ = 0.3, while using the first three terms of the series m i.e., m = 1, 3, 5 at chosen values 
of radius to thickness ratios S = a/h. 

The results are presented in the following non-dimensional definitions (Nwoji et al., 2021) 

w
aγ
Eh

w 







= 4

310 ; xx σ
aγ
h

σ 







= 2

210 ; θθ σ
aγ
h

σ 







= 2

210  (4.1) 

The maximum values of the displacements, forces and moments are obtained at the mid-span (x = l/2; θ = 0) 
Example two: The problem of obtaining the displacements and stresses for the simply (diaphragms) supported shell 

now subject to sinusoidal transverse surface load (SDL) for chosen values of S at varying length to radius ratios l/a is 
considered using the following parameters: a = 50cm; l = 25cm, 125cm, 250cm and 500cm; μ = 0.3. 

The results are presented in the following non – dimensional definitions (Di and Rothert, 1995). 
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The obtained results from both second-order shear deformation shell theories are presented in Tables 1 – 
7. Comparisons are made to those obtained by the Love – Kirchhoff classical shell theory – CST (Soedel, 2004), 
first-order shear deformation theory – FSDT (Khdeir et al., 1989) and higher-order shear deformation theory – 
HSDT (Nwoji et al., 2021) for chosen radius to thickness ratios (S = a/h) at varying length to radius of curvature 
ratios (l/a). A close examination of the non-dimensional deflection as presented in Table 1 for the cylindrical shell 
under uniformly distributed loading (UDL) at l/a = 0.5 reveals that the results of the shell theories formulated on 
the FSODM and SSODM are in close agreement with those of the CST; FSDT; HSDT for the thin shell cases (S = 
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100, 20) and FSDT; HSDT for the moderately thick case (S = 10). While for the very thick case (S = 4), the results 
of both second-order theories are close to those of the HSDT although lower within 6% variations. 

Table 2 presents the convergence study for the non-dimensional deflection and stresses for the shell under 
UDL at l/a = 0.5. The results show that the trigonometric series Eq. (3.3) converges faster for deflections than 
stresses, the convergence in deflections are found to be slower in thick shells than thin shells. Furthermore, one 
realizes that the adoption of only the first three terms of the series m as recommended by Timoshenko and 
Woinowsky-Krieger (1987) obtains the deformation of the shell with sufficient accuracy for its thin and thick 
cases (S = 20, 10, 4) and the error of solution due to the finite summation are obtained within 0.1% for the 
deflections and 1% for the stresses. However, this is not the scenario for the very thin shell case (S = 100) where 
the error of solution for deflections are obtained within 0.5%; circumferential stresses within 1.5% and the axial 
stresses within 725%, thus requiring a considerable number of terms in order to achieve convergence as 
presented in Table 2. Generally, for all shell cases (S = 100, 20, 10, 4) the error in solution for the deflections 
introduced by adopting the first three terms in the series m are all within 0.5%. 

For the case of the sinusoidal distributed loading (SDL) as presented in Tables 3, 4, 5 and 6 for l/a = 0.5, 2.5, 5 and 
10 respectively. The results of the non-dimensional displacements for l/a = 0.5 obtained by the present FSODM and 
SSODM theories; just as in the case of the UDL are also in close agreement with those of the CST; FSDT; HSDT for the thin 
cases and FSDT; HSDT for the moderately thick cases. The results equally shows that the theory formulated on the first 
second-order displacement Model (FSODM) predicts noticeable higher values of the displacements when compared to 
those of the theory formulated on the second second-order displacement Model (SSODM), FSDT and HSDT. It was also 
observed that the variations in results recorded by the FSODM theory tend to magnify with increasing l/a ratios, with the 
greater effect of this magnification observed in the thin shell cases (S = 100, 20) when compared to the CST; FSDT; HSDT. 
The variations in displacements for the thin cases (S = 100, 20) as obtained by the FSODM theory are within 13%, 14.8% 
and 15% for l/a ratios = 2.5, 5 and 10 respectively. 

Table 1 Non-dimensional results of the maximum deflection ( w ), axial ( xσ ) and circumferential ( θσ ) stresses for simply supported 

(SS) circular cylindrical tank filled to capacity (UDL) for l/a = 0.5 

S Models w  xσ  θσ  

100 
    

CST (Soedel, 2004) 0.1115 0.5070 109.720 

FSDT (Khdeir et al., 1989) 0.1119 0.4330 109.880 

Present study -1 0.1119 0.4324 109.909 
-2 0.1119 0.4331 109.929 

HSDT (Nwoji et al., 2021)  0.1115 0.5163 109.713 

20 CST (Soedel, 2004) 
 

23.404 468.953 601.293 
FSDT (Khdeir et al., 1989) 

