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Abstract 
Damage detection in structures and systems is essential for monitoring parameters that can affect their 
integrity. This paper evaluates the efficiency of four damage indices (DIs) commonly used with temporal wave 
signals. The root mean square deviation, mean absolute percentage deviation, covariance, and correlation 
coefficient deviation DIs are presented, and a normalization is then proposed. An Euler-Bernoulli beam is used 
as a guided wave modelled with the spectral element method and excited by a toneburst signal. It includes 
the theoretical background of the throw-off beam, undamaged and cracked beam spectral elements. The DIs 
for a single crack position and a map varying crack depth and positions are calculated with deterministic and 
random temporal signal responses derived from noise addition. Results showed that DIs could identify and 
quantify the damage conditioned to the pulse location point and the influence of noise in the estimation, 
which leads in an analysis comparable to practical applications. 
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1 INTRODUCTION 

Damage detection and structure health monitoring (SHM) are an extensive subject in the literature. The motivation 
to detect and monitor damages at the earliest stage helps the prognosis and decision process regarding the maintenance 
of the systems (Balageas et al., 2010). Non-destructive techniques are widely used and directly affect typical issues 
regarding the design of new structures, the repair and monitoring of existing ones. This approach in health monitoring 
has large acceptance in the engineering communities. Mainly because the SHM techniques provide orientation on 
structural descriptions or material behaviour for the mathematical models, regarding this feature, with repeated tests 
over time, the methods indicate the appearance of discontinuities (damage) occurring during the structure’s lifetime. 

Many non-destructive damage detection methods have been developed and improved over the years and these are 
meant to monitor and evaluate the structural health in different engineering sectors. These methods render a more 
effective time-based maintenance (Sohn et al., 2003; Gopalakrishnan et al., 2011). Among the damage detection 
techniques, the elastic-wave-based considers the wave scattering phenomena and mode conversion caused by damage 
to monitor the structure. Therefore, the quantitative evolution of damage can be achieved by examining the scattered 
wave signals. This approach is cost-effective, fast, repeatable, sensitive to small damage, and it can detect surface and 
internal damage. It can also perform the mechanical waves propagation over significant distances with high sensitivity 
to discontinuities near the wave path. In their book, Su and Ye (2009) presented a comprehensive description of damage 
identification techniques using Lamb waves from fundamental theory to engineering applications. Mitra and 
Gopalakrishnan (2016), and Ostachowicz et al. (2012) addressed a review of the theory, applications of damage 
modelling, and guided wave propagation in SHM. Giurgiutiu (2014) published a complete book with theory and 
application about SHM methods using piezoelectric wafer active sensors (PWAS). The author provided the readers with 
a comprehensive overview of piezoelectric material and sensors, vibration analysis, elastic and guided waves, 
applications of the PWAS, signal processing, and pattern recognition. 

The spectral element method (SEM) was formulated from the analytical solution of the wave displacement equation 
written in the frequency domain (Doyle, 1997; Lee, 2009). Due to the SEM being the exact solution of differential 
equations governing the problem, it became a suitable technique to model structural damage detection. In general, 
changes in either global or local structural properties can be associated with an imperfection or damage. This behaviour 
can be explained by the presence of a crack in the structure introducing local flexibility that affects its response. It also 
generates more evident changes in the elastic waves that propagate in the structure. Elastic wave propagation in a 
damaged structure at medium and high-frequency bands using SEM was presented by Krawczuk et al. (2002), Krawczuk 
(2002), Palacz and Krawczuk (2002), Ostachowicz (2008), Machado et al. (2019), Dutkiewicz and Machado (2019), and 
Zhang et al. (2018). Palacz (2018) published an overview of spectral methods to model and use wave propagation in 
damage detection problems. Ng et al. (2011), Flynn et al. (2012), Machado and Santos (2015), Machado et al. (2017), and 
Machado et al. (2018) proposed a structural damage detection including random parameters and stochastic models. 

