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Abstract

Dynamic loadings produce high stress waves leading to the fragmentation of brittle ma-
terials such as ceramics, concrete, glass and rocks. The main mechanism used to explain the
change of the number of fragments with the stress rate is a shielding phenomenon. How-
ever, under quasi static loading conditions, a weakest link hypothesis may be applicable.
Therefore, depending on the local strain or stress rate, different fragmentation regimes are
observed. One regime corresponds to single fragmentation for which a probabilistic approach
is needed. Conversely, the multiple fragmentation regime may be described by a determinis-
tic approach. The transition between the two fragmentation regimes is discussed. A damage
model describing dynamic fragmentation is applied to a high performance concrete.

Keywords: brittle materials, Continuum Damage Mechanics, discrete modeling, dynamic
fracture, probability and statistics, single and multiple fragmentation, stress relaxation,
Weibull model.

1 Introduction

A consequence of intense pulses on brittle materials is their fragmentation into discrete domains.
For example, ceramics can be multiply fragmented when impacted [1]. Similarly, glass is used
in armored windshields and experiences multiple fragmentation when impacted by debris or
bullets [2–4]. Furthermore, since the pioneering work of Rinehart [5], it is known that the
ultimate strength of rocks under so-called dynamic loading conditions exceeds the static strength
by as much as one order of magnitude. The distinct zones resulting from rock blasting were
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identified by Kutter and Fairhurst [6], namely a comminuted area in the vicinity of the explosive
followed by a damaged zone in which dense microcracking is observed and finally a zone where
few long cracks develop. Later, it was recognized that inherent flaws are activated, can grow
and eventually coalesce to form macrocracks [7]. Similarly, concrete can experience multiple
fragmentation when hit by a projectile [8]. Yet, when loaded in tension or flexure under quasi
static conditions, the same materials usually experience single fragmentation and their failure
strength is no longer deterministic. The aim of the present paper is to discuss the reasons for
this difference in behavior and to propose criteria to account for both fragmentation regimes.

The fragmentation process is discrete by essence. In the theory developed by Mott [9], the
fragmentation of a rapidly expanding ring was studied. It contains some key ingredients (i.e.,
the randomness of the process is clearly stated and accounted for) to analyze the distribution of
fragments in 2D experiments [10]. From a numerical point of view, discrete modelings are also
proposed [11–14] when the fragment size is greater than or equal to the size of a representative
element. Espinosa et al. [15] have developed a continuum/discrete multi-scale model in which
the finer scale is discrete and allows for the derivation of a continuum description on a higher
scale. Alternatively, Continuum Damage Mechanics can be used with an isotropic [16–18] or
anisotropic [19] damage description to account for multiple fragmentation. Consequently, in the
numerical simulations, the medium is assumed to be continuous on the scale of a finite element
in which numerous cracks are expected to form. However, crack densities may strongly vary
over the structure and the analysis of fragmentation through a continuum modeling may be
delicate when one or a few cracks are nucleated or propagate in certain zones. As an alternative,
a multi-scale model has been developed in which the probabilistic aspect is treated within a
damage model [20,21].

The aim of the present paper is to introduce relevant parameters that enable one to choose
between continuum and discrete approaches. Section 2 introduces a fragmentation model ac-
counting for quasi static and dynamic loading conditions. It is shown that a Poisson-Weibull
framework is convenient to derive closed-form solutions. Characteristic parameters are intro-
duced in Section 3. They depend on material properties (i.e., Weibull parameters) and loading
conditions (i.e., strain or stress rate). A criterion is derived to discuss the transition between
single and multiple fragmentation in terms of characteristic parameters. Based upon the frag-
mentation theory, a so-called multi-scale damage model [21] is summarized in Section 4. This
model is used to analyze a so-called Edge-On Impact configuration [2] when used to study a
high performance concrete in Section 5.