 
23.643 463.841 604.305 

Present study -1 23.652 463.990 604.263 
-2 23.643 463.845 604.515 

HSDT (Nwoji et al., 2021) 
 

23.519 459.798 600.660 
10 CST (Soedel, 2004) 

 
51.860 1.087.640 843.300 

FSDT (Khdeir et al., 1989) 
 

54.661 1.050.720 858.950 
Present study -1 54.707 1.051.649 858.580 

-2 54.661 1.050.730 859.194 

HSDT (Nwoji et al., 2021) 
 

54.997 1.053.820 863.211 
4 CST(Soedel, 2004) 

 
78.292 1.660.212 821.814 

FSDT (Khdeir et al., 1989) 
 

116.806 1.571.320 943.763 
Present study -1 116.953 1.574.040 941.761 

-2 116.806 1.571.333 943.976 

HSDT (Nwoji et al., 2021) 
 

123.634 1.708.750 1.013.390 

Note: The results of the present study denoted as (1) and (2) represent those obtained by the FSODM and SSODM theories respectively 
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Table 2 Convergence study for non-dimensional deflection, axial and circumferential stresses for simply supported (SS) circular 
cylindrical shell under UDL for l/a = 0.5 

N 
S = 100 S = 20 S = 10 S = 4 

w  xσ  θσ  w  xσ  θσ  w  xσ  θσ  w  xσ  θσ  

3 0.1119 0.4324 10.9909 2.3652 46.3990 60.4263 5.4707 105.1649 85.8580 11.6953 157.4040 94.1761 

6 0.1115 -0.0023 10.8160 2.3643 45.9560 60.2750 5.4684 104.7219 85.7015 11.6828 156.9610 93.9934 

9 0.1115 0.0685 10.8412 2.3644 46.0261 60.2979 5.4687 104.7941 85.7264 11.6847 157.0320 94.0222 

12 0.1115 0.0458 10.8340 2.3643 46.0034 60.29067 5.4686 104.7713 85.7185 11.6841 157.0080 94.0127 

15 0.1115 0.0563 10.8372 2.3643 46.0138 60.2939 5.4687 104.7819 85.7221 11.6844 157.0190 94.0170 

18 0.1115 0.0506 10.8355 2.3643 46.0082 60.2921 5.4686 104.7764 85.7202 11.6842 157.0130 94.0147 

21 0.1115 0.0540 10.8365 2.3643 46.0116 60.2932 5.4686 104.7798 85.7214 11.6843 157.0170 94.0161 

24 0.1115 0.0518 10.8359 2.3643 46.0094 60.2925 5.4686 104.7776 85.7206 11.6843 157.0150 94.0152 

27 0.1115 0.0533 10.8363 2.3643 46.0109 60.2930 5.4686 104.7791 85.7211 11.6843 157.0160 94.0158 

30 0.1115 0.0523 10.8360 2.3643 46.0098 60.2926 5.4686 104.7780 85.7208 11.6843 157.0150 94.0153 

33 0.1115 0.0530 10.8362 2.3643 46.0106 60.2929 5.4686 104.7788 85.7211 11.6843 157.0160 94.0157 

36 0.1115 0.0524 10.8361 2.3643 46.0101 60.2927 5.4686 104.7782 85.7209 11.6843 157.0150 94.0154 

39 0.1115 0.0529 10.8362 2.3643 46.0105 60.2929 5.4686 104.7787 85.7210 11.6843 157.0160 94.0156 

42 0.1115 0.0525 10.8361 2.3643 46.0101 60.2927 5.4686 104.7783 85.7209 11.6843 157.0150 94.0155 

45 0.1115 0.0528 10.8362 2.3643 46.0105 60.2928 5.4686 104.7786 85.7210 11.6843 157.0160 94.0156 

48 0.1115 0.0526 10.8361 2.3643 46.0101 60.2928 5.4686 104.7784 85.7209 11.6843 157.0150 94.0155 

51 0.1115 0.0528 10.8362 2.3643 46.0104 60.2928 5.4686 104.7786 85.7210 11.6843 157.0160 94.0156 

54 0.1115 0.0526 10.8361 2.3643 46.0102 60.2928 5.4686 104.7784 85.7209 11.6843 157.0150 94.0155 

57 0.1115 0.0527 10.8362 2.3643 46.0104 60.2928 5.4686 107.7785 85.7210 11.6843 157.0156 94.0156 

60 0.1115 0.0526 10.8361 2.3643 46.0103 60.2928 5.4686 107.7784 85.7210 11.6843 157.0155 94.0155 

63 0.1115 0.0527 10.8361 2.3643 46.0104 60.2928 5.4686 107.7785 85.7210 11.6843 157.0156 94.0156 

66 0.1115 0.0526 10.8361 2.3643 46.0103 60.2928 5.4686 107.7784 85.7210 11.6843 157.0154 94.0155 

