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Abstract 
The main goal of this research is to study the postbuckling behavior of nonlocal functionally graded beams. 
Eringen’s nonlocal differential model is used to evaluate the influence of the material length scale in the 
bending response. An improved shear deformation beam theory with five independent parameters is utilized, 
which is suitable for the use of 3D constitutive equations. A finite element model is derived with spectral high-
order interpolation functions to avoid shear locking. The formulation is verified by comparing the present 
results with the ones found in the literature. Functionally graded beams with different boundary conditions, 
nonlocal parameters, and power law indices are analyzed. It is shown that the present model can accurately 
predict the behavior of nonlocal beams due to the use of high-order terms in the displacement field in 
comparison with classical beam formulations. Finally, new benchmark problems are analyzed to show the 
capabilities of the present model to evaluate the effect of the nonlocal parameter and the power law index 
on postbuckling beam behavior. 
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1 INTRODUCTION 

Over the last two decades, the interest in generalized continuum mechanical models capable of predicting the 
response of structural elements with material length scales has increased. Nonlocal theories started in the 20th century 
with the contributions of Mindlin (1964), Kröner (1967), Toupin (1962), Eringen (1972a), Eringen (1983), Eringen and 
Edelen (1972), among others. Nowadays, progress has been achieved in the fields of nanotechnology and the evaluation 
of biosensors, microsensors, and microscopes due to the improvements included in nonlocal theories. A review of this 
can be found in the work of Chandel et al. (2020), who provided an overview of the different models of analysis of 
nanostructures under different loadings and boundary conditions, as well as their application in different fields.  

According to Srinivasa and Reddy (2017), within non-classical continuum mechanics, Eringen’s theory can be 
categorized as a strain based nonlocal theory. Other examples of non-classical models with displacements as 
independent variables are high strain gradient models (see Toupin, 1964; Mindlin and Eshel, 1968; Yang et al., 2002).  
Other group of nonlocal theories is referred to as “peridynamics,” and it is based on the original work of Silling (2000). It 
was developed to address the need of modeling discontinuities and avoid spatial derivatives. For a comprehensive review 
of this theory, see the work of  Silling and Lehoucq (2010).   

Eringen´s approach is based on the works of Kröner (1967) and Kunin (1968). Eringen and Edelen (1972) and  Eringen 
(1972b) presented the fundamentals of nonlocal elasticity, stating that a point in the continuum is influenced by its 
interactions with all parts of  the body. Eringen’s theory addresses this by using a nonlocal modulus or kernel function in 
the constitutive equations of the continuum. Different forms of this functions have been obtained for applications in 
plane waves (Eringen, 1972b; Eringen, 1974), two-dimensional (Eringen and Ari, 1980) problems, and three-dimensional 
problems (Eringen, 1978). Since the integral constitutive equations that result from the direct use of these functions are 
hard to solve, Eringen (1983) proposed an approximation by means of a partial differential equation relating the nonlocal 
and classical stress tensors. 

Applications of Eringen’s nonlocal theory are numerous on isotropic beam and plate structures. Peddieson et al. 
(2003) developed an analytical solution of Euler-Bernoulli beams. Their work focuses in simply supported and cantilever 
beams under distributed loads. Their research led to several advances in the solution of nonlocal beams. The analytical 
formulation for many different theories including the nonlocal differential constitutive relations of Eringen were 
developed by Reddy (2007). He obtained the variational statements of this beam models using the Hamilton principle 
and using Navier’s solution method calculated numerical solutions for static bending, buckling, and vibration. Aydogdu 
(2009a) studied the nonlocal bending, buckling and vibration of different beam models. He obtained the analytical 
solutions and compared them for different values of the nonlocal modulus and length-to-thickness ratios. Reddy (2010) 
developed a formulation to study the bending of Euler-Bernoulli and Timoshenko beams as well as of the first-order plate 
theory using Eringen’s differential formulation and including the effect of von Kármán strains. His theoretical 
development is the start point for the future evaluation of these structures using the finite element method. Reddy and 
Reddy and El-Borgi (2014) used the finite element method to obtain the bending solution of Euler-Bernoulli and 
Timoshenko beams under different boundary conditions and distributed loads. Their formulation only included linear 
terms of the nonlocal parameter, and 1D constitutive equations were considered to account for the excessive stiffening 
effect of 3D constitutive equations. They identified that the effect of the nonlocal parameter on the deflection of beams 
depends on the boundary conditions and the applied distributed load, that is, it increased the deflection of simply 
supported beams, while causing an increase in the stiffness of cantilever beams. This inconsistency was addressed by 
Khodabakhshi and Reddy (2015) using the two-phase constitutive model elaborated by Eringen (1987) in its integral form. 
They found that the paradox regarding different types of boundary conditions could be solved using the integral version 
of Eringen’s model and that the nonlocal parameters cause a softening effect in beams. Fernández-Sáez et al. (2016) 
showed a general numerical method to solve Eringen’s integral model and compared their results against the ones 
obtained with the differential model.  

