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A nonlocal formulation applied to ductile damage
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Abstract

This paper presents an approach to predict ductile fracture of real-life structures. It
relies on Rousselier’s constitutive model to describe plastic void growth, a specific finite
strain formulation that preserves energetic properties and a nonlocal theory to deal with
strain localisation. It is applied to compute the fracture of a notched specimen.

1 Introduction

This work aims at predicting the ductile fracture of real-life steel structures, from the inception
of damaged zones to their ultimate propagation. Three main points have to be studied to
achieve this purpose: the theory of finite transformations, the constitutive law to model plastic
void growth and the nonlocal formulation to control the localisation phenomenon. We aim at
building the whole modelling strategy around a principle of energy minimisation which gives rise
to interesting properties ranging from the physics up to numerical solutions. It leads us to apply
a new finite strain theory, Rousselier’s law and a nonlocal formulation based on the gradient of
internal variables. Finally, the numerical simulation of a notched specimen demonstrates the
potency of the combination of the three components.

2 Finite strain formulation

2.1 A Maximal dissipation-based finite strain theory

To gain the energetic properties mentioned in the introduction, the plastic finite strain the-
ory has to rely on the principle of maximal dissipation. Besides, we restrict our attention to
isotropic constitutive laws under isothermal loading conditions. In this context, a theory has
been proposed in [3] that fulfils the demand. It is inspired by [5] and it relies actually on three
assumptions.
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Notation

A driving forces
a internal variables
c nonlocal parameter (N)
D global dissipation potential (J)
D yield surface parameter (dimensionless)
D eulerian strain rate (s−1)
Dp plastic strain rate (s−1)
e elastic strain (dimensionless)
F deformation (dimensionless)
f porosity (dimensionless)
f0 initial porosity (dimensionless)
F global free energy (J)
Fe elastic deformation (dimensionless)
Fp plastic deformation (dimensionless)
G yield function (MPa)
Gp plastic strain (dimensionless)
IK indicator function (dimensionless)
lc characteristic length (mm)
p hardening variable (dimensionless)
R(p) hardening stress function (MPa)
s driving force associated to e (MPa)
Φ local free energy (MPa)
Φel elastic energy (MPa)
Φst (hardening) stored energy (MPa)
λ plastic multiplier (dimensionless)
Ω body domain
∂Ω domain boundary
Ψ local dissipation potential (MPa)
σy yield stress (MPa)
σ1 yield surface parameter (MPa)

Superscript
E elastic trial

Multiplicative split of the total deformation. The deformation F is split in a plastic and
an elastic part through the introduction of a relaxed configuration (where the stress is zero),
leading to the classical definition of the plastic deformation Fp and the elastic deformation Fe:
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F = FeFp (1)

Partition of the free energy. The free energy Φ is split in two terms: the stored energy
Φst which depends on the set of hardening internal variables a and the elastic energy Φel that
depends only on the elastic deformation. Actually, the latter can be expressed without loss of
generality as a function of an eulerian strain measure e since the elasticity is isotropic. The
partition reads:

Φ (e, a) = Φel (e) + Φst (a) with e =
1
2

(
Id− Fe FeT

)
(2)

A straightforward calculation shows that it results in the following expression for the intrinsic
dissipation

Diss = (τ − s (Id− 2 e)) ·D− 1
2
s ·

(
FĠp FT

)
+ A ȧ

with Gp =
def

(
FpT

Fp
)−1

s =
def
− ∂Φ

∂e
A =

def
− ∂Φ

∂a

(3)

where τ and D denote respectively Kirchhoff’s stress and the Eulerian strain rate. We can
notice that a plastic strain measure GP and driving forces s and A associated to e and a are
naturally defined in the process. As the dissipation is required to be zero for elastic evolutions,
the following stress - strain relation is obtained:

τ = s (Id− 2e) (4)

Definition of the yield surface. The yield surface is defined by G (s, A) = 0. It should
be noticed that the convex yield function G depends of the driving forces s and A defined in
Eq.(3). This is a difference with other theories where the stress measure which is involved in
the definition of the yield surface is either Cauchy’s stress or Kirchhoff’s stress. However, for
small elastic strain e, the driving force s is close to Kirchhoff’s stress, thanks to Eq.(4). Now,
applying the principle of maximal dissipation with respect to the yield surface G (s, A) = 0 leads
to the evolution laws:





− 1
2 FĠp FT = λ ∂G

∂s

ṗ = λ
∂G

∂A

λ ≥ 0 G ≤ 0 λG = 0

(5)
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2.2 Temporal integration: minimisation of an energy

The temporal integration relies on the classical procedure proposed in [6] when making use of
Euler’s backward scheme: first, compute the elastic trial (incremental elasticity without updating
the internal variables GP and a) then correct the internal variables if the threshold is crossed
(correction phase). More precisely, for a given time-step, we denote qE , q and ∆Eq = q − qE

the elastic trial of a quantity q (explicitly computed), its value at the end of the time-step and
its plastic correction. Then, the temporal integration of the flow rules and the yield condition
Eq.5 results in the following non linear system for the correction phase:





s = − ∂Φ
∂e

(e, a)

A = − ∂Φ
∂a

(e, a)





∆Ee = λ
∂G

∂s
(s, A)

∆Ea = λ
∂G

∂A
(s, A)

λ ≥ 0 G (s, A) ≤ 0 λG (s, A) = 0

(6)

The closeness with the temporal integration for small strain plasticity is obvious: the speci-
ficities of the finite transformation are confined in the elastic trial and the final computation
of Cauchy’s stress. That’s why the solution of this non linear system admits a variational
characterisation, in the same way as small strain generalised standard materials:

∆Ee, ∆Ea are solutions of:
min

∆Ee, ∆Ea

[
Φ

(
eE + ∆Ee, pE + ∆Ep

)
+ Ψ

(
∆Ee,∆Ep

)] (7)

where the dissipation potential Ψ is defined through a Legendre transform of the yield function
G:

Ψ (Dp, ȧ) =
def.

max
s,A

G(s, A)≤0

(s ·Dp + A ȧ) (8)

3 Application to Rousselier’s law

In our opinion, the essential feature of Rousselier’s law [4] to model the physics of plastic void
growth lies in its yield criterion which constraints as well von Mises stress τeq as the stress trace:

τeq + σ1 D f exp
(

trτ

3σ1

)
− σy −R (p) ≤ 0 (9)

An isotropic hardening effect is introduced through the hardening variable p, while the shape
of the yield surface also evolves with the porosity f . σy, σ1 and D are material parameters; R (p)
denotes the hardening curve. Finally, the plastic flow is given by a normality rule with respect
to the yield surface. Therefore, for a given porosity, Rousselier’s law may be cast into the finite
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strain theory of sub-section 2.1 with the following (usual) free energy and yield function (where
Kirchhoff’s stress has been replaced by the driving force s):

Φ (e, p) =
1
2

[
K (tre)2 + 2µ eD · eD

]

︸ ︷︷ ︸
Φel(e)

+

p∫

0

R (s) ds

︸ ︷︷ ︸
Φst(p)

(10)

G (s, A ; f) = seq + σ1 D f exp
(

trs
3σ1

)
+ A− σy (11)

If needed, the dissipation potential is expressed through a Legendre transform of G, where
IK denotes the indicator function of a convex K (+∞ outside K, 0 inside):

Ψ (Dp, ṗ ; f) = σyṗ + σ1trDp

(
ln

trDp

D f ṗ
− 1

)

+ IIR+ (trDp) + IIR+

(
ṗ− 2

3Dp
eq

) (12)

The question of the evolution of the porosity has not yet been raised. In fact, the micro-
structural interpretation relies generally on an assumption of incompressibility for the matrix,
including its elastic part. In that case, the porosity is expressed as a function of the macroscopic
deformation and the initial porosity f0:

ḟ = (1− f) trD ⇔ detF =
1− f0

1− f
(13)

Therefore, the porosity is known when integrating the internal variables through Eq.(6).
However, the elastic compressibility has to be taken into account to avoid locking phenomena in
hydrostatic compression. Most authors then introduce an incremental expression based on the
hydrostatic plastic flow (measured in the relaxed configuration):

ḟ = (1− f) trDp (14)

Therefore, this evolution equation should be coupled to those which govern the evolution of
the internal variables, thus breaking the energetic property Eq.(7). But we think that Eq.(14) is
only another approximation of the real porosity evolution, not better than Eq.(13). That’s why
we keep the interesting part of each of them: the porosity is considered set when integrating the
internal variables (leading to an uncoupled treatment), and it is finally up-dated through the
following expression which involves the eulerian hydrostatic plastic flow:

ḟ = (1− f) tr

(
−1

2
FĠ

p
FT

)
= (1− f) tr

(
FeDpFeT

)
(15)
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4 Nonlocal formulation