69 0.1115 0.0526 10.8361 2.3643 46.0103 60.2928 5.4686 107.7784 85.7210 11.6843 157.0155 94.0155 

72 0.1115 0.0526 10.8361 2.3643 46.0103 60.2928 5.4686 107.7784 85.7210 11.6843 157.0155 94.0155 

75 0.1115 0.0526 10.8361 2.3643 46.0103 60.2928 5.4686 107.7784 85.7210 11.6843 157.0155 94.0155 

N 
S = 100 S = 20 S = 10 S = 4 

w  xσ  θσ  w  xσ  θσ  w  xσ  θσ  w  xσ  θσ  

3 0.1119 0.4331 10.9929 2.3643 46.3845 60.4515 5.4661 105.0730 85.9194 11.6806 157.1333 94.3976 

6 0.1115 -0.0016 10.8180 2.3633 45.9415 60.3002 5.4638 104.6300 85.7628 11.6681 156.6905 94.2150 

9 0.1115 0.0686 10.8412 2.3634 46.0116 60.3232 5.4641 104.7020 85.7877 11.6701 156.7608 94.2437 

12 0.1115 0.0458 10.8340 2.3634 45.9889 60.3158 5.4640 104.6790 85.7798 11.6694 156.7375 94.2342 

15 0.1115 0.0563 10.8372 2.3634 45.9994 60.3191 5.4640 104.6900 85.7835 11.6697 156.7481 94.2385 

18 0.1115 0.0506 10.8355 2.3634 45.9937 60.3173 5.4640 104.6840 85.7816 11.6696 156.7425 94.2362 

21 0.1115 0.0540 10.8365 2.3634 45.9971 60.3184 5.4640 104.6860 85.7827 11.6697 156.7459 94.2376 

24 0.1115 0.0518 10.8359 2.3634 45.9949 60.3177 5.4640 104.6870 85.7820 11.6696 156.7437 94.2367 

27 0.1115 0.0533 10.8363 2.3634 45.9964 60.3182 5.4640 104.6860 85.7825 11.6696 156.7452 94.2373 

30 0.1115 0.0523 10.8360 2.3634 45.9953 60.3179 5.4640 104.6870 85.7821 11.6696 156.7441 94.2369 

33 0.1115 0.0530 10.8362 2.3634 45.9961 60.3181 5.4640 104.6860 85.7824 11.6696 156.7449 94.2372 

36 0.1115 0.0524 10.8361 2.3634 45.9955 60.3179 5.4640 104.6870 85.7822 11.6696 156.7443 94.2370 

39 0.1115 0.0529 10.8362 2.3634 45.9960 60.3181 5.4640 104.6860 85.7824 11.6696 156.7448 94.2371 

42 0.1115 0.0525 10.8361 2.3634 45.9956 60.3180 5.4640 104.6870 85.7822 11.6696 156.7444 94.2370 

45 0.1115 0.0528 10.8362 2.3634 45.9959 60.3180 5.4640 104.6860 85.7823 11.6696 156.7447 94.2371 

48 0.1115 0.0526 10.8361 2.3634 45.9957 60.3180 5.4640 104.6860 85.7823 11.6696 156.7445 94.2370 

51 0.1115 0.0528 10.8362 2.3634 45.9959 60.3180 5.4640 104.6860 85.7823 11.6696 156.7447 94.2371 

54 0.1115 0.0526 10.8361 2.3634 45.9957 60.3180 5.4640 104.6860 85.7823 11.6696 156.7445 94.2370 

57 0.1115 0.0527 10.8362 2.3634 45.9959 60.3180 5.4640 104.6860 85.7823 11.6696 156.7447 94.2371 

60 0.1115 0.0526 10.8361 2.3634 45.9958 60.3180 5.4640 104.6860 85.7823 11.6696 156.7445 94.2371 

63 0.1115 0.0526 10.8361 2.3634 45.9959 60.3180 5.4640 104.6860 85.7823 11.6696 156.7446 94.2371 

66 0.1115 0.0526 10.8361 2.3634 45.9958 60.3180 5.4640 104.6860 85.7823 11.6696 156.7446 94.2371 

69 0.1115 0.0526 10.8361 2.3634 45.9958 60.3180 5.4640 104.6860 85.7823 11.6696 156.7446 94.2371 

72 0.1115 0.0526 10.8361 2.3634 45.9958 60.3180 5.4640 104.6860 85.7823 11.6696 156.7446 94.2371 

75 0.1115 0.0526 10.8361 2.3634 45.9958 60.3180 5.4640 104.6860 85.7823 11.6696 156.7446 94.2371 

Note: N represents the number of adopted terms in the series m 
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Table 3 Non-dimensional deflection w , in-plane displacements u , v ; in-plane normal stresses xσ , θσ ; in-plane shear stress θxσ for 

simply supported (SS) circular cylindrical shell under sinusoidal loading (SDL) for l/a = 0.5 