Analytical solutions for the one-dimensional model of Eringen have also been reported by Tuna and Kirca (2016) in 
the case of bending of Euler-Bernoulli and Timoshenko beams subjected to different boundary conditions. Finite element 
solutions using non-uniform meshes were obtained by Tuna and Kirca (2017) for bending, buckling, and free vibration 
using the one-dimensional kernel in the integral form of Eringen’s model. Their results had good agreement against 
analytical solutions of Euler-Bernoulli beams under different boundary conditions. On the other hand, exact solutions for 
the two-phase model used in Euler-Bernoulli beams were developed by Wang et al. (2016) and Zhu et al. (2017) for the 
static and buckling problems, respectively, and a satisfactory softening effect was found for different boundary 
conditions. Further work of this research to obtain analytical solutions for the two-phase model was carried out by 
Wang et al. (2019) using the Timoshenko beam theory. Their research concluded that the shear effect was evident in 
nonlocal beams and that extended research into high-order beam theories is necessary. With respect to the bending 
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analysis of first-order plates by means of the standard integral formulation of Eringen, Ansari et al. (2018) proposed a 
finite element model including the effect of Winkler and Pasternak elastic foundations. Fakher and Hosseini-Hashemi 
(2020) developed the exact solution for the vibration analysis of Euler-Bernoulli beams considering the von Kármán 
nonlinearity. They used the two-phase integral Eringen model and evaluated different boundary conditions. They 
mentioned that the increase in the nonlocal parameter and the reduction of the local phase fraction causes a reduction 
the frequency of beams. Moreover, they found that the inclusion of the von Kármán nonlinearity causes greater nonlocal 
effects in the natural frequency of beams.  

Functionally graded materials (FGMs), conceived first in Japan (Hirano et al., 1988), are the combination of two 
different materials by gradually changing their relative distributions. The mechanical and thermal behaviors of FG 
structures make them suitable for applications in different areas, such as aerospace, tribology, nanotechnology, biology, 
and high temperature technology. Many studies in FGM micro and nano beams can be found in the literature, which 
considers Eringen’s nonlocal theory. For instance, Eltaher et al. (2013) developed a static and stability analysis of Euler-
Bernoulli beams using the finite element method. They found that the increase in the nonlocal parameter increase the 
deflections in the cases of simply supported and clamped-hinged beams. Furthermore, the critical buckling load 
decreases with the influence of the nonlocal parameter. Reddy et al. (2014) used the differential model and the finite 
element method to analyze the nonlocal behavior of Euler-Bernoulli and Timoshenko beams including von Kármán 
nonlinearity. In this research they only included linear terms of the nonlocal parameter to evaluate simply supported and 
encastred (i.e., clamped-pinned) beams and found that the increase of both power-law index and nonlocal parameter 
enhances the deflections of beams. This type of beams was also evaluated by Nazemnezhad and Hosseini-Hashemi (2014) 
in the case of vibration. They examined the effect of the thickness to length ration, gradient index, boundary conditions, 
the length of the beam and the nonlocal parameter. By means of analytical methods, they obtained that the nonlocal 
parameter causes a reduction in the natural frequency of vibration of functionally graded beams. More recently, 
Srividhya et al. (2018) developed a static analysis of plates accounting for moderate rotations in the third order plate 
theory of Reddy (1984), and using Eringen’s differential nonlocal model and two different homogenization techniques: 
the rule of mixtures (or Voigt rule) and the Mori-Tanaka scheme. In their research, they evaluated the effect of the length-
to-thickness ratio and the nonlocal parameter in a simply supported plate. Additionally, they showed the axial and shear 
stress distribution of the third-order plate theory and compared it against the first-order shear deformation theory. More 
recently, Zhang and Qing (2020) analyzed the buckling response of functionally graded curved sandwich microbeams. 
They assessed the nonlocal response, utilizing a variation of the original Eringen integral model, which was proposed by 
Romano and Barretta (2017).  

