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Hybrid stress and analytical functions for analysis of thin plates
bending

Abstract

In this paper, two efficient elements for analyzing thin plate bend-
ing are proposed. They are a triangular element (THS) and a
quadrilateral element (QHS), which have 9 and 12 degrees of
freedom, respectively. Formulations of these elements are based on
hybrid variational principle and analytical homogeneous solution
of thin plate equation. Independent fields in hybrid functional are
internal stress and boundary displacement field. The internal
stress field has been calculated using analytical homogeneous solu-
tion and boundary field is related to the nodal degree of freedoms
by the boundary interpolation functions. To calculate these func-
tions, the edges of element are assumed to behave like an Euler—
Bernoulli beam. The high accuracy and efficiency of the proposed
elements are demonstrated in the severe tests. .
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1 INTRODUCTION

Plate bending structures are widely used in Civil, Mechanic, and Aerospace Engineering. Finite
element method is used to solve many complicated engineering problems; among them, one is ana-
lyzing plate bending based on Kirchhoff’s theory. In this approach, shear deformations of the struc-
ture are ignored (Zienkiewicz, 1977). Up to date, many elements have been suggested to solve thin
plates bending. Some of them are formulated based on Ritz’s method. In this theory, the efficiency
of the element is increased according to its degree of freedom, and the related field polynomials, as
well. In other words, increasing the degree of freedom creates complicated elements, which are not
so good for analysis because of its soaring expenses. During 1965-1975, researchers tried to create
high accurate complicated elements. As a result, they created many different elements to solve
plates bending (Argyris et al., 1968; Torres et al., 1986; Bath et al., 1989; Martins, 1997; Rezaiee-
Pajand and Akhtary, 1998; Dhananjaya et al., 2010). The idea of multi-field formulation, such as
hybrid and mixed ones, emerged and developed widely during these years, (Ghali and Chieslar,
1986; Pian, 1995).

Hybrid functional is established by defining one or more master fields on the element interfaces.
This approach provides a powerful tool for creating the high-performance elements. In fact, hybrid
elements use several independent fields. The main advantage of this kind of formulation is getting
rid of the continuity conditions at the boundaries (Felippa, 2009). The first hybrid stress element
for plane problems was proposed by Pian in 1964. In this element, the boundary displacement field
and internal stress function were selected as master fields (Pian, 1964). Using hybrid stress func-
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tional for analyzing plates bending is similar to the plane problems. Many studies have been made
on solving plates bending by means of hybrid formulation. By using Hellinger-Reissner functional,
Duan and his colleagues created a five node element in order to analyze plates bending with shear
effects (Duan, 1999). Furthermore, Miranda and Ubertini, used hybrid stress functional to provide a
simple element for analyzing bending plates based on Reissner-Mindlin theory (Miranda and Uber-
tini, 2006). Spilker and Munir formulated a hybrid stress element for thin bending plates, too
(Spilker and Munir, 1980). In another kind of hybrid functional, known as hybrid Trefftz functional,
displacement field is used instead of the stress internal field (Choo et al., 2010; Rezaiee-Pajand and
Karkon, 2012). In the following lines, the superiorities of finite element method, based on the stress
hybrid formulation, compared with the other schemes are given (Felippa, 2009):
1. Relaxed continuity requirements: Due to use of the boundary displacement field in finite ele-
ment formulation, this condition has been entered in hybrid functional.
2. Better displacement solution: Employing the boundary displacement field increases the accu-
racy of structural nodal displacement.

In this study, a quadrilateral element (QHS) and triangular element (THS), which have 12 and 9
degrees of freedom, are suggested to analyze thin plates bending. The hybrid functional is written as
the total internal energy and interface energy. For internal one, the total potential energy is used.
Independent master fields are the internal stress field and the boundary displacement of the ele-
ment, respectively. The analytical solution of thin plate differential equation is used for internal
stress field. On the other hand, the edges of the element are assumed to behave according to Euler—
Bernoulli beam theory. Based on these hypotheses, its deflection and torsion fields are calculated.
By depicting these fields in the general coordinates, the boundary fields at the edges of element are
produced. Using these boundary fields, the powerful triangular and quadrilateral elements are for-
mulated. Accuracy and efficiency of these elements will be proven by implementing numerical anal-
ysis of several different problems.