S Models w  u  v  ( )23 hασx ±=  ( )23 hασθ ±=  ( )23 hασ θx ±=  

100 CST (Soedel, 2004) 0.0019 -0.0016 -0.0260 0.0839 0.1234 -0.0422 

   -0.0071 0.0661 -0.0784 

FSDT (Khdeir et al., 1989) 0.0019 -0.0016 -0.0264 0.0852 0.1253 -0.0429 

   -0.0072 0.0672 -0.0796 

Present Study (1) 0.0019 -0.0016 -0.0264 0.0852 0.1248 -0.0433 

   -0.0070 0.0678 -0.0794 

(2) 0.0019 -0.0016 -0.0264 0.0852 0.1253 -0.0429 

   -0.0072 0.0672 -0.0797 

HSDT (Nwoji et al., 2021) 0.0019 -0.0016 -0.0260 0.0838 0.1233 -0.0423 

   -0.0070 0.0662 -0.0784 

20 CST (Soedel, 2004) 0.0206 -0.0035 -0.0573 0.5872 0.5250 0.0665 

   -0.4176 -0.1068 -0.3327 

FSDT (Khdeir et al., 1989) 0.0212 -0.0036 -0.0587 0.5860 0.5283 0.0617 

   -0.4122 -0.0993 -0.3349 

Present Study (1) 0.0214 -0.0039 -0.0603 0.5920 0.5252 0.0573 

   -0.4141 -0.0967 -0.3367 

(2) 0.0212 -0.0036 -0.0588 0.5860 0.5284 0.0616 

   -0.4121 -0.0992 -0.3349 

HSDT (Nwoji et al., 2021) 0.0211 -0.0036 -0.0586 0.5836 0.5263 0.0613 

   -0.4103 -0.0987 -0.3336 

10 CST (Soedel, 2004) 0.0301 -0.0026 -0.0418 0.7937 0.6126 0.1939 

   -0.6702 -0.3080 -0.3878 

FSDT (Khdeir et al., 1989) 0.0334 -0.0028 -0.0462 0.7882 0.6218 0.1780 

   -0.6509 -0.2830 -0.3937 

Present Study (1) 0.0340 -0.0037 -0.0495 0.8019 0.6142 0.1713 

   -0.6567 -0.2860 -0.3993 

(2) 0.0335 -0.0028 -0.0464 0.7882 0.6219 0.1779 

   -0.6508 -0.2829 -0.3937 

HSDT (Nwoji et al., 2021) 0.0340 -0.0029 -0.0472 0.8026 0.6331 0.1815 

   -0.6630 -0.2886 -0.4008 

4 CST (Soedel, 2004) 0.0345 -0.0012 -0.0192 0.8677 0.5977 0.2890 

   -0.8110 -0.4579 -0.3780 

FSDT (Khdeir et al., 1989) 0.0616 -0.0020 -0.0343 0.8714 0.6410 0.2468 

   -0.7704 -0.3916 -0.4056 

Present Study (1) 0.0629 -0.0045 -0.0414 0.8962 0.6158 0.2318 

   -0.7776 -0.4083 -0.4183 

(2) 0.0616 -0.0021 -0.0342 0.8714 0.6411 0.2468 

   -0.7703 -0.3915 -0.4056 

HSDT (Nwoji et al., 2021) 0.0664 -0.0023 -0.0369 1.0038 0.7318 0.2916 

   -0.8947 -0.4625 -0.4629 

These results recorded by the FSODM theory for the thin shell cases nevertheless constitutes a discrepancy which is in contradiction to the Known Love – 
Kirchhoff kinematic postulation of negligible transverse shear effect on the deformation of thin isotropic shells. A fact which is consistent with the findings of 
Soldatos (1986), Reddy (2007), Nwoji et al. (2021) and numerous other literatures on thick structural shells. It can equally be observed that this 
magnification in variations through increasing l/a ratios experienced by the FSODM theory is not present in the SSODM theory which variations in obtained 
results are within 5%, 3% and 1% for l/a ratios = 2.5, 5 and 10 respectively. The results of the displacements obtained by SSODM theory are found to be in 
good agreement with those of the CST; FSDT; HSDT for the thin shell cases (S = 100, 20) regardless of the l/a ratios considered. 