A review of the literature shows that few nonlinear studies have been conducted on nonlocal functionally graded 
beams.  Most of them are based on classical formulations with moderate nonlinearity only. The present work presents a 
finite element formulation to study the postbuckling behavior of nonlocal functionally graded beams. The fundamentals 
of the  model can be found in Arciniega and Reddy’s previous works; see Arciniega and Reddy (2007b). Numerical results 
are presented for typical benchmark problems with applications to functionally graded nonlocal beams under different 
boundary conditions.  

2 THEORETICAL FORMULATION 

2.1 Eringen’s nonlocal elasticity theory 

Eringen’s nonlocal theory states that the stress 𝛔𝛔  at a point X of the continuum depends not only on the strains at 
that point X, but also on the strain field at every point of the body. Hence, according to Eringen, the nonlocal stress tensor 
𝛔𝛔 can be expressed as 

    ' ,
V

x x dV     (1) 

where 𝛔𝛔 is the local stress tensor and the Kernel function 𝛼𝛼(|𝒙𝒙′ − 𝒙𝒙|, 𝜏𝜏)  represents the nonlocal modulus, |𝒙𝒙´ − 𝒙𝒙| being 
the Euclidian’s norm of the distance, and 𝜏𝜏 is a material constant that depends on internal and external characteristic 
lengths (such as the lattice spacing and wavelength or crack length, respectively).  

Due to the complexity of equation (1), Eringen proposed an equivalent differential model as a linear transformation 
using the Laplacian operator ∇2, as shown in the following equation: 
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 2 2 2 2 2 2,         o o ol e a  (2) 

where 𝝈𝝈 is the nonlocal stress tensor, 𝑒𝑒𝑂𝑂 is a material constant, and 𝑎𝑎 and 𝑙𝑙 are the internal and external characteristics 
lengths, respectively.  

The original equation of Eringen (1983) used the engineering stress tensor. However, equation (2) can be extended 
to include the second Piola-Kirchoff stress tensor, which is conjugated with Green-Lagrangian strain tensor (see Reddy 
2013 and 2015). 

In this section, we derive the mathematical formulation of the theory by using the tensor notation, which is 
independent of any coordinate system. The simplicity of this approach allows us to show many important equations in a 
simple and compact way. 

Let �𝑥𝑥𝑖𝑖� be a set of Cartesian coordinates with orthonormal basis {𝒆𝒆𝑖𝑖}  . The neutral axis of the beam is defined by 
the coordinate 𝑥𝑥1. The displacement field is assumed to be of the following form (Arciniega and Reddy, 2007a) 

 1 3 1 3 1 3 2 1( ( ) ( ) ( ) ( ))x ,x x x x x x  v u    (3) 

where 𝒖𝒖 = 𝑢𝑢𝑖𝑖𝒆𝒆𝑖𝑖  denotes the displacement vector of the neutral axis, 𝝋𝝋 = 𝜑𝜑𝑖𝑖e𝑖𝑖  and 𝝍𝝍 = 𝜓𝜓3e3 are difference vectors 
(i=1,3). Equation (3) contains five independent variables. The quadratic term 𝝍𝝍 is included to avoid Poisson’s locking, 
therefore, no reduced constitutive equations are needed. 

For the given displacement field, we define the Green-Lagrange strain tensor as 

 
e e e

e

(0) 3 (1)

( ) ( ) ( )( )
11 1 1 33 3 3 13 1 3, ,1

,

0i i ii e e e e e e  

 

      

x

i
 (4) 

where high order terms are neglected. We can express equation (4) in indicial notation as: 
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       

     

       

    

u u u u u

u u u u  (5) 

when it is written in terms of the five components of the displacement field. It’s important to highlight that the 
formulation used does not satisfy the zero traction free boundary conditions, which requires the use of shear correction 
factor in the definition of stress resultants.  

2.3 Principle of virtual work 

The weak form can be easily constructed using the principle of virtual displacements (see Reddy, 2015). The virtual 
work statement is nothing but the weak form of the equilibrium equations, and it is valid for linear and nonlinear 
constitutive relations.  We define the configuration solution of the beam by the triplet Φ ∶= (𝐮𝐮,𝛗𝛗,𝛙𝛙). Thus 

        Φ Φ Φ Φ Φ Φ ε ε
1 1

(0) 1 1(0) (1) (1)
int ext, , ,           x x

dx dx   N N p u  (6) 

where 𝛿𝛿Φ ≔ (𝛿𝛿𝐮𝐮, 𝛿𝛿𝛗𝛗, 𝛿𝛿𝛙𝛙), 𝐍𝐍(𝑖𝑖) is the nonlocal stress resultant tensor and 𝐩𝐩 is the body forces acting on the beam per 
unit length. 