Damage is the change made to a system that adversely affects its current or future performance (Farrar and 
Worden, 2006). This concept of damage involves a comparison between two different states of a system. Several 
approaches have been developed to define and extract signal characteristics in other areas in turn identify structural 
damage, and among these techniques, damage indices are highlighted. Damage indices or damage index (DI), are the 
most straightforward damage detection algorithm that consists of comparing two entire signals and returning a scalar 
value, which indicates a level of damage present in the structure. The development of DIs and damage identification 
algorithms remains an open area for the practical application of structural monitoring (Ho and Ewins, 2000; Giurgiutiu, 
2014). Su and Ye (2009) enumerated characteristics of signals from Lamb waves that can be used in the development of 
DIs including propagation time, root mean square value (Rizzo and Lanza, 2006; Ghaffarzadeh et al., 2016), signal 
variance (Rizzo and Lanza, 2006), peak-to-peak amplitude (Su and Ye, 2009), strain energy attenuation rate 
(Sharma et al., 2006; Apetre et al., 2008), local impedance (Lee and Staszewski, 2003), among others. The comparison of 
the DIs method to perform damage detection has complications related to scale and amplitudes or the inexistence of 
magnitude, which renders it difficult to evaluate. Numerous DIs were proposed by using the wave propagation in time-
domain. The root mean square deviation (RMSD) or also called Euclidean norm (Giurgiutiu and Rogers, 1998; Park et al., 
2006; Su and Ye, 2009; DeLuca et al., 2020), the mean absolute percentage deviation (MAPD) (Tseng and Naidu, 2002), 
covariance (COV) (Monaco et al., 2000; Tseng and Naidu, 2002), and the correlation coefficient deviation (CCD) (Tung 
and Yen, 2005; Giurgiutiu, 2014; Stawiarski and Muc, 2019) are the most used DIs. 

In this paper, the SEM is used to model an Euler-Bernoulli beam, with and without damage, connected to a throw-
off beam spectral element. It therefore aims to analyse and compare the damage indices RMSD, MAPD, COV and CCD 
related to the crack location, depth, and over the influence of noise. For reliable comparison over the DIs, according to 
efficiency and accuracy, we proposed the normalised DIs, which vary between zero and a unity, where zero means no 
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damage. The temporal wave propagation signals obtained from the numerical model are used to calculate the DIs and 
perform the damage prognosis. Aside from the punctual crack position and DIs estimation, we presented a DI map 
analysis covering crack position over the beam length and depth of cracks varying from 0 to 30% of damage. The map 
provides a detailed behaviour of each DI under parametric variations combined with noise. 

2 DAMAGE INDICES 

The DIs are formulated by comparing a reference signal, usually derived from the system considered undamaged or 
with a healthy signature, to the one provided by the system under the presence of discontinuing or damage. In this 
aspect, various approaches have been developed to define and extract signal features in different domains to identify 
structural damage based on an indicator that describes the damage. The DIs are associated with the estimation 
techniques for damage quantification and reveals important information about the structural health condition. The most 
common feature extraction used for response-signal processing falls into the second category, which is the damage 
assessment. The variance and the RMS are notable features for statistical analysis, signal magnitude, or energy 
estimation. In structural monitoring, they are also used as a DI. The DIs based on the RMS value, 𝐷𝐷𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅, and on the 
variance, 𝐷𝐷𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, are defined as (Su and Ye, 2009) 

𝐷𝐷𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ 𝑥𝑥𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁

,  (1) 

𝐷𝐷𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 1
𝑁𝑁−1

∑ (𝑥𝑥𝑉𝑉 − �̅�𝑥)2𝑁𝑁
𝑉𝑉=1 ,  (2) 

where �̅�𝑥 represents the medium magnitude of the discrete wave time signal with 𝑁𝑁 sample points and 𝑥𝑥𝑉𝑉  (𝑖𝑖 =  1,2, . . .𝑁𝑁) 
are the elements of the spectrum. 𝐷𝐷𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 is a damage index associated with the signal energy, while 𝐷𝐷𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  indicates 
its variability compared to the average magnitude value. However, the 𝐷𝐷𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐷𝐷𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  indices only evaluate one 
signal at a time, which does not allow a comparison between intact and damaged states of the structure. The RMSD is 
the combination of both (Su and Ye, 2009) and it can perform a comparison of two signals described as 

𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷 = �∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

2𝑁𝑁
𝑖𝑖=1

,  (3) 

where 𝑦𝑦𝑉𝑉 (𝑖𝑖 =  1,2, . . .𝑁𝑁) is the response captured under another state of the structure, for instance, when damage is 
present. The RMSD index is the most appropriate damage index to observe two states of a structure because it includes 
the signal energy combined with the variance between them (Tseng and Naidu, 2002). Another DI called MAPD also 
correlates two signals (𝑥𝑥𝑉𝑉  and 𝑦𝑦𝑉𝑉) and evaluates the average deviations at each point of the response defined by (Tseng 
and Naidu, 2002) 

𝑅𝑅𝑀𝑀𝑀𝑀𝐷𝐷 = 1
𝑁𝑁
∑ �𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
�𝑁𝑁

𝑉𝑉=1 ,  (4) 