The variations in numerical results between the shell theories recorded in percentages are defined as follows: 

100% x
theoryother

theoryothertheorypresent
Difference

−
=  

A look at the results of the stresses for the UDL and SDL load cases presented in Tables 1 and 3 for l/a = 0.5 shows 
that the FSODM and SSODM theories predicts close enough results to those predicted by the CST; FSDT; HSDT for the 
thin shell cases (S = 100, 20). Table 1 reveals that for the case of the UDL, the in-plane axial stresses predicted by both 
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theories are significantly lower within 15% for the very thin case (S = 100) when compared to the HSDT. The results are 
in good agreement for the moderately thick case (S = 10), although are lower than those of the HSDT for the very thick 
case (S = 4). For higher ratios of l/a as presented in Tables 4, 5 and 6, the results presented by the SSODM theory for the 
SDL load case appear to be in more of an agreement with those of the CST (thin shell cases only); FSDT; HSDT than the 
results of the FSODM theory for the thin and moderately thick shell cases. 

Table 4 Non-dimensional deflection w , in-plane displacements u , v ; in-plane normal stresses xσ , θσ ; in-plane shear stress θxσ for 

simply supported (SS) circular cylindrical shell under sinusoidal loading (SDL) for l/a = 2.5 

S Models w  u  v  ( )23 hασx ±=  ( )23 hασθ ±=  ( )23 hασ θx ±=  

100 CST (Soedel, 2004) 0.0917 -0.5786 -2.3292 1.0708 0.9040 -0.0584 

   0.4280 -0.7558 -0.4129 

FSDT (Khdeir et al., 1989) 0.0946 -0.5974 -2.4046 1.1056 0.9332 -0.0603 

   0.4422 -0.7797 -0.4263 

Present Study (1) 0.0976 -0.6160 -2.4794 1.1235 0.9061 -0.0681 

   0.4723 -0.7508 -0.4334 

(2) 0.0946 -0.5974 -2.4046 1.1058 0.9332 -0.0603 

   0.4425 -0.7797 -0.4262 

HSDT (Nwoji et al., 2021) 0.0903 -0.5701 -2.2946 1.0545 0.8893 -0.0576 

   0.4223 -0.7435 -0.4063 

20 CST (Soedel, 2004) 0.3172 -0.4004 -1.6118 1.6305 2.9227 0.4503 

   -0.5933 -2.8202 -0.7764 

FSDT (Khdeir et al., 1989) 0.3215 -0.4058 -1.6342 1.6416 2.9328 0.4502 

   -0.5901 -2.8296 -0.7810 

Present Study (1) 0.3577 -0.4546 -1.8246 1.7626 3.0372 0.4805 

   -0.6011 -2.9764 -0.8456 

(2) 0.3215 -0.4060 -1.6342 1.6417 2.9328 0.4501 

   -0.5899 -2.8296 -0.7808 

HSDT (Nwoji et al., 2021) 0.3200 -0.4041 -1.6266 1.6327 2.9165 0.4474 

   -0.5859 -2.8131 -0.7763 

10 CST (Soedel, 2004) 0.3436 -0.2169 -0.8730 1.4854 3.1384 0.5761 

   -0.9236 -3.0828 -0.7527 

FSDT (Khdeir et al., 1989) 0.3579 -0.2260 -0.9095 1.4975 3.1397 0.5726 

   -0.9121 -3.0821 -0.7567 

Present Study (1) 0.4021 -0.2603 -1.0359 1.6073 3.2488 0.6227 

   -0.9689 -3.3025 -0.8234 

(2) 0.3580 -0.2260 -0.9097 1.4975 3.1396 0.5725 

   -0.9120 -3.0821 -0.7566 

HSDT (Nwoji et al., 2021) 0.3601 -0.2274 -0.9151 1.5057 3.1563 0.5754 

   -0.9165 -3.0982 -0.7604 

4 CST (Soedel, 2004) 0.3518 -0.0888 -0.3576 1.3483 3.1963 0.6441 

   -1.1183 -3.1738 -0.7164 

FSDT (Khdeir et al., 1989) 0.4434 -0.1120 -0.4509 1.3773 3.1964 0.6342 

   -1.0873 -3.1677 -0.7254 

Present Study (1) 0.5012 -0.1430 -0.5456 1.4630 3.2211 0.7019 

   -1.1850 -3.4929 -0.7893 

(2) 0.4424 -0.1120 -0.4507 1.3777 3.1974 0.6343 

   -1.0874 -3.1686 -0.7253 

HSDT (Nwoji et al., 2021) 0.4611 -0.1165 -0.4686 1.4396 3.3391 0.6644 

   -1.1379 -3.3091 -0.7592 

The variations in results between those predicted by the FSODM theory and those of the HSDT; FSDT; CST for the in-plane normal and shear stresses under 
SDL for the thin cases (S = 100, 20) are within 3%, 16%, 30% and 11% for l/a ratios = 0.5, 2.5, 5 and 10 respectively, while those of the SSODM theory are within 
2%, 4%, 3% and 1% for l/a ratios = 0.5, 2.5, 5 and 10 respectively. The results show that increment in ratios of l/a = 2.5 – 10 leads to substantial errors in results 
of the displacements and stresses obtained by the FSODM theory for the thin shell cases. The results equally highlights the inability of the FSODM theory to 
predict acceptable values of the displacements and stresses within the admissible engineering error (5%) when applied to thin shells at high l/a ratios. 
Generally, the accuracy of the FSODM theory has been found to significantly diminish with continual increase in l/a ratios. 
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Table 5 Non-dimensional deflection w , in-plane displacements u , v ; in-plane normal stresses xσ , θσ ; in-plane shear stress θxσ for 

simply supported (SS) circular cylindrical shell under sinusoidal loading (SDL) for l/a = 5 