For straight beams, Eringen´s differential model can be expressed in terms of the linearized nonlocal stress resultant 
tensors, namely 
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 ( ) ( ) ( )2 2
0 , 0,1   i i i

iN N N  (7) 

Let 𝐍𝐍�(𝑖𝑖) denote the local stress resultant tensor, which is a symmetric tensor. The tensor 𝐍𝐍�(𝑖𝑖) is defined as 

 
ε ε

( )

( )
( ) (0) ( 1) (1)

/2
3 3

/2

,

( ) , 0,...,2





 
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i
i i

h
k

h

k
x dx i

 

 

N
 (8) 

The components of the tensor 𝔹𝔹(𝑖𝑖) are the material stiffness coefficients and ℂ is the fourth-order elasticity tensor. 
Furthermore, the linearized equilibrium equations are obtained from the virtual work statement through integration by 
parts. It means 
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Next, we obtain an explicit expression for nonlocal stress resultants. From Eq. (9), we use the first three equilibrium 
equations. Substituting equation (8) in (7), and after some manipulations, we obtain: 

 ( ) ( ) ( )( )
11 1 1 33 3 3 13 1 3, 0,1     
i i ii

N N N iN e e e e e e  (10) 

where 
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 (11) 

𝑓𝑓1, 𝑓𝑓3 are the axial and transverse body forces, 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑟𝑟)  are the components the material stiffness and 𝜀𝜀𝑖𝑖𝑖𝑖

(𝑟𝑟) are the 
components of the strain tensor of order r. 

2.4 Functionally Graded materials 

Functionally graded materials are composite materials, where the properties of two materials (usually ceramics and 
metals) varied in a predetermined manner from the bottom to the top surface of the beam (or plate). These materials 
are considered microscopically inhomogeneous but isotropic and are commonly used to mitigate severe stress variations 
that occur between the layers of a laminated composite structure. Functionally graded materials are used in applications 
where both effects, heat transfer and stress resistance, are important. For example, in applications involving a 
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combination of ceramic and metal, the ceramic provides less thermal conductivity whereas the metal provides resistance 
against stress due to its ductility. 

In these two-phase functionally graded materials, the properties are assumed to vary through the thickness of the 
beam. Therefore, the tensor ℂ is a function of the thickness coordinate, 𝑥𝑥3. The elastic coefficients of an FGM are 
expressed as: 

  c m
ijkl ijkl c ijkl mC C f C f  (12) 

In the equation above, super index c and m represent the properties from ceramic and metal, respectively, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
refers to the material stiffness coefficients, and 𝑓𝑓 is the volume fraction of the constituent expressed as (see Reddy, 
2022): 

 
3 1

, 1
2

        

n

c m c
x

f f f
h

 (13) 

where 𝑛𝑛 is the power law index exponent that represents the variation of the material along the thickness. The 𝜇𝜇𝑜𝑜 
parameter is assumed constant. 

3 FINITE ELEMENT FORMULATION 

Let Ω be the domain of the neutral axis of the beam, which is discretized into N elements, such that: 

 Ω Ω
1

N
e

e




 (14) 

Recall that Ω�𝑒𝑒 = [−1,1] is a parent domain in ξ-space and 𝑥𝑥1(𝜉𝜉):Ω�𝑒𝑒 ∈ 𝑅𝑅 → 𝛺𝛺𝑒𝑒. The finite element equations are 
obtained by interpolating the components of the field variables written in terms of the base vectors. Namely, 
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where  𝜙𝜙𝑖𝑖 stands for the one-dimensional interpolation functions and 𝑢𝑢𝑖𝑖
(𝑖𝑖), 𝜑𝜑𝑖𝑖

(𝑖𝑖) and 𝜓𝜓3
(𝑖𝑖) are the values of these variables 

at the nodes of each element. 
With regard to the interpolation polynomials, Chinosi et al. (1998), Hakula et al. (1996), and Pontaza and Reddy 