The covariance evaluates the weighted product of the deviations from their respective average. It determines the 
relationship between two signals by multiplying corresponding elements and returning a scalar. Mathematically, the 
covariance is estimated as (Giurgiutiu, 2014) 

𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁−1

∑ (𝑦𝑦𝑉𝑉 − 𝑦𝑦�)(𝑥𝑥𝑉𝑉 − �̅�𝑥)𝑁𝑁
𝑉𝑉=1 ,  (5) 

by correlating the response signals of the undamaged and damaged structure, a damage metric can be characterised 
based on the deviation between the signature. In this case, the covariance is a DI representing the relationship between 
the compared spectra (Giurgiutiu, 2014). An issue that should be checked is the signal time lag to secure similar time 
instant. Therefore, pre-signal processing may be considered before application of the DIs. There are many techniques to 
deal with this problem, e.g. the envelope of the signal (Su and Ye, 2009; Al-Oudatallah et al., 2017), signal denoising via 
discrete wavelet transform (Giurgiutiu, 2014) or similar signal processing procedure. The DI related to the CCD measures 
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the linear relationship between the two signals that are similar to the COV. The difference is that the CCD is normalised 
to be independent of the unit of measurement (Tung and Yen, 2005). It can be described as (Giurgiutiu, 2014) 

𝐶𝐶𝐶𝐶𝐷𝐷 =  1 −
� (𝑦𝑦𝑖𝑖−𝑦𝑦)(𝑥𝑥𝑖𝑖−𝑥𝑥)𝑁𝑁

𝑖𝑖=1

�� (𝑦𝑦𝑖𝑖−𝑦𝑦)2𝑁𝑁
𝑖𝑖=1 � (𝑥𝑥𝑖𝑖−𝑥𝑥)2𝑁𝑁

𝑖𝑖=1

,  (6) 

The DIs are used to detect the damage as well as its growth. Because each DI has a unique scale, a direct comparison 
among them would not be accurate. This paper treated the normalised DIs by the maximum value of the indexes related 
to the crack depth. The values vary between zero to unity, when zero means no damage and up to unity indicates the 
presence of cracks or anomalies. Therefore, a vector containing the 𝑅𝑅𝑅𝑅𝑅𝑅D values estimated for different crack depth (𝛼𝛼) 
is collected in a vector and normalised by the max value, as expressed in 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = [𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝛼𝛼1,𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝛼𝛼2, … ,𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝛼𝛼𝑉𝑉] , 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛 =  1
𝑛𝑛𝑉𝑉𝑥𝑥{𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹}

 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹.  (7) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝛼𝛼𝑉𝑉 is a scalar number calculated with an specific crack death (𝛼𝛼𝛼𝛼 = 1,2, . . . ,𝛼𝛼). A similar procedure was 
applied for the MAPD, where 𝑹𝑹𝑴𝑴𝑴𝑴𝑹𝑹 = [𝑅𝑅𝑀𝑀𝑀𝑀𝐷𝐷𝛼𝛼1,𝑅𝑅𝑀𝑀𝑀𝑀𝐷𝐷𝛼𝛼2, … ,𝑅𝑅𝑀𝑀𝑀𝑀𝐷𝐷𝛼𝛼𝑉𝑉] is the vector containing the DI estimated for 
𝛼𝛼𝑖𝑖 cracks depth. The normalised 𝑹𝑹𝑴𝑴𝑴𝑴𝑹𝑹𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛 will be 

𝑹𝑹𝑴𝑴𝑴𝑴𝑹𝑹𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛 =  1
𝑛𝑛𝑉𝑉𝑥𝑥{𝑹𝑹𝑴𝑴𝑴𝑴𝑹𝑹}

𝑹𝑹𝑴𝑴𝑴𝑴𝑹𝑹.  (8) 

Likewise, 𝑪𝑪𝑪𝑪𝑪𝑪 = [𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼1,𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼2, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑉𝑉] is a vector containing the DI of each crack depth calculated with 
Equation (5). For normalised 𝑪𝑪𝑪𝑪𝑪𝑪 it has 

𝑪𝑪𝑪𝑪𝑪𝑪𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛 =  1
𝑛𝑛𝑉𝑉𝑥𝑥{𝑪𝑪𝑪𝑪𝑪𝑪}