2 Fragmentation of brittle materials

For brittle materials, the analysis of failure depends upon the microstructure in terms of flaw
density and failure stress distribution [7]. The microstructure is approximated by point defects
of density λt. It can be described by a Poisson point process of intensity λt [22,23]
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λt(σ) = λ0

(〈σ〉
σ0

)m

, (1)

where m is the Weibull modulus, σ a local stress to be specified later on, σ0 the scale parameter
relative to a reference density λ0, 〈?〉 the Macauley brackets (i.e., the positive part of ?). The
constant λ0/σm

0 is the Weibull scale parameter. Equation (1) shows that the higher the local
stress σ, the more defects can break. The probability P of finding N = B cracks within a
uniformly loaded domain Ω is expressed in terms of a Poisson distribution

P (N = B) =
[λt(σ)Z]B

B!
exp [−λt(σ)Z] . (2)

The product λt(σ)Z corresponds to the average number of cracks within a domain Ω of volume,
surface or length Z. Within the weakest link framework [24], the failure probability PF is the
probability of finding at least one crack in a domain Ω

PF = P (N ≥ 1) = 1− P (N = 0) = 1− exp
[
−Zλ0

(〈σ〉
σ0

)m]
. (3)

When the domain is not uniformly loaded, the failure probability can be written as

PF = 1− exp
[
−Zeffλ0

(〈σF〉
σ0

)m]
, (4)

where Zeff denotes the effective volume, surface or length [25]

Zeff =
∫

Ω

[〈σ(x)〉
σF

]m

dx with σF = max
Ω
〈σ(x)〉, (5)

corresponding to an equivalent stress σ (e.g., maximum principal stress) at a given point x.
An ultra high performance concrete is analyzed in the sequel. This material (powder reaction

concrete, commercial name: DUCTALr) has a very fine microstructure made of components of
different sizes, namely, fine quartz sand aggregates, cement, crushed quartz and silica fume [26].
For the sake of simplicity, the results reported herein only concern fiber-free grades for which
a high compressive strength can be achieved but with a ductility comparable to conventional
mortar. The ultimate strength of these materials can reach values of the order of −200 MPa to
−800 MPa in uniaxial compression [27], and when reinforced by fibers the ductility is significantly
increased. A residual porosity of the order of 2% is obtained in the present case and the
compressive strength is equal to −200 MPa. Figure 1 shows a Weibull plot for 18 experiments
on samples of size 11.2×10.2×150 mm3 submitted to three-point flexure (outer span: 130 mm).
A Weibull modulus of 9.5 is obtained and σ0 = 23 MPa when 1/λ0 = 59 mm3 (i.e., identical to
the effective volume).

Conversely, under impact, a whole cracking pattern is observed (see Section 5). It will be
referred to as multiple fragmentation regime. In the following, it is assumed that the defect
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Figure 1: Weibull plot of Ductalr submitted to three-point flexure.

population leading to damage and failure is identical when the material is subjected to quasi
static and dynamic loading conditions. To understand why a crack nucleates, one has to model
the interaction of cracks and a defect that would initiate a crack. The crack propagation velocity
is assumed to be constant and equal to a fraction k of the longitudinal wave speed C0 [16,28,29].
Therefore, one may define a relaxation or obscuration domain of measure Zobs around a crack
(i.e., a zone in which the stresses are less than the applied stresses, thus do not cause new crack
initiations)

Zobs = S [kC0 (T − t)]n , (6)

which is a function of a shape parameter S, the present time T , the time to nucleation t < T ,
and the space dimension (n = 1, 2 or 3). The shape parameter S may depend on the Poisson’s
ratio ν but it is independent of time so that the relaxed zones are self-similar. New cracks will
initiate only if the defect exists in the considered zone and if the flaw does not belong to any
relaxed zone. Therefore, the total flaw density λt can be split into two parts: namely, λb, the
crack density and the obscured flaw density. The increment of the crack density λb can be
related to that of total flaw density λt by

dλb

dt
=

dλt

dt
× (1− Pobs) , (7)

with λb(0) = λt(0) = 0 and Pobs the probability of obscuration [30]
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Pobs = 1− exp
[
−Ẑobs(T )λt {σ(T )}