(2005) have shown that the use of high order interpolation functions brings many advantages because it allows more 
accurate approximations and precludes membrane and shear locking in the finite element solutions. Moreover, the use 
of equally spaced gauss points for the evaluation of the interpolation functions leads to numerical problems due to 
oscillations at the edges of the elements (see Karniadakis and Sherwin (2005)). This undesired effect is more evident as 
the order of the interpolation functions increases. To overcome this, non-equally spaced Gauss-Lobatto-Legendre points 
are used, which are suitable for high-order expansions with no oscillatory effect. Therefore, the selected one-dimensional 
coordinates for Ω�𝑒𝑒 are the roots 𝜉𝜉𝑖𝑖  of the expression 

 ( )( ) ( )'1 1 0PLξ ξ ξ− + =  (16) 

where 𝐿𝐿𝑝𝑝′ (𝜉𝜉) is the derivative of the one-dimensional interpolation functions 𝐿𝐿𝑝𝑝(𝜉𝜉). The selected polynomials of order 
𝑝𝑝 = 𝑚𝑚− 1 are expressed using the p-order Legendre polynomial 𝑃𝑃𝑚𝑚−1 by means of the equation 
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After the discretization of the continuum system in (14), we arrive at a set of nonlinear algebraic equations which 
are solved by the spherical arc-length method with a line search procedure (Zhou and Murray, 1995; Ritto-Correa and 
Camotim, 2008). The computational program was implemented in MATLAB and full integration was used to evaluate the 
variational energy terms.  

4 NUMERICAL RESULTS 

4.1 Preliminary comments 

The results presented here are divided in two parts. In the first section, we aim to verify the validity of our model. 
For this reason, macro and micro beams are evaluated using the Eringen’s nonlocal parameter 𝜇𝜇0 and the power-law 
index 𝑛𝑛, and compared with those available in the literature. Next, novel results involving post-buckling behavior with 
distributed loads are shown. The problems are evaluated using a 16-element mesh and spectral interpolation functions 
of Gauss-Legendre-Lobatto type (with P=4), to avoid the numerical problems explained in the previous section. Finally, 
the shear correction factor required for these exercises is 5/6, for all rectangular sections. 

First we analyze an isotropic simply supported beam to compare the results of our formulation against the linear 
analytical solutions given by Aydogdu (2009a). For this parametric analysis, we considered a Poisson’s ratio of 0.3, an 
elastic modulus of 1GPa, and 1m as the height of the beam, which was subjected to a uniformly distributed load of 1 N/m. In 
Table 1, results for the nondimensional center transverse deflection 𝑢𝑢�3 =  100𝑢𝑢3(𝐸𝐸𝐸𝐸)/(𝑞𝑞(𝑥𝑥1)𝐿𝐿4) are shown, where 𝐸𝐸 is 
the moment of inertia of the rectangular section of the beam, and 𝐿𝐿 its length.  

Table 1.  Comparison of nondimensional center transverse deflection under a uniformly distributed load.  

L/h μ0 
Aydogdu (2009a) 

Present 
EBT TBT RBT LBT ABT 

10 0 1.3130 1.3483 1.3483 1.3487 1.3480 1.2174 
1 1.4487 1.4949 1.4927 1.4954 1.4921 1.3311 

2 1.5844 1.6414 1.6371 1.6421 1.6362 1.4449 
3 1.7201 1.7880 1.7815 1.7888 1.7802 1.5586 
4 1.8558 1.9345 1.9260 1.9355 1.9243 1.6724 

20 0 1.3130 1.3218 1.3218 1.3219 1.3218 1.1930 
1 1.3469 1.3564 1.3566 1.3566 1.3563 1.2215 
2 1.3808 1.3910 1.3909 1.3912 1.3908 1.2499 
3 1.4148 1.4256 1.4254 1.4258 1.4253 1.2783 

4 1.4487 1.4602 1.4599 1.4604 1.4598 1.3068 
50 0 1.3130 1.3144 1.3144 1.3144 1.3144 1.1862 

1 1.3184 1.3199 1.3199 1.3199 1.3199 1.1907 
2 1.3239 1.3253 1.3253 1.3253 1.3253 1.1953 

3 1.3313 1.3307 1.3307 1.3308 1.3308 1.1998 
4 1.3347 1.3362 1.3362 1.3362 1.3362 1.2044 

In Table 1, EBT stands for the Euler-Bernoulli beam theory, TBT for the Timoshenko beam theory, RBT for the Reddy 
Beam Theory (Reddy, 1984), LBT for the Levinson Beam Theory (Levinson, 1981), and ABT for the Aydogdu Beam Theory 
(Aydogdu, 2009b). Good agreement is found against the results provided by Aydogdu (2009a). It is observed that our 
formulation generates smaller deflections, because of the use of 3D constitutive relations. 
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In the following analysis, the geometry and material parameters are as in Figure 1. 

