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Abstract 
Blast loads have been increasingly studied in the past decades, especially regarding civil structures. Until 
recently, the negative phase of these loads has been disregarded, but studies concluded that the effect of 
suction must be included. In the case of plates, nonlinearity plays an important role, and the membrane effect 
should also be considered. This work focuses on the influence of nonlinearity in plates subjected to blast loads. 
Equations were developed for the calculation of blast load parameters, considering that positive and negative 
phases are approximated by the Friedlander equation and cubic polynomial, respectively. The plate is 
modeled as a SDOF system using von Karman's theory of large displacements. The development of the 
nonlinear dynamic differential equation is reviewed, considering a simply supported plate, and its solution is 
based on fourth order Runge-Kutta numerical method. A reference example is used as a benchmark and then 
parametric studies are conducted, in which the influence of scaled distance, mass of explosive, and the 
consideration or not of the negative phase is analyzed. 
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1 INTRODUCTION 

Evaluation and search for criteria concerning the blast phenomenon have been studied recently after numerous 
events arising from both intentional and accidental explosions took place in various locations. In case structures are not 
designed considering this possibility, collapse may occur, generating great losses of buildings and lives (Kinney and 
Graham, 1985). 

The first studies on blast loads were carried out by Friedlander (1940), showing that  explosions create a rise in 
pressure above the atmosphere, also known as the positive phase, until it returns to ambient pressure after a certain 
interval of time. Thus, the Friedlander Equation was formulated to represent the behavior pressure vs. time in a shock 
wave. By then, only the positive phase of the blast load was considered. 

Granström (1956) observed in that explosions can occur in two forms: spherical and hemispheric. The 
difference is the location of the explosive source, which can be triggered while still suspended in the air 
(spherical) or resting on a surface (hemispherical). In addition, a breakthrough in studies occurred when it was 
found that suction occurred after the end of the positive phase. The author used a cubic polynomial 
approximation to represent this negative phase. 

Several studies on the negative phase of the blast phenomenon were carried on, such as Gantes and 
Pnevmatikos (2004), Dharani and Wei (2004) with their contributions to the Friedlander Extended Method; Teich 
& Gebbeken (2010) also presented valuable insights concerning the modelling of the negative phase. Rigby (2014) 
compared different equations presented in the literature for the case of the negative phase and based on 
experimental analyses, concluded that the cubic approximation is the one that best describes the experimental 
results. 

Further studies by the US Department of Defense (2008) generalized the computation of load parameters by using 
several curves which depend on the scaled distance and mass of the explosive source. Later, Rigby (2014) presented 
equations for those curves, thus enabling their use in structural analyses.  

In the case of dynamic loads acting on structures, there is the need for the consideration of large displacements 
which, in addition, demand the inclusion of membrane effects in the case of plates, for example. These effects consider 
in-plane behavior which is normally disregarded in the analyses of plates and one of the possible approaches are the 
well-known Von Karman (1910) equations. When energy-based methods like Galerkin are applied considering a Single 
Degree of Freedom (SDOF) system, the resulting equation is highly nonlinear, presenting a cubic term. Yamaki (1961) 
presents the deduction of the dynamic equations for thin plates, considering three types of membrane boundary 
conditions (immovable, movable and stress-free). The solution was based on Fourier series and was intended for dynamic 
loads in general, not focusing on explosions.  

Houlston et al. (1985) concentrated on the prediction and measurement of the structural response of ship 
panels to free field air-blast explosions. Experimental and numerical results were presented, considering steel 
plates and full-scale stiffened panels. Chandrasekharappa and Srirangarajan (1987) presented a study about 
elastic plates submitted the positive phase of blast load. Gupta et al. (1987) presented a study considering a 
single degree of freedom (SDOF) simply supported plate, using the Friedlander equation to model the blast load. 
An analytical model was developed which considered the Lagrangian approach. The behavior of plates subjected 
to blast load was presented by Dharaneedpathy and Sudhesh (1990), in which three types of stiffener 
configurations were analyzed in a linear dynamics study, including damping. Krauthammer and Altenberg (2000)  
focused on the assessment of blast waves negative phase effects on glass panels. Librescu et al. (2004) studied 
the dynamic response of sandwich panels subjected to blast load, considering geometric non-linearity, initial 
imperfections, material anisotropy and the contribution of shear strains. Two types of blast loading were studied: 
underwater and air explosion, both considering spherical explosion. Feldgun et al. (2016) used the concept of 
large displacements in plates with membrane effect and explosive charge exclusively for the positive phase, to 
evaluate the behavior of plates in terms of displacements and stresses at its center. Kang et al. (2016) presented 
a simulation using blast loads, considering positive and negative phases.  