2 HYBRID STRESS FUNCTIONAL

Based on hybrid variational, the total energy of element can be written in two parts: internal and
interface energy. In hybrid stress formulation, the internal functional element is written according to
its internal stress field. Moreover, its interface energy can be calculated based on its boundary dis-
placement. The total complementary potential energy (TCPE) is used for inside functional. Fur-
thermore, by using of boundary displacement, the interface functional can be introduced. The
(TCPE) principle for linear elasto-statics is as follows

I, I:O'ij ] = _%J.v 0;;Cy 0y dV +J.Fu Uo;n; dS =-U; +W, (1)

On the other hand, the interface energy of element can be written in the below shape

Ty I:Gij , di] = L_ d,oyn; dS (2)

Therefore, hybrid stress-displacement functional has the coming formula (Felippa, 2009)

I ':O'ij ,szHC + 7, 2—%_[/ 0;Cija 0y dV +.|Ardi0ijnj ds -w, (3)
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In these relations, s;; is the internal stress of element; Cy, is the flexibility matrix, which is the
inverse of elasticity matrix; n; is cosine directions' vector; Sih;is boundary tractions; d;is the

boundary displacement field, and W, represent the potential of applied loads. The latter is calcu-

lated by multiplying nodal forces to related displacements. By making stationary of the hybrid
functional (3) with respect to the stress and displacement master fields, the stiffness matrix of the
proposed elements can be found.

By using the relation (3), finite element formulation for the suggested elements can be achieved.
Usually in the plates bending, moment equations are used instead of the real stress. Therefore,
equation (3) for the thin plates will change to succeeding form

I [M,u]=-Ug +W, :-%L MTCM dV +[ TTuds -w, (4)

In this formula, M is the internal moment vector of element, and T is the vector of boundary
tractions on the element's edges. F and v are Young’s modulus and Poisson’s ratio, respectively.
Furthermore, t is the thickness of plate. It should be added that the elastic flexibility matrix C for
thin plate bending problems has the subsequent formula

12 1 —v 0
C= E -V 1 0 (5)
0 0 2(1+v)

In this matrix, F, v and t are Young’s modulus, Poisson’s ratio and thickness of the plate, re-
spectively.

3 THIN PLATES BENDING FORMULATION

The differential equation of thin plate bending has the succeeding form (Timoshenko and Krieger,
1959)

D
4 4 4
Viw= zx\:v +2 afz(;lvyz + (Zy\iv (7
Et®
D= —
12(1-7) ®)

Here, P(x,y) is the applied load acting on the plate, and D is the stiffness of plate. According to
the figure (1), the boundary traction{T } boundary forces and the bending moments around the

axis of z and y, as follows
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Figure 1: Boundary forces along an arbitrary direction.

The shears and moments are determined by the coming equations
’w - o'w

M, =-D V—
o2 oy
o’w o°w

M, =-D tV—;
y? OX

v, :_Dlv[ ]
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In order to find the deflection function, the analytical solution of homogeneous differential equa-
tion is used. If the equationN4WC = 0 in its polar coordinates is solved, the later homogenous an-
swer will be obtained (Herrera, 1984)

W, = i[anr” cosng +b,r"sinng +c,r"* cos(n —1)9+dnr”*1sin(n—1)9] (13)
n=0
— c Zb n Zd n
w, nZ_(;{Re[(anﬂ SE: }+Im[(cn+r ) }} (14)

By assuming r? = x? + y? and z = x + iy , the deflection function, w; , will be in the following

shapes

The first eleven terms of the expression can be found by utilizing k = 0,,2. As a result, the
succeeding solutions are obtained

w, =0 w, = x> +xy° w, =x* —y*
W = X2+ y? W, = X2y +y° W, = 22Xy + 2xy?
k=04 "' y; k=1l T XYTY o k=207 yrexy (16)
W, = 2Xy w, = X —3xy’ Wy, =X —6x7y* +y*
w, = x> —y° w, = 3x%y —y° w,, = 4x°y —4xy®

It is obvious that in homogeneous solution, there is no advantage over x and y. In other words,
the element will be rotational invariant. So the internal moments and boundary tractions can be
calculated by this way

dw,  ow,
OX 2 v oy’
MX
M =M, L=Dx3 v W W L e al a7
M i | OX oy
Y oW .
1— i
( V)axay
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0 0
nx a—X(VZ\NI )+ny g(vz\Nl )

" n ow, ow,. ) .. | 0w, B
T=¢{-M, t=-Dx> _nx(axzwayzj n, (1 V)axay {a} =[¥]{a} (8)

K (a?wi oW, oA,
—ny 1% +

ox? oy’ OX Oy

J-n.a-0)