]
, (8)

where Ẑobs is the measure of the mean obscuration zone

Ẑobs(T )λt {σ(T )} =
∫ T

0
Zobs(T − t)

dλt

dt
{σ(t)}dt. (9)

Equation (8) is an extension of the classical Weibull law (3). In particular, when the stress rate
is small enough, only one defect leads to failure and Ẑobs = Z and Eqn. (3) applies. It can be
noted that Eqn. (8) accounts for overlappings of obscuration zones. Furthermore, in the context
of mathematical morphology, the above-described approach is nothing but a boolean islands
model [31,32].

3 Characteristic parameters and fragmentation transition

Let us now consider a case with a constant stress rate dσ/dt =
•
σ. One can define a dimensionless

flaw density (λ = λ/λc), time (t = t/tc), zone size (Z = Z/Zc) and stress (σ = σ/σc) from the
condition

λc Zc = 1 with λc = λt[σ(tc)] and Zc = Zobs(tc), (10)

where the subscript ‘c’ denotes characteristic quantities. A characteristic stress is defined by
σc =

•
σ tc. Equation (10) expresses the fact that the characteristic zone size Zc contains on

average one flaw that may break at the characteristic time tc. By using Eqns. (1) and (10), the
characteristic parameters are given by

tc =

[
σm

0

λ0S(kC0)n
•
σ

m

] 1
m+n

, Zc =

[
(σ0kC0)mSm/n

λ0
•
σ

m

] n
m+n

,

σc =

[
σm

0

•
σ

n

λ0S(kC0)n

] 1
m+n

, (11)

and a closed-form solution can be derived for Eqn. (7)

λb(T ) =
m

m + n

[
(m + n)!

n!m!

] m
m+n

γ

[
m

m + n
,

n!m!
(m + n)!

T
m+n

]
, (12)

where γ is the incomplete gamma function. Equation (12) is the exact solution to Mott’s
problem extended to 2D and 3D cases with an initial flaw density modeled by a power law
function. Figure 2 shows the change of the dimensionless density λb with the dimensionless
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time T . When the time T < 1, virtually no obscuration is observed, i.e., Pobs ≈ 0 and λb ≈ λt.
Conversely, when T À 1, Pobs ≈ 1 and saturation occurs. The higher the Weibull modulus m,
the higher the density at saturation.
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Figure 2: Dimensionless density of cracks vs. dimensionless time for three different Weibull
moduli m when n = 3.

A similar study is now carried out to determine the ultimate strength properties. Under
quasi static loading condition, a Weibull model (3) is applied. It follows that the mean failure
stress σw and the corresponding standard deviation σsd are given by

σw =
σ0

(Zeffλ0)
1
m

Γ
(

1 +
1
m

)
, σ2

sd =
σ2

0

(Zeffλ0)
2
m

Γ
(

1 +
2
m

)
− σ2

w (13)

where Gamma is the Euler gamma function. It is expected that these quantities are the key
parameters for low stress rates. In particular, no stress rate effect is obtained when sub-critical
crack growth does not occur [33].

The variable Pobs can be used to define a damage variable in the framework of Continuum
Damage Mechanics [30]. Under quasi static loading condition, there is a sudden change between
the virgin material (i.e., D = 0) and a fully broken brittle material (i.e., D = 1). This case can
be studied by using an ad hoc formulation [34, 35]. Under dynamic loading conditions, there is
a more gradual growth. By averaging over a representative zone (to be specified later on), Pobs

is assumed to be equal to the damage variable D. It is interesting to note that the first order
approximation of Eqn. (8) leads to the differential equation proposed by Grady and Kipp [16]
to describe the growth of an isotropic damage variable. By using Eqns. (1), (6) and (8), the
change of the damage parameter is written as

D = 1− exp
[
− m!n!