This work focuses on the analysis of plates subjected to blast loads (positive and negative phases) 
considering membrane effects. The development of the nonlinear dynamic differential equation is reviewed, 
considering a simply supported plate. Equations were also developed for the obtention of blast load parameters, 
aiming at using closed-form expressions. The solution of the non-homogeneous differential equation is based on 
the numerical method of Runge-Kutta. A reference example of a square plate is used as a benchmark and then a 
parametric study is conducted, in which the influence of scaled distance, mass of explosive and the consideration 
or not of the negative phase is analyzed. 
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2 BLAST LOADS 

2.1 Definition and load function 

According to Granström (1956), an air blast consists of a mass of compressed air moving in the direction of 
propagation of the wave. It is a rapid release of energy that modifies the pressure of the environment and is dissipated 
into shock waves. When either an incident or a reflected shock wave reaches a target point, pressure instantly increases 
to a peak overpressure value. During the short period of time of this positive phase, pressure decays towards zero, after 
which a negative phase takes place. Then, the suction pressure increases up to a peak underpressure value and it is 
subsequently restored to zero at the end of the negative phase (Needham, 2010; Khaledy et al., 2018). 

Figure 1 illustrates a representative blast pressure load p(t), where pmax is the peak overpressure, pmin is the peak 
underpressure, td is the duration of the positive phase, and t−

d is the duration of the negative phase. The positive and 
negative impulse values (id and i−d, respectively) are related to the area under the pressure curve for each phase. All these 
parameters characterize a given blast load, and it will be addressed later. 

 
Figure 1 Blast load at a target point due to a shock wave (Adapted from Rigby et al., 2013) 

In literature, several studies have been carried out to formulate blast load equations based on empirical and semi-
empirical methods. This work adopts the well-established exponential equation for the positive phase, proposed by 
Friedlander (1940), and a cubic polynomial equation for the negative phase, suggested by Granström (1956). The 
resulting blast load expression is 
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 (1) 

 where a' is the decay coefficient of the positive phase, which can be obtained by enforcing the area under de curve to 
particular values of the positive impulse. It should be noticed that the evaluation of a' involves solving a nonlinear 
equation, which was accomplished by employing the Newton-Raphson method in the present study. The use of a 
numerical method is mandatory in this context because the blast wave behavior is approximated by imposing a 
continuous derivative (between positive and negative phases). 

In contrast, the cubic equation is defined by only two parameters out of three (pmin, t−
d and i−d) and it implies that 

the following relation holds 

min

9
16

d

d

i
p t

−

− =  (2) 

Also, the peak underpressure is placed at the first one third of the duration of the negative phase, and the first derivative 
at t= td is not imposed. Nevertheless, Equation (1) leads to an approximately smooth function when calibrated 
parameters from real blast loads are employed. 
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Most of the investigations on the response of structures under blast loads have applied only the positive phase of 
the load with Friedlander approximation. In these cases, the decay coefficient may be related to the potential damage 
caused to the structure, since it measures the positive impulse, which may be related to the amount of energy released 
during the explosion. 

Nevertheless, it was just recently that the effect of the negative phase on the structure response was highlighted. 
One may find several approaches to approximate this portion of the pressure curve, namely linear (Krauthammer and 
Altenberg, 2000), extended Friedlander (Gantes and Pnevmatikos, 2004; Wei and Dharani, 2006 ), Teich extended 
Friedlander (Teich and Gebbeken, 2010), and cubic (Granström, 1956). However, Rigby (2014) found that the cubic 
polynomial function best approximates experimental blast pressure measurements, and so it was adopted here. 
Moreover, the use of Friedlander equation together with a cubic polynomial curve is recommended for non-confined 
explosions by the US Blast Resistant Structures Design Manual (NFEC, 1986). 