 
Figure 1.  Geometry and material properties of the beam. 

We evaluate a simply supported beam under a uniformly distributed load. The results are shown in Figures 2-4. 
Figure 2 shows the center deflection for different loads. In this figure, the influence of the Poisson ratio is shown. The 
present model allows us to evaluate the effect of this material property, because of the use of the 3D constitutive 
relations stated in section 2. Additionally, our formulation does not exhibit any locking. As it can be seen, the presence 
of Poisson’s ratio reduces the deflections. 
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Figure  2.  Simply supported beams under uniformly distributed loads with Poisson coefficient (Reddy and El-Borgi, 2014). 

 
In Figure 3, the same boundary conditions are evaluated for different values of the nonlocal parameter 𝜇𝜇0 and zero 

as the Poisson modulus. As it is shown, the present model matches with the reference results; as the nonlocal parameter 
increases, the deflections of the beam also increase. To observe the effect of  Poisson’s ratio using the same nonlocal 
parameters, the center deflection is also depicted in Figure 4. It is observed that the Poisson effect makes the beam 
stiffer with lower deflections in comparison with Figure3. 
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Figure  3. Simply supported beams under uniformly distributed loads without Poisson coefficient.  
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Figure  4. Simply supported beam under uniformly distributed load with the effect of Poisson coefficient. 

4.3 Analysis of functionally graded macrobeams 

Next, we study the behavior of an encastred (clamped-pinned) beam with the same geometry as shown in the previous 
section. For this case, the following FGM material properties are considered: 𝐸𝐸1 = 30 × 106 psi and 𝐸𝐸2 = 3 × 106 psi. Figure 5 
shows the center deflection for different values of the power law index. Notice that, in accordance with several authors mentioned 
in the introduction, encastred beam are not affected by the nonlocal parameter because of the limitations of the differential 
model of Eringen when uniformly distributed loads are applied. Because of this, only the influence of the power law index was 
evaluated. Moreover, the Poisson’s ratio was set to zero in order to compare our model against the literature. It can be seen that, 
as the FGM index increases, the deflections also increase and the effective elastic modulus of the beam gets closer to 𝐸𝐸2.    
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Figure  5. Encastred functionally graded beams under uniformly distributed loads. 

On the other hand, when an encastred beam is subjected to a sinusoidal distributed load, the nonlocal parameter does influence 
the deflection, as it can be seen in Figure 6. The reason for this is because of the continuous variation of the load, which can be derived 
in equation 7. Conversely, when a uniform load is applied to a nonlocal encastred beam the effect of the nonlocal parameter is null. 
The figure shows that as the nonlocal parameter increases, the center deflection increases too. Moreover, the present IFSDT model 
shows reduced deflections because of the consideration of 3D constitutive relation, which has been shown previously in Figure 3. 
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Figure  6. Encastred functionally graded beams under sinusoidally distributed loads. 
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4.4 Analysis of functionally graded microbeams 

In the following examples, the geometry and material parameters analyzed are illustrated in Figure 7. The 
mentioned parameters have been extracted from the literature. 

 
Figure  7. Geometry and material properties of FGM microbeam. 

In Figure 8, a simply supported microbeam under sinusoidally distributed load is shown. As before, FGM nonlocal 
parameters increase the center-deflection of the beam. Yet, the effect on microbeams is amplified, especially by the 
nonlocal parameter’s effect. This observation relates with Eringen’s theory on the effect of the neighborhood is greater as 
the element size is reduced. Additionally, as shown previously, the present model exhibits lower deflection, as the Poisson’s 
effect is considered and relates to the shear effect. As a comparison, the FGM local microbeam results (𝜇𝜇0 = 1,𝑛𝑛 = 0) 
indicates a variation of 25.8% between classical and IFSDT models. Also, the FGM nonlocal microbeam results (𝜇𝜇0 =
𝐻𝐻/2,𝑛𝑛 = 1), the variation of 7.69% between classical Timoshenko and IFSDT models.  
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Figure  8. Simply supported functionally graded beam under sinusoidally distributed loads. 

 
Figure 9 shows the results of an encastred microbeam subjected to sinusoidal distributed loads. As the results 

shown, the increase in the nonlocal parameter does increase the displacements as in Figure 8. Again, the results seen in 
Figure 9 show that our formulation cause smaller displacements than the Timoshenko beam. 
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Figure  9. Encastred functionally graded beams under sinusoidally distributed load. 