𝑪𝑪𝑪𝑪𝑪𝑪.  (9) 

and the normalised 𝑪𝑪𝑪𝑪𝑹𝑹𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛 is obtained from the vector 𝑪𝑪𝑪𝑪𝑹𝑹 = [𝐶𝐶𝐶𝐶𝐷𝐷𝛼𝛼1,𝐶𝐶𝐶𝐶𝐷𝐷𝛼𝛼2, … ,𝐶𝐶𝐶𝐶𝐷𝐷𝛼𝛼𝑉𝑉] divided by its 
maximum value as 

𝑪𝑪𝑪𝑪𝑹𝑹𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛 =  1
𝑛𝑛𝑉𝑉𝑥𝑥{𝑪𝑪𝑪𝑪𝑹𝑹}

𝑪𝑪𝑪𝑪𝑹𝑹.  (10) 

3 SPECTRAL ELEMENT METHOD 

In dynamic system analysis and SHM, it is crucial to have an efficient and economical numerical technique. Finite 
Element Method (FEM) is one of the most common computational methods employed in several scientific areas. 
However, in medium and high-frequency wave propagation problems, this method demands very high computational 
costs. Narayanan and Beskos (1978) first proposed the SEM, further improved and named SEM by Doyle (1997) and Lee 
(2009). SEM is a frequency-domain formulation, and the element interpolation function is the exact solution of the wave 
equation. This characteristic and the spectral domain make SEM more suitable to solve the crack problem. The advantage 
of SEM is the reduced number of elements required to model the system when compared to other computational 
methods, as demonstrated in Figure 1. 

 
Figure 1 Representation: (a) Physical structure; (b) Spectral element model. 
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SEM is similar in style to the FEM written in the frequency domain, and the element interpolation function is the 
exact analytical solution of the differential equation, which implies a high accuracy of the system approximation. Based 
on this latter aspect, the number of elements required for a spectral model will coincide with the number of structural 
discontinuities. Aside from the low computation cost, the effectiveness in dealing with frequency-domain issues in the 
non-reflecting boundary conditions of the infinite or semi-infinite-domain problems are advantages of this method (Lee, 
2009). Nonetheless, the exact wave solutions are not available for certain types of structure. In this case, the application 
of SEM becomes infeasible and other techniques, such as the Wave Finite Element method (WFEM) or FEM, are 
necessary. 

3.1 Beam spectral element 

The beam illustrated in Figure 2 is assumed to be slender with transversal and rotational nodal displacement, shear 
and momentum nodal forces. By neglecting shear deformations, the differential equation of movement in its spectral 
form is written as (Doyle,1997) 

𝑛𝑛4𝑣𝑣�
𝑛𝑛𝑥𝑥4

− 𝛽𝛽4𝑣𝑣� = 0,  (11) 

with the homogeneous solution given by 

𝑣𝑣�(𝑥𝑥) = a1𝑒𝑒−𝑉𝑉𝑖𝑖𝑥𝑥 + a2𝑒𝑒−𝑖𝑖𝑥𝑥 + a3𝑒𝑒−𝑉𝑉𝑖𝑖(𝐿𝐿−𝑥𝑥) + a4𝑒𝑒−𝑖𝑖(𝐿𝐿−𝑥𝑥)  =  𝐞𝐞(𝑥𝑥,𝜔𝜔)𝐚𝐚, (12) 

where 

𝐞𝐞(𝑥𝑥,𝜔𝜔) = �𝑒𝑒−𝑉𝑉𝑖𝑖𝑥𝑥, 𝑒𝑒−𝑖𝑖𝑥𝑥, 𝑒𝑒−𝑉𝑉𝑖𝑖(𝐿𝐿−𝑥𝑥), 𝑒𝑒−𝑖𝑖(𝐿𝐿−𝑥𝑥)�, 

𝐚𝐚 = [a1, a2, a3, a4]𝑇𝑇 , 

where 𝐚𝐚 is the vector of arbitrary constants that will be determined to satisfy the associated boundary conditions (Lee, 
2009), 𝐿𝐿 is the beam length and 𝑘𝑘 the wavenumbers given by 

𝛽𝛽2 ≡ �𝜔𝜔2𝜌𝜌𝑅𝑅
𝐸𝐸𝐸𝐸

,  𝑘𝑘 = ±𝛽𝛽 𝑜𝑜𝑜𝑜 ± 𝑖𝑖𝛽𝛽, (13) 

where 𝜔𝜔 = (2𝜋𝜋 f) is the circular frequency, f is the ordinary frequency, 𝐸𝐸 is Young’s modulus, 𝑅𝑅 is the cross-section area, 
𝜌𝜌 is the density, 𝐼𝐼 is the moment of inertia, and 𝑖𝑖 = √−1. By using a complex Young’s modulus, 𝐸𝐸𝑉𝑉 = 𝐸𝐸(1 + 𝑖𝑖𝑖𝑖), internal 
structural damping is introduced where 𝑖𝑖 is the hysteretic structural loss factor. Figure 2 illustrates a two-node healthy 
beam spectral element model with two degrees of freedom (dof) per node. The nodal displacements and forces are 
represented by 𝑣𝑣�1, 𝑣𝑣�2, 𝜙𝜙�1, 𝜙𝜙�2, and 𝐶𝐶�1, 𝐶𝐶�2, 𝑅𝑅�1, 𝑅𝑅�2, respectively. 