In these relations, m is the number of deflection functions. The minimum of terms which are
selected from homogeneous solution depends on the element’s degrees of freedom. Number of neces-
sary terms (and not adequate) to prevent numerical instability and the rank deficiency of the stiff-
ness matrix is acquired through the next condition (Qin, 2005)

m?3 n-r (19)

In this relationship n and r, are numbers of nodal degrees of freedom of the element under con-
sideration, and discarded rigid body motion terms, respectively. It should be mentioned, by using
the modes related to the rigid body motion leads to spurious strain energy in the element, which
they should be removed. The number of rigid body motion modes in the plate is equal to three (r =
3). This includes one transitive and two rotational modes in the direction of z and y. Taking these
points into consideration; the formula (19) for the plate changes to the following form

m * NDOF - 3 (20)

4 BOUNDARY DISPLACEMENT FIELD

To achieve boundary interpolation functions, the beam in Figure (2-1) is assumed to be at the ele-
ment boundary. This beam has two nodes with three degrees of freedom, (w,q,,q, ) at each node.
As it is illustrated in Figure (2-2), the nodal rotational degrees of freedom are projected onto the
beam’s longitudinal direction and also perpendicular to it. In other words, the beam has two rota-
tional degrees of freedom, ¢, , and q,, , plus two torsional degrees of freedom, q, and g, . In

addition, there are two deflections, w, , and w,. To utilize these degrees of freedom, a cubically

1 0
varying displacement field, and also a linear field for torsion are required to be defined.
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'/1—’ X Os1 O

(1) (2)

Figure 2: Degrees of freedom on element sides.

The next interpolation functions of the nodal displacements of the beam are found in this way

N, =(2-3s+5°) /4

N, =(1-s-5"+5°)l,, /8 o
N, =(2+3s-5°) /4

N, =(-1-s+5"+5°)l,, /8

By assuming a linear interpolation for torsion field, the shape functions for the torsional rotation
have the coming form

22
= (1+5))2 .
The boundary fields Wo, §0and §0 are calculated by the following relations

W

o in
W=[N, N, N, N,] (23)

W,

6.,
én :@.é:i.%:i(s _1)Wl+l(352 _23 1)
os 0 l, os 2l, 4

(24)

3 1
+——(1-5")w, +=(3s* +25-1)0,,
2l,, 4
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1 1
&= 5(1‘ )4 * 5(“ $)%; (25)
On the other hand, the nodal rotations are projected in the x - y plane, as follows

0, =0, cosa+0,sina
) =12 (26)
0; =0, cosa—06,;sina

Furthermore, the boundary field's %’and %’, will have the subsequent equations

6, =0 cosa—0,sina

5 ~ (27)
0,=0,sina+6, cosa
Figure 3: Position of axes on the element side.
Also according to figure (3) it can be written
CoSa = Yy /1y (28)
sina ==Xy /1,

Boundary displacement field is determined by multiplying shape functions in the nodal dis-
placements, as follows

a} =[N ]{d} (29)
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Wl
~ x1
w N11 N12 N13 N14 N15 N16 N

- v1
=[Ny Ny Ny Ny Ny Ny W (30)

éy N31 st N33 N34 N35 N36 ~2

X2

0y2

Entries of the interpolation matrix are given in the appendix 1.

5 FINITE ELEMENT FORMULATION

If the formulas (5), (17), (18) and (30) are input in hybrid functional (4), the following equation is
produced

g =——{a}' [Fl{a} +{a} [6]{D}-{f} {D} (81)

The matrix [G] and [F] can be obtained in the next shapes

[F]=],t[e] [c][e]de (32)
[G]=[.t[*¥] [N]dr (33)

In this Formula ¢ is the thickness of the element; {D} and {f }are respectively displacement

vector and nodal forces. The determination procedure of the nodal equivalent load for QHS and
THS elements, are the same as conventional MZC element and BCIZ one, respectively. By making
stationary the functional (31) with respect to the stress and displacement degrees of freedom, the
succeeding equality will be resulted

T =[P lia+[elip} -0 @

%=[Gr{a}—{f}=o )

According to equation (34), the vector of unknown displacement function will be found as follows

ta}=[F]"[c]{D} (36)

By substituting this equation into relation (35), the stiffness matrix for proposed element can be
established in the below form
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=

{Dj={f} (37)
[K]=[G] [F][C] (38)

6 NUMERICAL TESTS

In this section, the efficiency of authors' elements, THS and QHS, is evaluated by using several
numerical tests. In all of these benchmark problems, Poison's ratio is assumed to be equal to 0.3.
For a comprehensive comparative study, some elements from other researchers are used, which are
presented in the following lines

1. Discrete Kirchhoff triangular element (DKT) (Batoz et al., 1980).
2. Discrete Mindlin triangle plate element (DKMT) (Katili, 1993a).
3. The triangular element according to Mindlin’s theory (RDKTM) (Chen and Cheung, 2001).