4.5 Postbuckling analysis of nonlocal FGM beams 

In this section, we show novel results combining postbuckling behavior and FGM nonlocal models. The authors’ 
motivation is related to the small number of studies available in the literature on this topic. These benchmark problems 
are analyzed with both boundary conditions (simply supported and encastred), with various power-law index and 
nonlocal parameters. Some examples have been adapted based on the work of Sze et al. (2004) by considering 
distributed instead of pinching point loads. This is because concentrated forces have no effect on Eringen’s differential 
model. One possible way of overcoming this problem could be to transform the concentrated forces to distributed loads 
by means of the Dirac-Delta function (Wang and Liew, 2007; Civalek and Demir, 2011). However, the application of the 
Dirac-delta function on finite elements models is not efficient, since it requires a large number of integration points to 
accurately describe it. 

The first proposed benchmark is a cantilever beam subjected to distributed axial and transversal loads. This configuration 
will trigger the postbuckling behavior. A proportion of one to a thousand is set between the transversal and axial loads, 
respectively. The geometry and material properties are taken from Soncco et al. (2019), and are shown in Figure 10.   

  
Figure  10. Geometry and material properties for clamped FGM beam - postbuckling analysis. 

In Figure 11, the post-buckling behavior of the nonlocal beam is depicted.  The axial displacement at the free end vs 
the intensity of the distributed axial load is shown. The nonlocal parameter produces lower critical loads in comparison 
with local beams. Moreover, as it can be seen, the stepped buckling behavior changes to a smoother curve as the nonlocal 
parameter increases. Figure 12 shows an increase in the vertical displacement at the free end in the early stages of the 
loading process as the nonlocal parameter increases. This is evident when beams with the same values of the power law 
index are evaluated by only changing the nonlocal parameter. However, after the displacement of the tip gets closer to 
0.4 m, the displacement converges for all the different values of the nonlocal parameter. This could be an indicator that 
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under greater loads the influence of the nonlocal parameter is reduced. It is also observed that the power-law index 
reduces the buckling load of each beam. 
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Figure  11. Tip-displacement 𝑢𝑢1 for clamped FGM beam under uniformly buckling load. 
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Figure  12. Tip-deflection 𝑢𝑢3 for clamped FGM beam under uniformly buckling load. 

The second example is a simply supported beam under uniform axial and transversely distributed loads. These loads, 
as previously mentioned, have a proportional relation to induce the postbuckling behavior on the element. The 
geometrical and material properties are described in Figure 13. 
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Figure  13. Geometry and material properties for simply supported FGM beam. 

The results of the present model can be seen in Figures 14 and 15. This model predicts the postbuckling behavior of 
a simply supported beam, as proposed by Pagani and Carrera (2016). However, some issues arise with this approximation, 
especially when the end node’s axial displacement approaches near L/2, because the finite element solution becomes 
unstable. Even with this limitation, the model can describe the influence of the power-law index and nonlocal parameter 
in the early stages of the load. In Figure 14, the intensity of the axial distributed load against mid-plane displacement 𝑢𝑢1 
is shown. As the nonlocal parameter increases, the transition between the linear and post-buckled instances becomes 
smoother, in contrast with the local model. Regarding the power law index, it is seen that it reduces the critical distributed 
load because the material properties are closer to the metallic constituent, which makes the model more flexible. In 
Figure 15, the intensity of axial distributed load vs. the mid-plane deflection 𝑢𝑢3 is shown and the same effect of the power 
law index and nonlocal modulus is observed.  
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Figure  14. Mid-plane displacement 𝑢𝑢1 for simply supported FGM beam under uniform load. 



Postbuckling analysis of nonlocal functionally graded beams Soncco et al. 

Latin American Journal of Solids and Structures, 2021, 18(07), e400 15/20 

 

0 .0 0 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1 0 0 .1 2 0 .1 4 0 .1 6 0 .1 8 0 .2 0

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

D is p la c e m e n t u 3 (m  )

A
xi

a
l 

d
is

tr
ib

u
te

d
 l

o
a

d
 (

k
N

/m
)

µ o= 5 , n = 0

µ o= 1 , n = 0

µ o= 5 , n = 5

µ o= 0 , n = 5

µ o= 0 , n = 0 µ o= 1 , n = 1

µ o= 0 , n = 1

µ o= 5 , n = 1

 
Figure  15. Mid-plane deflection 𝑢𝑢3 for simply supported FGM beam under uniformly load. 