S Models w  u  v  ( )23 hασx ±=  ( )23 hασθ ±=  ( )23 hασ θx ±=  

100 CST (Soedel, 2004) 0.3291 -1.2223 -8.2812 1.7134 2.9345 0.1974 
   -0.1656 -2.8966 -0.4390 

FSDT (Khdeir et al., 
1989) 

0.3381 -1.2552 -8.5078 1.7596 3.0134 0.2017 
   -0.1705 -2.9751 -0.4521 

Present 
Study 

(1) 0.3753 -1.3934 -9.4436 1.8901 3.1335 0.2129 
   -0.1274 -3.0977 -0.4899 

(2) 0.3381 -1.2552 -8.5078 1.7599 3.0134 0.2018 
   -0.1702 -2.9751 -0.4519 

HSDT (Nwoji et al., 
2021) 

0.3288 -1.2205 -8.2721 1.7099 2.9273 0.1961 
   -0.1647 -2.8892 -0.4388 

20 CST (Soedel, 2004) 0.4025 -0.2990 -2.0255 1.3384 3.5703 0.3596 
   -0.9599 -3.5610 -0.4187 

FSDT (Khdeir et al., 
1989) 

0.4069 -0.3021 -2.0478 1.3420 3.5750 0.3596 
   -0.9593 -3.5652 -0.4200 

Present 
Study 

(1) 0.4615 -0.3446 -2.3297 1.4372 3.7675 0.3953 
   -1.0203 -3.8221 -0.4609 

(2) 0.4069 -0.3021 -2.0478 1.3420 3.5750 0.3597 
   -0.9592 -3.5652 -0.4198 

HSDT (Nwoji et al., 
2021) 

0.4071 -0.3023 -2.0488 1.3413 3.5728 0.3594 
   -0.9586 -3.5634 -0.4195 

10 CST (Soedel, 2004) 0.4053 -0.1505 -1.0199 1.2525 3.5930 0.3770 
   -1.0619 -3.5883 -0.4068 

FSDT (Khdeir et al., 
1989) 

0.4212 -0.1564 -1.0600 1.2565 3.5939 0.3765 
   -1.0586 -3.5892 -0.4077 

Present 
Study 

(1) 0.4784 -0.1817 -1.2187 1.3328 3.7582 0.4165 
   -1.1419 -3.8833 -0.4465 

(2) 0.4212 -0.1564 -1.0599 1.2565 3.5939 0.3765 
   -1.0585 -3.5892 -0.4077 

HSDT (Nwoji et al., 
2021) 

0.4242 -0.1575 -1.0674 1.2645 3.6167 0.3788 
   -1.0652 -3.6119 -0.4101 

4 CST (Soedel, 2004) 0.4061 -0.0603 -0.4088 1.1977 3.5986 0.3868 
   -1.2131 -3.5968 -0.3986 

FSDT (Khdeir et al., 
1989) 

0.5052 -0.0748 -0.5084 1.2070 3.5988 0.3853 
   -1.1120 -3.5964 -0.4002 

Present 
Study 

(1) 0.5758 -0.0958 -0.6172 1.2521 3.6652 0.4329 
   -1.2289 -3.9893 -0.4366 

(2) 0.5052 -0.0750 -0.5085 1.2069 3.5985 0.3853 
   -1.1120 -3.5965 -0.4003 

HSDT (Nwoji et al., 
2021) 

0.5245 -0.0779 -0.5279 1.2638 3.7696 0.4036 
   -1.1651 -3.7669 -0.4191 
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Table 6 Non-dimensional deflection w , in-plane displacements u , v ; in-plane normal stresses xσ , θσ ; in-plane shear stress θxσ for 

simply supported (SS) circular cylindrical shell under sinusoidal loading (SDL) for l/a = 10 

S Models w  u  v  ( )23 hασx ±=  ( )23 hασθ ±=  ( )23 hασ θx ±=  

100 CST (Soedel, 2004) 0.4146 -0.8028 -10.3856 1.3692 3.6549 0.1806 
   -0.8638 -3.6517 -0.2204 

FSDT (Khdeir et al., 1989) 0.4185 -0.8100 -10.4820 1.3815 3.6876 0.1821 
   -0.8713 -3.6841 -0.2226 