(m + n)!
σm+n

]
. (14)

Equation (14) shows that D(σ = 1) ∼= 0 and D(σ = 2) ∼= 1 (i.e., most of the damage evolution
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occurs during a time interval equal to tc). During tc, the horizon is limited by Zobs(tc) = Zc

therefore the minimum measure of the representative zone is Zc. By noting that, in pure tension,
the macroscopic stress Σ is related to the local (or effective) stress σ by σ = Σ/(1−D) [37], the
ultimate tensile strength (dΣ/dσ = 0), denoted by Σmax, is expressed as

Σmax

σc
=

[
1
e

(m + n− 1)!
n!m!

] 1
m+n

. (15)

The normalized ultimate strength only depends upon the Weibull modulus m and the space

dimension n. The ultimate strength itself is then proportional to
•
σ

n/(m+n)
. This result is in

agreement with experimental data of oil shale [16], microconcrete [36], ceramics and glass [4].
Equations (13) and (15) define two different regimes. The first one is obtained when a

weakest link hypothesis is made. It corresponds to single fragmentation. The second one assumes
multiple fragmentation. Figure 3 shows the change of the tensile strength with the stress rate for
an effective volume Veff (n = 3) equal to 1/λ0. The lines represent analytical solutions while the
dots and error bars are Monte-Carlo simulations (500 realizations per point). For a dimensionless
stress rate less than 0.5, the ultimate strength is not modified by the loading rate and follows
a classical Weibull model [see Eqn. (13)]. When it increases by approximately one order of
magnitude, the ultimate strength follows the analytical solution (15). During the transition,
the difference between the dashed lines [given by Eqns. (15) and (13)] and simulations does
not exceed 10%. The standard deviation significantly decreases in the multiple fragmentation
regime. Even if the ultimate strength has to be defined for static and dynamic loadings by a
mean and a standard deviation, one can see that dynamic loadings lead to a more ‘deterministic’
behavior. The transition between ‘quasi static’ and ‘dynamic’ strength can be estimated by the
intersection between the weakest link and the multiple fragmentation solutions (see Fig. 3)

σw = Σmax(
•
σ). (16)

The transition defined by Eqn. (16) leads to the following inequalities

•
σ

{
<
•
σt single fragmentation

≥ •
σt multiple

(17)

with

•
σt= σ0kC0(λ0S)1/n(Zeffλ0)(m+n)/mn

[
e m!n!

(m + n− 1)!
Γm+n

(
m + 1

m

)]1/n

. (18)

This transition does not only depend on material parameters but also involves the measure Zeff

of the considered element. The response of a large structure can be considered as ‘dynamic’
for low stress rates even if the material follows a weakest link hypothesis for the same loading
applied on a smaller domain.
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Figure 3: Tensile strength normalized by σw vs. stress rate normalized by
•
σt. The dots and

error bars represent results obtained by Monte-Carlo simulations (500 realizations/point) and
their standard deviation when m = 9.5 and n = 3. The curves are obtained by using Eqns. (13)
and (15).

4 Multi-scale damage model

The state potential is assumed to be given by the Gibbs’ specific enthalpy Φ. It is expressed as
a function of the macroscopic stress tensor Σ and the damage variables D1, D2 and D3 related
to cracking in three orthogonal directions

ρΦ =
1
2

Σ : S : Σ (19)

where S is the compliance tensor dependent upon three damage variables D1, D2 and D3 asso-
ciated with three perpendicular cracking directions, ρ the mass density and ‘:’ the contraction
wrt. two indices. The associated forces are defined as

E = ρ
∂Φ
∂Σ

= S : Σ and Yi = ρ
∂Φ
∂Di

=
1
2

Σ :
∂S
∂Di

: Σ (20)

where E denotes the strain tensor and Yi the energy release rate density associated to the
damage variable Di (i = 1, 2, 3). The compliance tensor S is expressed as (Voigt’s notations are
used)
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S =
1
E