4. The triangular element with C! condition and integration by three-point rule (T6/3) (Zien-
kiewicz and Lefebvre, 1988).

5.6-node C° triangular plate bending element (AST6) (Sze et al., 1997).

6. Seven nodes triangle element of second order and assumed strain (MITC7) (Bathe et al.,
1989).

7. The triangular element according to Reissner-Mindlin’s theory (ARS-T9) (Soh et al., 1999).

8. Discrete Kirchhoff quadrilateral element (DKQ) (Batoz and Tahar, 1981).

9. Discrete Mindlin quadrilateral plate element (DKMQ) (Katili, 1993b).

10. 4-node quadrilateral element with 12 DOF (DRMQ) (Sofuoglu and Gedikli, 2007).

11. Unconventional quadrilateral thin plate bending element with 12 DOFs (REC4) (Zienkie-
wicz and Cheung, 1964).

12. Quadrilateral element with reduced selective integration (Q4-R) (Malkus and Hughes,
1978).

13. The quadrilateral element with reduced integration (Q4BL) (Zienkiewicz et al., 1993).

14. Bathe and Dvorkin’s quadrilateral element (MITC4) (Bathe and Dvorkin, 1985).

15. 4-node quadrilateral element based on Reissner-Mindlin theory (ARS-Q12) (Soh et al.,
2001).

16. Quadrilateral incompatible element according to Kirchhoff’s theory (ACM) (Tocher and
Kapur, 1965).

6.1 Effect of the number of analytical functions

The best number of analytical functions for the displacement field is calculated by numerical test-
ing. To find this, a simply supported square plate under uniform distributed load ¢ is considered.
The integer number n in THS-n and QHS-n indicates the number of the used functions. Deflection

coefficient of the center for the plate with the side a, (WC / (qa4 / 100D )), is inserted in Table (1). Ac-
cording to these responses, the minimum number of analytical functions, which satisfies the condi-
tion of equation (20), yields the highest accuracy results. Considering the outcomes, the triangular

element THS with 7 functions and quadrilateral element QHS with 11 functions have the highest
level of accuracy for the plate analysis.
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Table 1: Comparative accuracy test for varying analytical terms in simply supported plate.

Mesh THS-7 THS-11 THS-15 QHS-11 QHS-15
2%2 03974 03556 03449 _ 03906 03708
Ax4 04020 03956 03920 04052  0.3985
6x6 0.4047 04017 04017 04061  0.4030
8x8 0.4055  0.4037 04037 04062  0.4045

10x10 0.4058  0.4047 04047  0.4062  0.4051

Exact 0.4062

(Timoshenko and Krieger, 1959)

6.2 Square plate analysis

In this section, a square clamped and a simply supported plate subjected to a concentrated central
load P and also uniform load ¢, are analyzed. In each case, central deflection coefficient of the plate
with side a, is found. The results for simply supported square plate under distributed loading,

(Wc / (qa4 /lOOD )), are given in Table (2). In addition, Table (3) shows the numerical outcomes for

clamped square plate under distributed loading. Furthermore, Table (4) and (5) are shown the re-
sults,(wC / (Pa2 / D )), for simply supported and clamped square plate under concentrated load, re-

spectively. For each table, percentage of error is exposed in relevant figures. These figures indicate
the efficiency and high accuracy of the proposed elements.

It is worth emphasizing that the suggested elements are insensitive to mesh distortion. For eval-
uating the sensitivity of the presented elements to the mesh distortion, a clamped and simply sup-
ported square plate under distributed load of Figure(8) is analyzed in three different meshes, A, B
and C. The comparisons of the numerical results with those obtained by other authors are also
demonstrated in Tables (6) to (7). According to these tables, the proposed formulations lead to the
more accurate response than the other ones.

Table 2: Central deflections for simply supported square plate under uniform load

Mesh DKT DKQ MITC4 DKMT DKMQ ARSQ12 THS  QHS
2%2 04056 04045 03969 04161 03785  0.4045 04019 0.4052
Ax4 0.4065 04060 0.4041 04056 0.4046  0.4060  0.4055 0.4062
8x8 04064 04062 04057 04065 04060  0.4062 04061 0.4062

16x16 04062 0.4062 04061 04064 04062  0.4062  0.4062 0.4062

Exact 0.4062

(Timoshenko and Krieger, 1959)
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Figure 4: Error of central displacement for simply supported square plate under uniform load.
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Figure 5: Error of central displacement for clamped square plate under uniform load.