2.2 Blast wave characterization 

The values of the six parameters presented in Figure 1 depend on several factors: type of explosion (spherical or 
hemispherical explosion), type and angle of incidence of the blast wave (incident or reflected), type and amount of 
explosive material, and distance between explosive source and target. The present work focuses on reflected blast waves 
from both spherical (air) and hemispherical (surface) explosions, with a normal angle of incidence to the plane of the 
plate. For convenience, all parameters are usually expressed as a function of the scaled distance: 

1/ 3
TNT

R
Z

W
= , (3) 

where R is the distance between explosive source and target, and WTNT is the equivalent mass of TNT. 
Figure 2 shows the curves provided in the blast design manual “Structures to Resist the Effects of Accidental 

Explosions” by the US Department of Defense (2008) for spherical blasts, also reproduced by Rigby (2014) in SI units. 
Their corresponding expressions could be obtained by fitting curves to digitized data points for the parameters of the 
negative phase of hemispherical blasts. Equations (4) to (8) present expressions used in this work for spherical blasts. 
Equations (7) and (8) were developed by Rigby (2014) and Equations (4) to (6) are presented in Reis et al. (2019). 
Expressions for hemispherical blasts were also developed (Reis, 2019), but they will be omitted here since they are not 
used in this work. As the relation given by Eq. (2) is implied for the cubic approximation of the negative phase, the curves 
and expressions regarding the parameter t−

d could be suppressed. In addition, it is worth mentioning that the three 
parameters of the negative phase obey Eq. (2) only for Z>5, as observed by Granström (1956). 

 
Figure 2 Parameters for spherical explosive charge (Adapted from RIGBY, 2014) 
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3.1 SDOF Model 

Because of its simplicity and computational effortlessness, the Single Degree of Freedom (SDOF) method is a well-
established approach in the dynamic analysis of two-dimensional structures (Morison, 2006). Based on some 
approximations, the SDOF model can be used to obtain the typical response of a structure, offering reliable results with 
much less computational effort than a full Finite Element analysis would require, especially when blast loads are 
considered. The SDOF is a simplified model that describes the structural behavior based on the response of a certain 
point of the structure, typically its midpoint, considering its dynamical properties (Stolz et al., 2014). Thus, observing that 
the SDOF method is a reliable and inexpensive mathematical procedure, the study of the nonlinear dynamic plate 
equation considering a single degree of freedom is the approach of this work. The US Department of Defense (2008) 
recommends the use of SDOF models for structures with simple geometry and elastic or perfect plastic behavior of its 
materials. 

Even though the explosion phenomenon produces high frequency content, most of the blast’s energy excites the 
fundamental mode of the structure. The fundamental period is usually one or two times longer than the positive phase 
duration. Moreover, the American Society of Civil Engineers (ASCE, 2021) states that, in the general case, SDOF models 
can be used when the explosive source is far from the bulkhead and the wave pressure is uniformly distributed in the 
surface of the structure. All the examples analyzed in the paper are modeled with such conditions and the simplicity of 
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SDOF method allows the extension of the analysis to other combinations of scaled distances and masses of explosive, 
thus enabling a comprehensive parametric study.  

For the following analyses, a rectangular plate is considered, with dimensions a and b, parallel to the x and y axes, 
respectively, as shown in Fig. 3. The thickness of the plate has dimension h, much smaller than a and b, which allows the 
Kirchhoff simplification, therefore neglecting shear strains. Moreover, all the equations are written considering the 
plate’s average plane, located at z = 0. The loading pz is always normal to the surface of the plate and is considered as 
uniformly distributed. 

 
Figure 3 Plate dimensions and loading feature (Adapted from Feldgun et al., 2016) 

Since explosive loading causes high impact on the structure, it should be considered that large displacements can 
be generated, requiring the inclusion of higher order terms in the strain tensor. In this work, von Karman's equations are 
used, according to: 

( ) ( )φ φ φφ ρ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂

⇒ ∇ + − + − = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2 2 2 2 2 2 2
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2 2 2 2 2, 2 , ,z z z z
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, (9) 

22 2 2
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φ
  ∂ ∂ ∂

∇ = −  ∂ ∂ ∂ ∂   
, (10) 

where L is the differential operator, D is the plate’s bending stiffness, uz is the displacement in the z direction, ρ is the 
material specific mass, h is the plate thickness, φ  is the Airy function and E is the Young modulus. 

Considering that the plate is simply supported a Navier series is used as an approximation for displacement uz: 

( ) ( ) π π   =    
   

, , cos cosz
x yu x y t A t

a b
, (11) 

where A(t) corresponds to the amplitude that arises from the separation of time and space variables. 