1
1−D1

−ν −ν 0 0 0
−ν 1

1−D2
−ν 0 0 0

−ν −ν 1
1−D3

0 0 0
0 0 0 1+ν

(1−D2)α(1−D3)α 0 0
0 0 0 0 1+ν

(1−D3)α(1−D1)α 0
0 0 0 0 0 1+ν

(1−D1)α(1−D2)α




, (21)

where the constant α is a function of the Poisson’s ratio ν (when ν = 0.15, α ≈ 0.31 [21]).
The growth of each damage variable Di is based upon the defect density λt (no index sum-

mation is used)

d2

dt2

(
1

1−Di

dDi

dt

)
= n!S (kC0)

n λ̂t [σi(t)] when
dσi

dt
> 0 and σi > 0. (22)

The cracking velocity kC0 is about 20–40% the longitudinal wave velocity C0 (i.e., k is ranging
between 0.2 and 0.4), and S is a dimensionless shape factor: in 3D situations S ≈ 3.74 [21]. The
effective stress tensor σ is related to the macroscopic stress tensor Σ by

S(D1 = 0, D2 = 0, D3 = 0) : σ = S(D1, D2, D3) : Σ. (23)

The stress σ therefore corresponds to any effective principal stress σi. The so-called multi-scale
model uses a modified growth of the defect density (see also Ref. [20])

ZFE λ̂t[σi(t)] =





0 if σi(t) ≤ σk,

max
[
ZFE λ0

(
σi(t)
σ0

)m

, 1
]

otherwise.
(24)

where σk is the failure stress of the first defect able to break. This failure stress σk is randomly
generated according to a Weibull law (3) when Z = ZFE, where ZFE is the volume of the
considered finite element. The multi-scale model is therefore obtained by modeling the failure of
the first defect able to break (which is scale-dependent, i.e., mesh size dependent) in addition to
the deterministic description of damage used in the continuous model. The probabilistic nature
of crack nucleation then leads to numerical simulations that may vary between two different
realizations.

An approximate closed-form solution can be derived. In Eqn. (24), one can assume that
when the stress σ is less than σk, the density λ̂t is equal to 0. As soon as σ becomes equal to
σk, the density λ̂t is equal to λt. Consequently, if tk denotes the time when σ = σk, the damage
growth is given by

D = 1− exp
[
−Zobs(T − tk)λt {σ(tk)} −

∫ T

tk

Zobs(T − t)
dλt

dt
{σ(t)}dt

]
. (25)
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When the applied stress rate is constant, Eqn. (24) can be recast as

D = 1− exp

[
−

(
tk
tc

)m+n m!n!
(m + n)!

h(τ, m, n)

]
, (26)

with

τ =
T

tk
− 1 and

h(τ, m, n) = (1 + τ)m+n −
[
1 + (m + n)τ +

(m + n)(m + n− 1)
2

τ2

]
(27)

It can be noted that when tc/tk ¿ 1, an ultimate strength equal to σk and the quasi static
solution is obtained [Eqn. (13)]. Conversely, when tc/tk À 1, the dynamic regime is found with
no scatter and Eqn. (14) applies so that the ultimate strength is deterministic [see Eqn. (15)].

The transition between the two regimes is re-analyzed. Figure 4 shows the change of the
ultimate strength vs. stress rate for the same conditions as those of Fig. 3. The prediction of the
average failure strength is obtained by assuming that the random stress σk is equal to σw. The
corresponding standard deviation is evaluated by computing the failure strength corresponding
to the value σk = σw + σsd. These calculations lead to reasonable estimates. As expected,
all results converge for low stress rates towards the closed-form solution given in Eqn. (13).
Conversely, for high stress rates all solutions tend towards Σmax expressed in Eqn. (15).
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5 Fragmentation of a high performance concrete

Tensile cracking, one of the major degradation mechanisms, can be observed during impact by
using so-called Edge-On Impact (EOI) configurations instead of a real configuration where the
degradation is ‘hidden’ in the bulk of the material. These configurations are developed by the
Ernst-Mach-Institute (EMI) in Germany [1,2] and by the Centre Technique d’Arcueil (CTA) in
France [29, 38]. It can be shown that the same damage mechanism (i.e., damage in tension) is
observed in EOI and in real impact configurations [39].