Table 3: Central deflections for clamped square plate under uniform load

Mesh Q4-R  DKT DKQ MITC4 ARS-Q12 DRMQ THS QHS
2x2 0.1214 0.1547 0.1461 0.1211 0.1460 0.1460 0.1148 0.1239
4x4 0.1253 0.1347 0.1319 0.1251 0.1319 0.1319 0.1237 0.1260
8x8 0.1264 0.1287 0.1279  0.1262 0.1279 0.1279  0.1259 0.1265
16x16 0.1265 0.1274 0.1271  0.1264 0.1269 - 0.1264 0.1265
Exact
(Timoshenko and Krieger, 1959) 0.1265
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Table 4: Central deflections for simply supported square plate under concentrated load

Mesh DKT DKQ REC4 ACM T6/3 THS QHS
2x2 0.0117 0.0127 0.0138 0.0123 0.0079 0.0110 0.0114
4x4 0.0116 0.0119 0.0123 0.0118 0.0100 0.0114 0.0116
8x8 0.0116 0.0118 0.0118 0.0117 0.0111 0.0116 0.0116
Exact
(Timoshenko and Krieger, 1959) 0.116
24
+ -~
12 4 . .
+ ERERE
\ R L R —
L —— =4
5
Ih-12 i ——DKT
—o0— DKQ
- -+- -REC4
24 —#— ACM
T6/3
—o—THS
26 ——QHS
0 2 4 6 8 10

Mesh NxN

Figure 6: Error of central displacement for simply supported square plate under concentrated load.

Table 5: Central deflections for simply supported square plate under concentrated load

Mesh RECA DKQ ACM _THS _ QHS
%2 0.6134 0.6410 0.6135 0.4865 0.5362
4x4 0.5808 0.5805 0.5803 0.5397 0.5553
8x8 0.5710 0.5757 0.5673 0.5595 0.5599

Exact 0.5612

Timoshenko and Krieger, 1959
ger,

16
8 B
X
S
oo
S
]
- 4= = REC4
-8 1 —O0— DKQ
—F— ACM
—O—THS
—— QHS
-16 9
0 2 8 10

4 6
Mesh NxN
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Figure 7: Error of central displacement for clamped square plate under concentrated load.

/ .L { @ t i
_ = — — 3
031 3 —
. 031 b3
i 16
—F T X i {
~ ! 021 “‘r‘ 031 J 16 ! V3 !
Mesh A. 4x4 Mesh B. 4x4 Mesh C. 4x4
Figure 8: Typical meshes (4x4) for a quarter of square plate.
Table 6: Central deflections for simply supported square plate under uniform load
Mesh type Element type 2x2 4x4 8x8 16x16 Exaclt(ff;n;js{l;;;o and
ARS-T9 0.3676 0.3973 .04041 0.4057
A ARS-Q12 0.4045 0.4060 0.4062 0.4062
THS 0.4019 0.4055 0.4061 0.4062
QHS 0.4052 0.4062 0.4062 0.4062
ARS-T9 0.3771 0.3994 0.4046 0.4058
B ARS-Q12 0.4218 0.4102 0.4072 0.4065 0.4062
THS 0.4010 0.4053 0.4060 0.4062
QHS .04037 0.4061 0.4062 0.4062
ARS-T9 0.3802 0.4003 0.4048 0.4059
o ARS-Q12 0.4324 0.4131 0.4080 0.4067
THS 0.3993 0.4048 0.4059 0.4062
QHS 0.4020 0.4059 0.4062 0.4062
Table 7: Central deflections for clamped square plate under uniform load
Mesh type Element type 2x2 4x4 8x8 16x16 Exaclt(l(f;u;ﬂl(j;;o and
ARS-T9 0.1214 0.1258 0.1264 0.1265
A ARS-Q12 0.1460 0.1319 0.1279 0.1269
THS 0.1148 0.1237 0.1259 0.1264
QHS 0.1239 0.1260 0.1265 0.1265
ARS-T9 0.1361 0.1291 0.1272 0.1267
B ARS-Q12 0.1601 0.1354 0.1288 0.1271 0.1265
THS 0.1141 0.1229 0.1256 0.1263
QHS 0.1235 0.1259 0.1264 0.1265
ARS-T9 0.1443 0.1311 0.1276 0.1268
C ARS-Q12 0.1700 0.1383 0.1295 0.1273
THS 0.1163 0.1231 0.1256 0.1263
QHS 0.1238 0.1260 0.1264 0.1265