3.2 Membrane Boundary conditions  

Substituting Eq. (11) in Eq. (10) the following is obtained: 

( )
( )

2 4 2
4

2

2 2cos cos
2

E A t h x y
a bab

π π πφ
       ∇ = − +        

 (12) 

Based on Yamaki (1961), the function ϕ can be generalized as a series, considering the sum of a homogeneous and a 
particular solution, which can be rewritten as: 
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In Eq. (13), p’x and p’y are the nondimensional coefficients of the homogeneous solution of the Airy function, φp,q 

and φ’p,q are the coefficients of the Fourier series for the and homogeneous solution of the Airy function, respectively. 
At this point, it is important to mention that there are three boundary conditions corresponding to the membrane effect, 
which affect the Airy function: stress free, immovable, and movable. The physical meaning of these conditions in terms 
of displacements, forces and/or stresses are given in Table 1 (Yamaki, 1961). In this table, Pi is the resultant of the forces 
acting on the i-axis. 

The general solution presented in Equation (13) is interesting, since it simplifies the imposition of membrane 
boundary conditions (stress free, immovable, and movable), by only requiring the calculation of parameters Ap, Bq, p’x 
and p’y.  

Table 1 Specifications of membrane stress conditions 

Case /2x a= ±  /2y b= ±  

Stress Free , , 0yy xyφ φ= =
 , , 0xx xyφ φ= =

 
Immovable , 0x xyu φ= =

 , 0y xyu φ= =
 

Movable , 0x xyP φ= =
 , 0y xyP φ= =

 

Applying the conditions in Table 1 based on Airy's general expression (Equation (13)) , p’x and p’y expressions are 
determined for each support condition as in Table 2.  

Table 2 Specifications of membrane stress conditions 
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'
yp
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Movable 0 0 



Nonlinear Dynamic Analysis of Plates Subjected to Explosive Loads Ana Waldila de Queiroz Ramiro Reis et al. 

Latin American Journal of Solids and Structures, 2022, 19(1), e422 8/19 

For immovable and movable conditions, parameters A and B are null. For the stress-free case, Ap and Bq can be 
obtained by solving the following linear system of equations: 
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3.3. Nonlinear Dynamic differential equation 

Applying the Galerkin Method, the problem can be written in variational form as the minimization of the potential 
energy: 

( )φ
− −

=∫ ∫
/2 /2

/2 /2

, 0
a b

z z
a b

L u u dxdy  (18) 

Another simplification is the consideration of the load as uniformly distributed, thus disregarding its dependence on 
spatial variables x and y. From now on, p(x,y,t) will be simply written as p(t). After solving Equation (18) using the 
approximation for uz and ϕ given in previous sections, the following equation is obtained: 
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where β is the relation between the largest and smallest dimensions of the plate (considered in this work as x and y 
dimensions, respectively), i.e., β = a/b. 

According to Feldgun et al. (2016), Eq. (19) can be looked at as a SDOF and the coefficients related to the linear and 
third-degree terms can be summarized, obtaining a much simpler equation:  

[ ] ( )
2

3
1 32

d ( ) ( ) ( )
d
A t K A t K A t f t
t

+ + =  (20) 

It becomes evident that the dynamic differential equation of the plate is directly dependent on a linear portion K1, which 
corresponds to the plate (bending) boundary conditions (simply supported in this work), and a nonlinear portion K3 
related to the membrane conditions (immovable, movable and stress-free). Equation (20) is a general formulation that 
is valid for every combination of boundary conditions (plate and membrane). For a simply supported plate, parameters 
K1 and K3 are given in Table 3. 

Thus, based on the data presented in Table 3, a nondimensional analysis is performed comparing the bending 
and membrane coefficients (K1 and K3, respectively) with respect to β, as shown in Figure 4. It is verified that the 
immovable system presents a greater influence of the nonlinear regime in comparison to the bending behavior 
of the structure. This is justified by the fact that the immovable system is characterized by having greater 
restrictions imposed on the edges of the plate. Thus, the nonlinearity becomes more evident for this condition. 
The stress-free case is characterized by presenting the opposite behavior of the immovable system, since there 
is greater freedom for lateral displacement, and less influence of the membrane effect in the system and greater 
influence of bending stiffness. The movable case is characterized by an intermediate behavior between 
immovable and stress-free conditions. 
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Table 3 Parameters K1 and K3 
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Figure 4 Comparison between parameters K1 and K3, case simply supported 

3.4. Solution Strategy for the Nonlinear Dynamic Differential Equation 

Noting that Equation (20) presents a high degree of nonlinearity, analytical methods are not able to directly solve 
such differential equation. The application of numerical methods becomes necessary and the fourth order Runge-Kutta 
numerical method was chosen. Since the Runge-Kutta method requires the differential equations to be of first order, 
Equation (20) should be rewritten as a system of two first order equations, as presented in Equation (21). An auxiliary 
function H(t) is used for this purpose. 