Present Study (1) 0.4755 -0.9206 -11.9094 1.4889 3.9202 0.1999 
   -0.9133 -3.9308 -0.2453 

(2) 0.4185 -0.8102 -10.4822 1.3816 3.6876 0.1822 
   -0.8712 -3.6841 -0.2224 

HSDT (Nwoji et al., 2021) 0.4152 -0.8037 -10.3974 1.3691 3.6539 0.1805 
   -0.8632 -3.6508 -0.2204 

20 CST (Soedel, 2004) 0.4211 -0.1630 -2.1092 1.1850 3.7100 0.1995 
   -1.0824 -3.7093 -0.2076 

FSDT (Khdeir et al., 1989) 0.4253 -0.1647 -2.1303 1.1859 3.7114 0.1996 
   -1.0822 -3.7104 -0.2078 

Present Study (1) 0.4837 -0.1883 -2.4302 1.2598 3.9230 0.2205 
   -1.1611 -3.9887 -0.2283 

(2) 0.4253 -0.1647 -2.1302 1.1860 3.7114 0.1996 
   -1.0822 -3.7104 -0.2078 

HSDT (Nwoji et al., 2021) 0.4259 -0.1649 -2.1334 1.1866 3.7132 0.1997 
   -1.0828 -3.7126 -0.2079 

10 CST (Soedel, 2004) 0.4213 -0.0816 -1.0551 1.1599 3.7116 0.2017 
   -1.1086 -3.7113 -0.2057 

FSDT (Khdeir et al., 1989) 0.4376 -0.0848 -1.0955 1.1610 3.7119 0.2016 
   -1.1077 -3.7117 -0.2059 

Present Study (1) 0.4978 -0.0985 -1.2620 1.2219 3.8906 0.2238 
   -1.1997 -4.0231 -0.2256 

(2) 0.4375 -0.0847 -1.0956 1.1610 3.7118 0.2016 
   -1.1077 -3.7117 -0.2058 

HSDT (Nwoji et al., 2021) 0.4406 -0.0853 -1.1035 1.1686 3.7361 0.2029 
   -1.1149 -3.7357 -0.2071 

4 CST (Soedel, 2004) 0.4213 -0.0326 -0.4221 1.1447 3.7120 0.2029 
   -1.1241 -3.7119 -0.2045 

FSDT (Khdeir et al., 1989) 0.5223 -0.0404 -0.5232 1.1471 3.7121 0.2027 
   -1.1217 -3.7119 -0.2048 

Present Study (1) 0.5964 -0.0516 0.6353 1.1775 3.7910 0.2286 
   -1.2446 -4.1227 -0.2234 

(2) 0.5223 -0.0404 -0.5232 1.1471 3.7119 0.2028 
   -1.1217 -3.7118 -0.2048 

HSDT (Nwoji et al., 2021) 0.5420 -0.0420 -0.5430 1.2005 3.8852 0.2122 
   -1.1741 -3.8851 -0.2143 

Table 7 presents the through thickness distribution of the non-dimensional transverse shear stresses obtained by 
the FSODM and SSODM theories. Though the strain field (Eq. (2.11)) of the FSODM theory; together with the obtained 
results depicts that of a parabolic distribution of the transverse shear, this nevertheless results in only a slight 
improvement over the constant transverse shear distribution of the first-order shear deformation theory (FSDT) and 
linear transverse shear distribution of the present SSODM theory. The present FSODM and SSODM theories ultimately 
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succumb to same drawback as the FSDTs due to their inability to satisfy the zero transverse shear/traction surface 
condition. 

Table 7 Thickness distribution of the non-dimensional transverse shear stresses xzσ  and zθσ  for the moderately thick (S =10) 

simply supported circular cylindrical shell under SDL 

Thickness coordinate zhα =3  

z -1/2 -1/3 -1/6 0 1/6 1/3 1/2 

l/a=0.5 HSDT (Nwoji et al., 2021) xzσ  
0 0.78150 1.24630 1.40127 1.24630 0.78150 0 

zθσ  0 -0.49710 -0.79274 -0.89133 -0.79274 -0.49710 0 

Present study (1) xzσ  
0.95230 0.95190 0.95170 0.95159 0.95163 0.95181 0.95214 

zθσ  -0.59828 -0.59803 -0.59787 -0.59780 -0.59782 -0.59794 -0.59814 

(2) xzσ  
0.94196 0.94193 0.94190 0.94187 0.94183 0.94180 0.94177 

zθσ  -0.60010 -0.60008 -0.60006 -0.60004 -0.60002 -0.60000 -0.59997 

FSDT (Khdeir et al., 1989) xzσ  
0.94100 0.94100 0.94100 0.94100 0.94100 0.94100 0.94100 