6.3 Circular plate

In this test, the effects of two distinct loads consist of; a uniform distributed load ¢, and a concen-
trated load P acting at the plate center, are investigated. The plate radius is a, and it is solved for
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both simply and clamped supports with mesh subdivisions shown in Figure (9). Table (8) shows the
central deflection coefficient of simply supported circular plate under distributed load

(WC / (qa4 / 10D )) The outcomes of clamped supported structure under distributed load are written
in Table (9). Based on these numerical values, the suggested formulations reach the exact answer
with a high speed of convergence. Numerical results of the circular plate with simply and clamped
supported under concentrated load (WC / (Pa2 /1OD )), are inserted in Tables (10) and (11), respec-
tively. The proposed elements yield good accuracy for the circular plate subjected to concentrated

load. Error percentages for the elements with different meshes are drawn in the Figures (10), (11),
(12) and (13).

Figure 9: Different mesh-types of circular plate.

4
2 -
0 T T T
S 2
j-
o —— DKT
54 —0—DKQ
—o— MITC4
. —— DKMQ
—o— RDKTM
. —0— ARS-Q12
—O—THS
0 —/— QHS
0 2 8 10

4 6
Number of radius division

Figure 10: Error of central displacement of simply supported circular plate under uniform distributed load.
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Table 8: Central deflection of simply supported circular plate under uniform distributed load

Number of radius . ARS- .
division DKT DKQ MITC4 DKMQ RDKTM Q12 THS QHS

2 0.6298 0.6096 0.5826 0.6098 0.6300 0.6098 0.6545 0.6518

4 0.6298 0.6302 0.6243 0.6306 0.6300 0.6305 0.6417 0.6411

8 0.6351 0.6352 0.6338 0.6354 0.6354 0.6366 0.6382 0.6381

Exact (Timoshenko and Krieg-

er, 1959) 0.6370
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Figure 11: Error of central displacement of clamped circular plate under uniform distributed load.

Table 9: Central deflection in clamped circular plate under uniform distributed load

Number of radius ARS-

division DKT DKQ MITC4 DKMT DKMQ Q12 THS QHS

2 0.1643 0.1718 0.1448  0.1646  0.1720 0.1720 0.1269 0.1241

4 0.1592 0.1607 0.1549  0.1596  0.1612 0.1610 0.1488  0.1482

8 0.1571 0.1574 0.1560  0.1573  0.1575 0.1574 0.1544 0.1543
Exact (Timoshenko and Krieger, .
1959) 0.1562

Table 10: Central deflection of simply supported circular plate under concentrated load

Number of radius

divisi T6/3 MITC7 AST6 THS QHS
1V1S101
2 0.1974 0.4984 0.5004 0.5167 0.5120
4 0.4707 0.5030 0.5035 0.5081 0.5060
8 0.4934 0.5045 0.5045 0.5060 0.5050
Exact (Timoshenko and Krieger, 1959) 0.5050
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Figure 12: Error of central displacement of simply supported circular plate under concentrated load.

Table 11: Central deflection of clamped circular plate under concentrated load

Number of radius MITC4  T6/3  AST6  MITC7  THS  QHS

division
2 0.1555 0.0078 0.1929 0.1949 0.1666 0.1721
4 0.1676 0.1120 0.1925 0.1973 0.1776 0.1919
8 0.1765 0.1784 0.1951 0.1985 0.1956 0.1986
Exact (Timoshenko and Krieger, 1959) 0.1989
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Figure 13: Error of central displacement of clamped circular plate under concentrated load.
6.4 Razzaque skew plate

Figure (14) shows a 60°skew plate bending, which was originally studied by Razzaque in 1973

(Razzaque, 1973). This structure has simply supported on two opposite edges and free on the other

two edges, and it is subjected to a uniformly distributed load. Each side of this plate has length of

a. The exact solution was obtained by Razzaque with 16X 16 finite difference mesh, as follows
w=0.007945qa’ /D
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da
Figure 14: Razzaque skew plate with mesh (4x4).

This structure has been studied with different meshes. Table (12) shows values of the deflection
coefficient at the center of Razzaque plates (WC / (qa4 / 100D )) for the suggested elements. For compar-
ison, other researchers' answers have been recorded in this Table. Figure (15) demonstrates the

error percentage of deflection at the center of Razzaque plate for different elements. In this difficult
test, a high accuracy of the authors' formulation is quite clear.
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Figure 15: Error of central deflection of Razzaque plate under uniform load.