[ ]

=

= − − 3
1 3

( ) ( )

( ) ( ) ( ) ( )

dA t H t
dt

dH t F t K A t K A t
dt

  (21) 

It is important to mention a special case of Equation (20), when the external force f(t) is null. This case is known as the 
free vibration behavior, and it is useful to obtain the natural periods (or frequencies) and modes of the structure. These 
periods are directly influenced by the bending and membrane behavior, and, for that reason, they are referred to as 
linear (bending) and nonlinear (bending plus membrane) natural periods, respectively. Thus, Eq. (21) becomes a non-
linear homogeneous equation known as the Duffing equation, a structural model that includes a non-linear force 
restoration which is proportional to the cubic power of the displacement (Rand, 2005). This equation has an analytical 
solution based on Jacob's concept of elliptical functions, as demonstrated by Soudack (1964), according to equations (22) 
to (24), in which Cn(x,y) is the elliptic cosine and A(t) is the solution of the free vibration problem. 

( )0( ) ,A t A Cn t kλ=   (22) 
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2
1 3 0K K Aλ = +   (24) 

Based on equations (22) to (24), it is possible to determine the expressions referring to the non-linear and linear natural 
periods: 

2

2 2
0

4
1 sin

NL

dx
k xT

π

λ
−=

∫   (25) 

1

2
LT

K
π

=   (26) 

Finally, another important analysis to be considered is the Dynamic Amplification Factor (DAF), which is the ratio between 
the maximum dynamic displacement (uz,max) and the static displacement (uz,st), obtained by using the peak overpressure 
as the static load. 

,max

,

z

z st

u
DAF

u
=   (27) 

4 NUMERICAL EXAMPLES 

Two examples were formulated based on results found in the literature. The first one is a thin steel plate studied by 
Houlston et al. (1985). In this research, the results of the experimental data are used as loading parameters. Experimental 
results are compared with numerical ones (Feldgun et al., 2016) and then a parametric study of the plate is presented. 

The second example is based on the one presented by Krauthammer and Altenberg (2000). The structure is a 
laminated glass plate subjected to a blast load, in which the TNT mass and the scaled distance Z (m/kg1/3) are known. 
However, the loads considered are linear and bilinear approximations for the positive and negative phases, respectively. 

4.1 Houlston et al. (1985) 

The first example is a study based on the experimental data obtained by Houlston et al. (1985), also used as a 
numerical comparison by Feldgun et al. (2016). Geometric and material properties of this example are given in Table 4. 
As the blast load parameters in the original work are results from the experimental tests, a solver was used to determine 
ideal values for Z (m/kg1/3) and W (kg) that can be then fed to the numerical model. The parametric study was performed 
in a model developed in Matlab. 

Table 4 Example 1 parameters (Houlston et al., 1985) 

Parameters Valor 

Dimension (a x b) 0.508 m x 0.508 m 
Thickness (h) 0.0034 m 

Young’s modulus (E) 207 GPa 
Poisson’s coefficient (ν) 0.3 

Mass density (ρ) 7770 kg/m3 

The main parameters of experimental data resulting from the blast load are presented according to Table 5. Since 
the distance between the plate and TNT's mass used in the experiment is unknown, a solver was used to determine the 
ideal value of Z (m/kg1/3) and W (kg) based on the results of the experimental data. The least squares method was used 
in the resulting values were Z = 5.64 m/kg1/3 and W = 0.24 kg. 
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Table 5 Experimental blast parameters (Houlston et al., 1985) 

Parameters Valor 

Pmax 57086.0019 Pa 
Pmin 15420.247 Pa 
td 0.002026061 s 
id 37.3129 Pa.s 
im 40.536 Pa.s 
tm 0.004673336 s 

Figure 5 compares the curves of the blast load with experimental data. Curve [1] represents the results obtained directly 
from the experimental test. The second curve [2] is obtained by the direct application of the blast parameters (see Table 5), 
according to Equations (1) and (2). Finally, the last curve [3] is obtained by using values for Z (m/kg1/3) and W (kg) given by the least 
squares solver directly in the equations developed by Rigby (2014) and the abacus of the US Department of Defense (2008). 