Finally, the deformed configurations of three different beams are depicted in Figures 16-18. These figures allow us 
to observe the differences between the local and nonlocal model, when the end node of the simply supported beam is 
in the same coordinate. Finally, an aspect of the nonlocal model is the lower distributed load required to perform the 
same deformation configuration as the local model, which implies that the contribution of the nonlocal properties 
reduces its stiffness, which generates more deformation compared to classical models.  

- 0 .1 0 0 .0 0 0 .1 0 0 .2 0 0 .3 0 0 .4 0 0 .5 0

x 1(m )

x
3 (m

)

- 0 . 0 5

- 0 . 1 0

- 0 . 1 5

- 0 . 2

F l =  1 4 . 4 1  k N / m

F n l =  1 1 . 1 2  k N / m

F l =  1 4 . 8 3  k N / m

F n l =  1 2 . 4 9  k N / m

F l =  1 5 . 3 0  k N / m

F n l =  1 3 . 4 3  k N / m

F l =  1 5 . 8 1  k N / m

F n l =  1 4 . 2 9  k N / m

F l =  1 8 . 5 0  k N / m

F n l =  1 8 . 0 9  k N / m

F l =  1 6 . 9 3  k N / m

F n l =  1 5 . 9 0  k N / m

F l =  1 7 . 5 2  k N / m

F n l =  1 6 . 6 9  k N / m

F l =  1 8 . 0 5  k N / m

F n l =  1 7 . 4 2  k N / m

F l =  1 6 . 3 7  k N / m

F n l =  1 5 . 0 9  k N / m L o c a l  ( l)

N o n  L o c a l  (n l)

 

Figure  16. Postbuckling configurations of a simply supported beam under uniform axial load 𝜇𝜇𝑜𝑜 = 5 (𝑛𝑛 = 0) 
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Figure  17. Postbuckling configurations of a simply supported beam under uniform axial load 𝜇𝜇𝑜𝑜 = 5 (𝑛𝑛 = 1) 
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F n l =  8 .9 8  k N / m

 
Figure  18. Postbuckling configurations of a simply supported beam under uniform axial load 𝜇𝜇𝑜𝑜 = 5 (𝑛𝑛 = 5) 

5 CONCLUSIONS 

In this paper, we have presented a post-buckling study of functionally graded nonlocal beams. The formulation was 
based on an improved beam theory (IFSDT) with five independent parameters that account for thickness stretch and 3D 
constitutive relations. A tensor-based finite element model was developed for geometric nonlinear analysis of the 
nonlocal beam. The Eringen’s nonlocal differential formulation was introduced into a finite deformation model. An 
element with high-order Gauss-Lagrange-Lobatto interpolations was used to avoid membrane and shear locking, and the 
nonlinear solution scheme was based on a spherical arc-length method using line searches. 

We evaluated the effect of the power law index in nonlocal functionally graded macrobeams and microbeams and 
validated our results against those found in the literature. We observed excellent agreement, where the present 
formulation showed lower deflections in comparison with classical beam models.  

Finally, we have evaluated the post-buckling behavior of functionally graded nonlocal beams subjected to 
distributed loads. Both a cantilever and simply supported beams are analyzed. In both cases, we found that the nonlocal 
parameter causes a smoother transition between the linear and postbuckling stages of the loading process and that it 
increases the deflections in the early stages of the loading. Additionally, we observed that as the tip displacement of the 
beam got closer to certain value, the effect of the nonlocal parameter is reduced and displacements of different beams 
with the same power law index, but different nonlocal parameter, nearly converged. Ultimately, we showed the 
deformed configurations of a simply supported nonlocal beam and local beam with three different combinations of 
nonlocal modulus and power law index. It was noted that the nonlocal beam requires smaller loads to reach the same 
deformed configurations. 
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It was found that the present model causes a softening effect for simply supported functionally graded beams in 
the postbuckling regime. We believe that research on the integral form of Eringen’s model for the evaluation of this non-
linear phenomenon on functionally graded and isotropic micro-and nano-beams should be pursued, especially as 
experiments and empirical data are being observed in this realm Motz et al. (2008); Yayli (2016). Moreover, the authors 
encourage the study of beams and plates with other nonclassical theories, such as micropolar or micromorphic 
formulations (see Karttunen et al. 2018; Karttunen et al. 2019; Chowdury and Reddy, 2019; and Nampally and Reddy, 
2020), in finite element models. 
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