4.1 Variational principle

To control the high spatial variations of the mechanical fields resulting from localisation, a
gradient law is derived from Rousselier’s local law. We choose to introduce the gradient of the
hardening variable p, which proves sufficient to stabilise the localisation of all the mechanical
fields, including the porosity. On the basis of [1], the gradient is introduced through a quadratic
term at the structural level, resulting in new definitions of a global free energy and a global
dissipation potential which depend on the field of state variables:

F (e, p) =
∫

Ω

Φ(e(x), p(x)) +
1
2
c∇p(x) · ∇p(x) dx

D (Dp, ṗ) =
∫

Ω

Ψ(Dp(x), ṗ(x)) dx

(16)

where Ω denotes the body domain in the initial configuration and c a new material parameter.
The minimisation property Eq.(7) remains applicable, even though it is now expressed in function
spaces since the variables are fields and no more pointwise values. It results in the following
minimisation problem, while the evolution of the porosity which has been treated as a parameter
is still up-dated through Eq.(15):

∆Ee, ∆Ep are solutions of:
min

∆Ee, ∆Ep

[
F

(
eE + ∆Ee, pE + ∆Ep

)
+ D

(
∆Ee, ∆Ep

)] (17)

4.2 Pointwise Interpretation

The characterisation of the minimum Eq.(17) is given by the following variational expression,
where the subgradient ∂D has to be introduced instead of the usual derivative because the
dissipation potential is not differentiable:

−
(

∂F

∂e
,

∂F

∂p

)
∈ ∂D

(
∆Ee, ∆Ep

)

with
〈

∂F

∂p

∣∣∣∣ δp

〉
=

∫

∂Ω

c∇p · n δp +
∫

Ω

(
∂Φ
∂p

− c ∆p

)
δp

(18)

with ∂Ω the boundary of the body domain and n its outer normal. Actually, the only nonlocal
term results from the variation of the global free energy with respect to the hardening variable,
since the dissipation potential depends only on local contributions. As shown in Eq.(18), an
integration by parts expresses the nonlocality in terms of a surface integral that should be zero
(boundary condition), as well as any interface integral, and a bulk integral in which appear a
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corrected local driving force: the laplacian of the hardening variable appears in its expression.
Therefore, a pointwise characterisation of the minimum Eq.(17) simply reads, outside of the
singular point of the yield surface:

{
s = − K (tre) Id− 2µ eD

A = − R (p) + c∆p

{
∆Ee = λ∂G

∂s

(
s, A ; fE

)
∆Ep = λ

λ ≥ 0 G
(
s, A ; fE

) ≤ 0 λG
(
s, A ; fE

)
= 0

(19)

In addition, the boundary condition and the natural interface condition across any surface
I of normal ν are:

∇p · n = 0 on ∂Ω and [c∇p · ν]I = 0 (20)

Moreover, the quadratic term in ∇p hints at seeking the field p in the function space H1 (Ω),
so that the essential interface condition is:

[p]I = 0 (21)

5 Numerical application

To analyse the characteristics of such a gradient law, a numerical simulation is carried out.
A notched specimen is submitted to tension, see Figure 1 for the geometry, the loading and
the material parameters. The computations benefit from the axial and the plane symmetries.
They are led with two meshes, one with 0.25 mm element size in the localisation zone (coarse
mesh), and the other with 0.1 mm element size. The minimisation of Eq.(17) is handled by the
algorithm presented in [2], which has already proven its robustness in the context of gradient
brittle damage simulations.

The numerical results are presented in terms of the global force – displacement response
(Figure 2 and the distribution of the porosity during the propagation of a damaged zone (Fig-
ure 3). They are also compared to purely local computations. The global response shows the
good independence of the results with respect to the mesh refinement, on the contrary of the
local model. This is highlighted when observing the distribution of the porosity: the localisation
band spreads over several finite elements (Gauss point visualisation to avoid any artefact related
to a graphical extrapolation) whose width is not set by the mesh refinement, on the contrary
again of the local computations.

These results seem promising regarding the potencies of this gradient law. Other computa-
tions are at stage to evaluate the physics of this model through comparisons with experimental
results.
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Figure 1: Geometry, loading and material parameters
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Figure 2: Force – displacement response
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(cont.)

Figure 3: Porosity field (zoom) corresponding to an applied force of 40000 N
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Figure 3: Porosity field (zoom) corresponding to an applied force of 40000 N (continued)
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