 
Figure 5 Comparison between experimental data (Houlston et al., 1985), analytical data and solver data 

 
Figure 6 Midpoint displacement using experimental data, analytical and solver solution for Houlston et al. (1985) 

Figure 6 shows the curves plotted for comparison between the experimental test and numerical analyses. Numerical 
solutions are based in Equation (20) which was solved using a Runge-Kutta scheme as shown in section 3.4. Curve [1] is 
based on experimental data obtained by Houlston et al. (1985), curves [2] to [4] are obtained considering simply 
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supported boundary condition. It is important to emphasize that in the models that consider the negative phase it is 
approximated by cubic polynomial. It is evident that when membrane effect is neglected (curve [4]) results are not in 
good agreement with experimental ones. For comparison purposes, curves [5] and [6] are the ones obtained by 
Feldgun et al. (2016) considering or not the negative phase, respectively. Finally, curve [7] is obtained by applying a load 
whose parameters are calculated using optimization techniques (least squares solver). According to Figure 6 and the 
studies by Feldgun et al. (2016), the simply supported boundary condition is the one that best represents the behavior 
of the structure used by Houlston et al. (1985). This case presents natural frequency and maximum displacements closest 
to the experimental results. For the experimental test, the largest displacement is 5.839 mm. In the case of the analysis 
with simply supported plate, uz,max = 5.571 mm, an error of 4.58%;  for the clamped boundary condition, uz,max = 4.63 mm, 
an error of 20.70%. The importance of the negative phase consideration can also be assessed in Figure 6, which shows 
that its non-consideration affects the plate’s behavior in terms of displacement and frequency. 

The clamped (CC) boundary condition is assessed in Figure 7 as the plate was originally modeled using this boundary 
condition in the experiment by Houlston et al. (1985). It is possible to verify that results for simply supported boundary 
condition are better than the clamped case, which was also shown by Feldgun et al. (2016). All the expressions needed 
to implement the CC boundary conditions are presented in Reis (2019). 

 
Figure 7 – Comparison between SS and CC conditions with negative phase considered 

4.1.1. Parametric Study 

After the validation of the model in previous sections, a parametric study was conducted to check the influence of 
some variable changes in the overall behavior of the plate. The first study used different blast loads, obtained from 
constant Z (m/kg1/3) and different TNT masses. Using the parameters given in Houlston et al. (1985) the solver solution 
was found as Z = 5.64 m/kg1/3 and this value was kept constant. For this purpose, the ratio between the linear and 
nonlinear maximum displacement amplitudes (uL/uz) was plotted for each membrane boundary condition as shown in 
Figure 8. In addition, all results were compared to the case of a blast load pressure without the negative phase. 

As expected, the plate with immovable boundary condition presented larger values of uL/uz, suggesting that the 
membrane effect is dominant.  Not only the membrane effect is essential, but it is also possible to observe a peak 
behavior located between W = 0 kg and W = 25 kg in all curves in Figure 8, which is characteristic of the negative phase 
in the analysis of the blast load.  As will be shown later, the inclusion of the negative phase increases the amount of 
energy transferred to the system, changing the natural frequency of the plate, and possibly leading to resonance. 

The inclusion of the negative phase into the blast pressure load showed to be relevant for lower values of scaled 
distance and equivalent mass of TNT. The study was extended by using different values of scaled distance, resulting in 
Figure 9. Only the immovable case was investigated since it is the worst case in terms of displacements. A limiting curve 
beyond which the negative phase may be disregarded could be established. It is worth mentioning that this limiting curve 
was built by evaluating displacement results for several values of scaled distances, even though only three curves were 
plotted for the sake of clarity. It should also be noted that the negative phase of the blast load is dismissed beyond the 
limiting curve for the evaluation of maximum displacement amplitudes, but not necessarily for frequency values. 

Figure 10 is obtained with the variation of Z (m/kg1/3) and its influence in the relative displacement uz/h. TNT mass 
calculated by the solver based on the experimental results from Houlston et al. (1985) was W = 0.24 kg. It was used as a 
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start value and compared with various other masses to analyze its influence in the relative displacement of the structure. 
It is verified, naturally, that larger masses cause larger displacements. As the scaled distance Z increases, the 
displacement decreases, which is also a natural conclusion since the energy of the blast wave tends to decrease with Z. 

 
Figure 8 Ratio uL/uZ versus WTNT for various values of Z when is used the Solver data 

 
Figure 9 Ratio uL/uZ versus WTNT for various values of Z when is used the Solver data 

As shown in Figure 10 and 11, there is no evident limit for Z values as to disregard the negative phase. In this way, 
it is not possible to obtain a limit value for Z below which the negative phase can be neglected. This fact is also 
corroborated by Granström (1956), which shows that a value of Z = 5 m/kg1/3 is a lower bound when a cubic 
approximation is used for the negative phase. In other words, for values below Z = 5 m/kg1/3 the negative phase is 
insignificant when compared to the impulse provided by the positive phase.  