Table 12: Central deflections of Razzaque skew plate under uniform load

Mesh DKT DKQ MITC4 DKMQ RDKTM ARS-Q12 THS QHS
2x2 0.7427 0.6667  0.3856  0.6667 0.7427 0.6667 0.7224  0.7640
4x4 0.7527 0.7696 0.6723  0.7695 0.7527 0.7691 0.7700 0.7875
6x6 0.7742 0.7830 0.7357  0.7829 0.7742 0.7829 0.7808  0.7890
8%8 0.7822 0.7877 0.7592  0.7876 0.7822 0.7876 0.7848 0.7898
12x12 0.7881 0.7909 0.7765  0.7908 0.7881 0.7909 0.7901  0.7905
(Razzaque, 1973) 0.7945

6.5 Morley's skew plate

One of the severe problems in the plate analysis is Morley's skew plate. Figure (16) shows this
structure. Morley used polar co-ordinates and a least-squares solution procedure to solve an acute
skew plate subject to a uniformly distributed load. It is worth emphasizing that this problem poses
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severe difficulties for numerical methods, since there is a singularity in the bending moments at the
obtuse corner. Morley found the following value for the exact central deflection of this problem
(Morley, 1963)

w, =0.000408 ¢a’/D

/.\,300 >

Figure 16: Morley's skew plate with mesh (4x4).

This structure will be solved by utilizing the proposed elements. The answers of other researchers
are used for better judgment. Table (13) shows the deflection coefficient (Wc / (qa4 / 1000D )) for error

percentage of the central displacement is illustrated in Figure (17). This figure reveals that authors'
formulations have a high accuracy in Morley's plate analysis.
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Figure 17: Error of central deflection for Morley's plate under uniform load.

Table 13: Central deflections for Morley's skew plate under uniform load

Mesh DKT DK@ MITC4 DKMQ Q4BL RDKTM ARS-QI12 THS QHS

4x4 0.453 0.760  0.358 0.760 0.512 0.453 0.756 0.423 0.422

8x8 0.424 0.507  0.343 0.507 0.439 0.424 0.506 0.408 0.409

16x16 0.419 0.443 0.343 0.443 0.429 0.419 0.442 0.408 0.408

32x32 0.417 0.423 0.362 0.425 0.423 0.417 0.424 0.408 0.408
(Morley, 1963) 0.408
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6.6 Cantilever skew plate

Figure (18) shows the skew cantilever plate. In this structure, the skew cantilever plate subjected to
the uniform loading with angles 20, 40 and 60 are analyzed. For the mentioned cause, none of other
researchers' elements can converge to the near exact answer. Table (14) to (16) shows the tip de-

flection coefficient,(wC / (qa4 / Et3)) Jfor different meshes. These outcomes clearly demonstrate that

authors' elements have a high convergence rate in all angles.

Table 14: Deflection at the tip of the skew cantilever plate for (f =20°)

Deflection at the point A Deflection at the point B
Mesh
Q4BL ARS-Ql2 THS QHS Q4BL ARS-Q12 THS QHS
22 - - 1.2699 1.3519 - - 1.0097 1.0275
4x4 1.3914 1.4728 1.3735 1.4026 1.0310 1.0603 1.0300 1.0362
8x8 1.4206 1.4376 1.4082 1.4177 1.0421 1.0459 1.0358 1.0380
16x16 1.4287 1.4302 1.4156 1.4204 1.0444 1.0434 1.0370 1.0382
(Reissner and Stein, 1951) 1.4327 1.0101
Table 15: Deflection at the tip of the skew cantilever plate for (f =40°)
Deflection at the point A Deflection at the point B
Mesh
Q4BL ARS-Q12  THS QHS Q4BL ARS-Q12  THS QHS
2x2 - - 0.9632 1.0328 - - 0.4894  0.5032
4x4 1.1049 1.2446 1.0870 1.1160 0.5111 0.5569  0.5241 0.5284
88 1.1558 1.1906 1.1422  1.1539 0.5379 0.5454 0.5360 0.5376
16x16 1.1780 1.1818 1.1573  1.1640 0.5457  0.5443  0.5387 0.5397
(Reissner and Stein, 1951) 0.9894 0.5242
Table 16: Deflection at the tip of the skew cantilever plate for (f =60°)
Deflection at the point A Deflection at the point B
Mesh
Q4BL ARS-Ql2 THS QHS Q4BL ARS-Ql2 THS QHS
22 - - 0.6236  0.6920 - - 0.1110 0.1154
4x4 0.7631 0.8956  0.7263 0.7478 0.1212  0.1648  0.1357 0.1382
8x8 0.8056  0.8412  0.7882 0.7968 0.1439  0.1519  0.1466 0.1474
16x16 0.8359  0.8370  0.8103 0.8144 0.1532  0.1525  0.1501 0.1504
(Reissner and Stein, 1951) 0.3276 0.1365