zθσ  -0.60000 -0.60000 -0.60000 -0.60000 -0.60000 -0.60000 -0.60000 

l/a=5 HSDT (Nwoji et al., 2021) xzσ  0 0.32058 0.51124 0.57481 0.51124 0.32058 0 

zθσ  0 -2.03007 -3.23743 -3.64000 -3.23743 -2.03007 0 

Present study (1) xzσ  
0.41244 0.41224 0.41210 0.41202 0.41200 0.41205 0.41216 

zθσ  -2.59168 -2.59069 -2.59010 -2.59991 -2.59010 -2.59068 -2.59167 

(2) xzσ  
0.38005 0.38001 0.37997 0.37993 0.37989 0.37984 0.37980 

zθσ  -2.43370 -2.43369 -2.43369 -2.43368 -2.43367 -2.43367 -2.43366 

FSDT (Khdeir et al., 1989) xzσ  
0.37850 0.37850 0.37850 0.37850 0.37850 0.37850 0.37850 

zθσ  -2.43380 -2.43380 -2.43380 -2.43380 -2.43380 -2.43380 -2.43380 

l/a=10 HSDT (Nwoji et al., 2021) xzσ  
0 0.16276 0.25956 0.29183 0.25956 0.16276 0 

zθσ  0 -2.07227 -3.30473 -3.71566 -3.30473 -2.07227 0 

Present study (1) xzσ  
0.21174 0.21164 0.21156 0.21152 0.21151 0.21154 0.21159 

zθσ  -2.64958 -2.64858 -2.64798 -2.64777 -2.64797 -2.64858 -2.64958 

(2) xzσ  
0.19431 0.19429 0.19427 0.19425 0.19422 0.19420 0.19418 

zθσ  -2.48332 -2.48331 -2.48331 -2.48330 -2.48329 -2.48329 -2.48328 

FSDT (Khdeir et al., 1989) xzσ  
0.19310 0.19310 0.19310 0.19310 0.19310 0.19310 0.19310 

zθσ  -2.48340 -2.48340 -2.48340 -2.48340 -2.48340 -2.48340 -2.48340 

The SSODM theory has been found to provide a better behavioral response to the static bending deformation of 
the thin and moderately thick shell, with recorded results in close agreement with those of the CST (thin shell cases only); 
FSDT; HSDT. The FSODM theory predicts generally higher values of displacements and stresses for both thin and thick 
shells alike, with very few instances of notable exception when compared to those of the CST; FSDT; HSDT at high ratios 

of length to radius of curvature (l/a = 2.5 – 10). The addition of the terms 
1

3

R
α

u  and 
2

3

R
α

v  in the Taylor (polynomial) series 

expansions of the mid-surface displacement components as quadratic functions of the thickness coordinate as in the 
SSODM; together with the adoption of the modified form of the transverse shear strain–displacement relations 
(Eq. (2.64)) by Reddy and Liu (1985) has been found to ensure the validity of the Love–Kirchhoff kinematic hypothesis of 
negligible transverse shear effect on the bending deformation of thin isotopic shells when in use of the second-order 
shear deformation theory of polynomial displacement models. 



Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells Clifford Ugochukwu Nwoji et al. 

Latin American Journal of Solids and Structures, 2022, 19(3), e437 26/27 

5 CONCLUSIONS 

In this study, two second-order shear deformation theories (SSDTs) were developed from two variant forms of the 
polynomial second-order displacement models to predict the static bending response of thin and moderately thick 
isotropic shells. This was achieved by introducing the second-order displacement models into the kinematic relations of 
linear elasticity; together with the use of the material constitutive relations. The theory formulated on the first second-
order displacement model (FSODM) accounts for a quadratic distribution of the transverse shear through the shell 
thickness. While the theory formulated on the second second-order displacement model (SSODM) accounts for a linear 
through thickness distribution of the transverse shear, though the condition of a traction free surface on the top and 
bottom of the shell was violated by both theories. The developed SSDTs were then applied to the particular case of 
circular cylindrical shells; the analytical solutions were obtained for simply supported boundary conditions using the 
Navier solution technique. Numerical results were generated and comparisons were made to those of the classical shell 
theory (CST), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT) to ascertain 
the efficacy of the adopted displacement models. It was observed that the results of the SSDTs formulated on the FSODM 
and SSODM were in close agreement with those of the CST; FSDT; HSDT for the thin circular cylindrical shell and equally 
close with the FSDT; HSDT for the moderately thick shell at low ratio of length to radius of curvature. The accuracy of the 
theory formulated on the FSODM in predicting acceptable values of displacements and stresses in thin shells was found 
to significantly diminish with continual increase in length to radius of curvature ratios. However, this limitation was not 
shared by the theory formulated on the SSODM. The present SSODM theory was found to predict the results of the static 
bending deformation of the thin and moderately thick shell in close agreement with those of the FSDT; HSDT regardless 
of the length to radius of curvature ratios considered. 
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