Considering the structure studied by Houlston et al. (1985), a parametric analysis can be performed in terms of the 
Dynamic Amplification Factor (DAF), using four case combinations, as shown in Figure 12: the consideration or not of the 
negative phase, as well as the activation or not of the membrane effect. Curve [1] represents the real conditions of the 
test, that is, nonlinearity and presence of the negative phase. In curves [1] and [3], which are those that consider the 
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negative phase, it is possible to verify the same "peak" behavior presented in Figure 8 It is worth mentioning that in these 
cases the nonlinear period may have an important role in the resonance behavior. 

Curves [2] and [4] are the ones obtained without the application of the negative phase in blast load. As mentioned 
before, the contribution of the negative phase is evident in this type of structure. The dots in Figure 12 represent the 
points in each curve using the parameters obtained from the experimental test. It is observed that the actual test 
conditions (nonlinear analysis and consideration of negative phase) generate a ratio of td/TL which falls within the region 
where “peaks” occur. In this way, it is worth noting that performing a linear analysis in the structure or the non-
consideration of the negative phase in the loading can lead to the errors up to 73%.  

 
Figure 10 Ratio uz/h versus Z (m/kg1/3) varying values of WTNT for the Solver data for Houlston et al. (1985) 

 
Figure 11 Ratio uz/h versus Z (m/kg1/3) comparing analyses with and without negative phase 

The existence of peaks in the DAF behavior suggests the occurrence of resonance, due to proximity between the 
natural periods of the load and the plate. This hypothesis can be tested by performing a Fast Fourier Transform (FFT) in 
the load data and comparing the results with the natural periods of the plate. There are two aspects to consider in this 
analysis: 1) since the load is non-periodic its FFT will not generate clearly defined natural frequencies/periods; 2) the 
natural periods of the plate should be the nonlinear ones, since the impulsive characteristics of the blast loading will alter 
the fundamental periods, as shown previously. Figure 13 shows this analysis considering (Figure 13-a) or not (Figure 13-
b) the negative phase. There is also the possibility of a great influence of the loading characteristics and the nonlinear 
period which can also affect this kind of analysis. This is still a work in progress and further studies should be performed 
to support that statement. 
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Figure 12 DAF versus td / TL for different values of W 

 
Figure 13 FFT analysis of the load, immovable condition, (a) with negative phase; (b) without negative phase 

4.2 Krauthammer and Altenberg (2000) 

Krauthammer and Altenberg (2000) presented a numerical parametric study of laminated glass plates, 
considered as homogeneous structures. As the plate is made of a fragile material, different from steel, an elastic 
linear analysis is performed, with simple support as boundary conditions and without damping. The blast load 
also includes the negative phase using a bilinear approximation. Table 6 shows the physical characteristics of the 
plate. In their parametric analysis, Krauthammer and Altenberg (2000) studied the behavior of four plates, two 
of which are addressed in this work. Both are square plates, but with different blast loads, that is, W = 10 kg and 
W = 100 kg. Data on the blast load are shown in Table 7. 

Table 6 Example 2 parameters (Krauthammer and Altenberg, 2000) 

Parameter Value 

Dimension (a x b) 1.397 m x 1.448 m 
Thickness (h) 0.00963 m 

Young’s modulus (E) 72 GPa 
Poisson’s coefficient (ν) 0.25 

Mass density (ρ) 2500 kg/m3 
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Table 7 Loading parameters (Krauthammer and Altenberg, 2000) 

Parameters Valor 

Z 0 – 39.64 m / kg1/3 
W 10 kg and 100 kg 

The first parametric study presents the relationship between the ratio uz/h and Z (m/kg1/3). In this case, the 
reference result is compared with 4 types of analysis: the combination of considering or not the nonlinearity in geometry, 
together with the consideration or not of the negative phase. Krauthammer and Altenberg (2000) presented a study 
considering a probabilistic case of collapse of the structure. As expected, good results are obtained for larger values of 
scaled distances and small masses of explosive, conditions that guarantee that the structure will remain within linear 
material behavior. Nevertheless, results are acceptable even for smaller scaled distances, as shown in Figure 14. 
Moreover, this analysis also validates the consideration of the negative phase, especially for the case with W = 10kg. 

By analyzing the structure subjected to a TNT equivalent mass of W = 10 kg, Figure 14-a, it is confirmed that the 
linear analysis with consideration of the negative phase, curve [4], is the one that best fits the reference. 