B a A

AAYAYAY,
Y S vavey,
i/ / a

T/ TT /T T TT 77

Figure 18: Skew cantilever plate.
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7 CONCLUSIONS

In this study, two efficient elements were suggested for solving thin plates bending. The triangular
THS and quadrilateral QHS elements have 9 and 12 degrees of freedom, respectively. To formulate
these elements, the hybrid stress functional was used. Independent fields in this solution are internal
stress and boundary displacement functions, respectively. The internal stress field was obtained by
derivation of analytical solutions of the homogeneous part of thin plates governing differential equa-
tion. Furthermore, the boundary displacement field is achieved by assuming the element edges be-
have as a beam. In fact, the beam interpolation functions have been utilized in the presented formu-
lation. On the other hand, the optimal number of analytical functions, which provides the highest
accuracy for proposed elements, was calculated from numerical investigations. It is worth emphasiz-
ing that using the optimal number of analytical functions, eliminates the zero energy modes and
always guarantees the stiffness matrix with full rank. Finally, several numerical tests were done to
assess the efficiency of suggested elements. From comprehensive comparison studies of the authors'
elements with the famous ones, it was clearly revealed that the presented formulations could offer a
significant efficiency and accuracy. It should be added that the accuracy and convergence rate of
the element QHS is higher than the element THS.
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APPENDIX |

In the following, the entries of the interpolation matrix (30) for the boundary displacement field are
introduced:
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(2- 35+ 33)/4

Ny

Ny = (1- s- s2+5%) y21/8

Ny =-(1- s- s+ 53)x21/8

Ny = (2+3- s )/

N15:( -s+s?+s? y21/8

N =-(-1-s+s2+5° x21/8

Nop = 3(' 1+ 52)3/21/2|21

Ny = (-1+ s)(‘ x5 + (1+ 3s)y§1)/4|221
Nog = - 3(- 1+ 8% XYy /415

Noy = - 3((' 1+ 52))y21/2|/221 (A1)
Ny = (1+ S)(zxgl + (- 1+ 35)3/31)/4'221
No = - 3(' 1+ 52)X21y21/4|221

Ng = -3(-1+ SZ)X21/2|221

Nj = - 3(‘ 1+ 32))(21)’21/‘"221

Ngg = (- 1+ 5)((1+ 35 )x3, - 2y221)/4|221
Ng = 3(- 1+ 82)x, /22

Ng = - 3(- 1+ 52)x21y21/4I22l

Ng = (1+ 5)((' 1+ 35 )x3 + Zygl)/4|221

APPENDIX Il

In order to evaluate the matrix[F|, numerical integration technique is used. For this purpose, the
Cartesian coordinates, x and y, are written in terms of the natural coordinatesx andh . Therefore,

the next relationships are held

4

x=> N (&m)x, y=2N(&n)y (A-2)

i=1 i=1

The interpolation functions, I\Ti , for the proposed element in natural coordinates, have the com-

ing form:

=%(1+ &) (1+nm;) 1=1,2,34 (A-3)

)is the nodal coordinate. Thus, the matrix [F| can be calculated as follows

Fl=[ [ h[s( 577 [C][S(&.7)]]9|d&dn (A-4)

In this relation (X,, i
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2

In the last equation,|J |, is the determinant of Jacobian matrix. This matrix has the following

formulas

o oy [N N
o 0 i | 5 !
[3]- & 08 -y 4

% ﬂ i=1 %X @
877 (3?7 677 i 877

(A-5)

It should be added that the numbers of Gauss's point for calculating the equation (A-4) are 4x4.
APPENDIX Il

The matrix {G} is evaluated on the borders of element. For simplicity, the natural coordinate, s, is
used. The subsequent equations can be written for individual edgeij

(s+1)

X=X, +(X = %) > y:yj+(yj_yi)(s+1)

2

(G, ]= jh[s [N]dr_ “[(s)] [A] [Ny (s)]as (A-7)

I
, dI'= %ds (A-6)

After calculating the matrix {G} for each side, the matrix {G} for the element is obtained.
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