To avoid damage induced by the compressive wave close to the impact zone, a special setup
is used (Fig. 5). It consists in creating an additional dynamic confinement obtained by using
a steel ring containing a tungsten cylinder whose radius is greater than that of the projectile.
This system creates an additional confinement during 12 µs (i.e., time duration for the wave to
propagate back and forth in the steel ring) that prevents damage to develop in these zones by
increasing the hydrostatic stress and reducing the deviatoric stress (i.e., less than 240 MPa for
a distance greater than 12 mm from the impact point) to levels below the threshold of damage
under confined conditions (i.e., of the order of 400 MPa [40]). When using a 2024 aluminum
alloy projectile, this setup allows one to analyze fragmentation with no prior confined damage
(i.e., hoop stresses greater than 35 MPa for a distance less than 80 mm from the impact point).
Figure 6 shows a post-mortem observation when the tile is put in a sarcophagus to prevent the
fragments to move too much. In this configuration, a blunt projectile (20 mm in diameter and
50 mm in length) impacts at 88 m/s a concrete plate of size 300× 150× 10 mm3. After impact,
the tile is coated in an epoxy resin and polished for macroscopic (and microscopic) analyses.

Concrete plate


(300 x 150 x 10 mm3) 


Steel ring  
(Dext = 24 mm, h = 30 mm)

Tungsten alloy cylinder 
(D = 13 mm, h = 30 mm)

Aluminum projectile 
(D = 20 mm, h = 50 mm)

Figure 5: One quarter of an edge-on impact configuration with dynamic confinement.

Once the elastic properties and the Weibull parameters are known, the model has no other
parameters to tune apart from the crack propagation velocity. The velocity of a single crack
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is estimated to be about 1875 m/s (i.e., the value of the parameter k is equal to 0.4). In the
following, the predictive capability of the damage model to reproduce observed degradation
patterns is evaluated. The simulation is performed for the confined EOI configuration with an
impact velocity of 88 m/s. The random stress to failure is computed by using Eqn. (4) for a
FE volume of 1 mm3. Figure 7 shows the crack density associated to the first principal stress
direction 35 µs after impact and at the end of the fragmentation process (i.e., 50 µs). For
high stress rates (i.e., in front of the projectile and in the Hertz-like cone crack), many cracks
nucleate in a FE cell. Failure of an element set, which can be compared to macroscopic cracks,
can be observed in addition to the continuous degradation generated close to the impact zone.
The prediction is in reasonable agreement with the experimental observations (Fig. 6), namely,
a fine fragmentation in the first part of the plate followed by long radial cracks in the second
half.

impact

10 mm

Figure 6: Post-mortem view of an impacted Ductalr concrete plate by an aluminum projectile
with a confined configuration.
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Figure 7: Contour of crack density associated to the first principal direction 35 µs (a) and 50 µs
(b) after impact in a confined EOI experiment on Ductalr.

6 Summary

In this study, the defects in brittle materials are assumed to be randomly located in the zone
of interest and their size distributions to follow a Poisson-Weibull model. A normalization
procedure is defined by introducing characteristic quantities such as zone size, time and density of
cracks. The dimensionless growth law for all the variables of the model is only dependent on the
Weibull modulus and the space dimension. A damage growth and description is derived within
a Continuum Damage Mechanics framework. The above-mentioned normalization technique
is used to discuss the choice of the finite element mesh size. The characteristic size can be
used as a measure of the representative zone, and defines the scale where the problem becomes
deterministic and local.

The multi-scale model has been used to analyze cracking in Edge On Impact tests on an
ultra-high performance concrete. A dynamic confinement was used to reduce or avoid confined
damage close to the impact point. An intense fragmentation process made of numerous radial
cracks is seen in post-mortem analyses. The damage model describing fragmentation enables
us to get a good prediction of damage (pattern, cracking density and orientation) even if the
density of cracking is slightly over-estimated. This can be explained by the low level of crack
openings that are not easy to visualize.
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