For the case with W = 100 kg, Figure 14-b, it is verified that the results of Krauthammer and Altenberg (2000) are 
different from those given by the curve [4], especially as Z grows. This case is justified by the equation of the negative 
phase, which is represented by a bilinear approximation in the original paper, while this work uses the cubic formulation. 
This difference becomes more evident for bigger masses. 

When analyzing the influence of the load time td in the Dynamic Amplification Factor (DAF), the consideration or 
not of nonlinearity and the negative phase plays an important role in the behavior of the plate, as shown in Figure 15.  

In Figure 15, curves [1] and [2] represent the behavior of the structure when geometric nonlinearity is activated. 
Curves [3] and [4] represent linear analysis, with and without the negative loading phase, respectively. Curve [5] shows 
the results for Z = 7.928 m/kg1/3 and W = 10 kg, and curve [6] is obtained for the same scaled distance and W = 100 kg. 
The value for the parameter Z (m/kg1/3) was chosen since it is the lowest value among the set of scaled distances Z 
(m/kg1/3) used by Krauthammer and Altenberg (2000). These combinations for Z and W give td/TL = 0.2014 and td / TL = 
0.4341, as shown. 

Finally, FFT was performed considering linear analysis (since it was the best fit) considering or not the negative phase 
(Figure 16-a and Figure 16-b, respectively). The FFT analysis, as previously discussed, is justified since "peaks" are 
generated in the DAF plot, suggesting resonance. Nevertheless, since a linear analysis is performed, there is no change 
in the plate’s natural period.  

 
Figure 14 uz/h analysis of the load with Solver data solution, immovable condition, (a) W = 10 kg; (b) W = 100 kg 

As stated before, the best agreement between the numerical model and experimental results occurs for low masses 
and high scaled distances. For those cases, the negative phase has the greatest influence on displacements and its 
consideration is paramount. Results presented in this work and the one by Krauthammer and Altenberg (2000) are close 
especially for those conditions that guarantee that the structure will remain within linear material behavior, which is true 
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for glass.  Besides, Krauthammer and Altenberg (2000) also explored the use of the negative phase in their study, 
although here its expression is obtained using a cubic polynomial equation instead of piecewise linear. 

 
Figure 15 DAF versus td / TL 

   
Figure 16 FFT of the load based on Linear Analysis (a) with Negative Phase (b) without Negative Phase 

4 FINAL REMARKS 

This work aimed to evaluate the nonlinear dynamic behavior of rectangular plates considering the membrane effect, 
when subjected to blast loads. Von Karman's plate theory for large displacements was used to obtain the differential 
equations, Galerkin Method was employed to determine stiffness parameters and Runge-Kutta's numerical routine was 
finally used to solve the nonlinear equations. The explosive load imposed on the structure was divided into positive and 
negative phases, represented by the Friedlander equation and the cubic polynomial equation, respectively. 
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Considering the application of the negative phase in the analysis of plates subjected to blast loads, this work 
corroborates its importance by showing good accordance of the formulation with results from literature. It is also worth 
noticing that the negative phase approximation by a cubic polynomial equation presents good results when compared 
with other formulations (piecewise linear for instance).  

The membrane effect was considered in the plate behavior, and three types of lateral conditions were analyzed: 
immovable, movable and stress free. It was shown that for greater lateral restrictions (immovable is more restrictive 
than stress free) influence of the membrane effect on the time history is more evident; displacements in this case are 
smaller, generating bigger ratios between nonlinear and linear displacements. This conclusion is in accordance with 
previous studies and corroborates the need for the consideration of membrane effect.  

Results from the literature, both numerical and experimental, were used to validate the formulation. After 
validation, parametric studies were performed. Considering the new load formulation, it is possible to optimize the 
parameters to obtain the best fit for experimental blast data. This approach made the parametric study possible since 
different values of explosive mass and scaled distance can be easily applied to the structure.  

Based on the presented results, it was found that the consideration of the negative phase in the dynamic behavior 
of the plate is relevant, since in some cases the largest displacements in the time history are observed during the negative 
phase. There is also influence of the negative phase consideration especially for low scaled distances and large masses 
of explosive, in which the energy transferred to the system can induce changes in natural frequencies (periods). 

The study of the Dynamic Amplification Factor for different ratios between load positive time and the plate’s natural 
period shows that there are some peaks which suggest resonance when it is considering the negative phase in analysis. 
The influence of the nonlinear period which arises from the membrane effect is still a subject for further studies.  
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