 
Figure 2 Two nodes beam spectral element. 

The spectral nodal displacements of the beam related with the displacement field as at node 1 (𝑥𝑥 = 0) and at 
node 2 (𝑥𝑥 = 𝐿𝐿) gives 
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𝒅𝒅 =

⎩
⎨

⎧
𝑣𝑣�1
𝜙𝜙�1
𝑣𝑣�2
𝜙𝜙�2⎭
⎬

⎫
=

⎩
⎨

⎧
𝑣𝑣�(0)
𝑣𝑣�′(0)
𝑣𝑣�(𝐿𝐿)
𝑣𝑣�′(𝐿𝐿)⎭

⎬

⎫
=

⎩
⎨

⎧
𝐞𝐞(0,𝜔𝜔)
𝐞𝐞′(0,𝜔𝜔)
𝐞𝐞(𝐿𝐿,𝜔𝜔)
𝐞𝐞′(𝐿𝐿,𝜔𝜔)⎭

⎬

⎫
𝐚𝐚 =  𝑯𝑯𝑩𝑩(𝜔𝜔) 𝐚𝐚,  (14) 

where 𝐚𝐚 = 𝑯𝑯𝑩𝑩(𝜔𝜔)−1𝒅𝒅, and 

𝑯𝑯𝑩𝑩(𝜔𝜔) = �
1 1 𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿 𝑒𝑒−𝑖𝑖𝐿𝐿
−𝑖𝑖𝑘𝑘 −𝑘𝑘 𝑖𝑖𝑘𝑘𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿 𝑘𝑘𝑒𝑒−𝑖𝑖𝐿𝐿
𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿 𝑒𝑒−𝑖𝑖𝐿𝐿 1 1

−𝑖𝑖𝑘𝑘𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿 −𝑘𝑘𝑒𝑒−𝑖𝑖𝐿𝐿 𝑖𝑖𝑘𝑘 𝑘𝑘

�. (15) 

The frequency-dependent displacement within an element is interpolated from the nodal displacement vector 𝒅𝒅, 
by eliminating the constant vector 𝐚𝐚 for the relation 𝐚𝐚 = 𝑯𝑯𝑩𝑩(𝜔𝜔)−1𝒅𝒅, and it is expressed as 

𝑣𝑣�(x) = 𝐠𝐠(𝑥𝑥,𝜔𝜔)𝒅𝒅 =  𝐞𝐞(𝑥𝑥,𝜔𝜔)𝑯𝑯𝐵𝐵
−1(𝜔𝜔)𝒅𝒅 . (16) 

where the interpolation function is 𝐠𝐠(𝑥𝑥,𝜔𝜔) =  𝐞𝐞(𝑥𝑥,𝜔𝜔)𝑯𝑯𝐵𝐵
−1(𝜔𝜔). Shear forces and bending moments defined for the beam 

are related to the defined forces and moments in a spectral nodal form as 

𝒇𝒇 =

⎩
⎪
⎨

⎪
⎧𝐶𝐶�1
𝑅𝑅�1
𝐶𝐶�2
𝑅𝑅�2⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧−𝐶𝐶�(0)
−𝑅𝑅�(0)
𝐶𝐶�(𝐿𝐿)
𝑅𝑅�(𝐿𝐿) ⎭

⎪
⎬

⎪
⎫

=

⎩
⎨

⎧
−𝐸𝐸𝐼𝐼𝑣𝑣�′′′(0)
−𝐸𝐸𝐼𝐼𝑣𝑣�′′(0)
𝐸𝐸𝐼𝐼𝑣𝑣�′′′(𝐿𝐿)
𝐸𝐸𝐼𝐼𝑣𝑣�′′(𝐿𝐿) ⎭

⎬

⎫
=

⎩
⎨

⎧
𝐞𝐞′′′(0,𝜔𝜔)
𝐞𝐞′′(0,𝜔𝜔)
𝐞𝐞′′′(𝐿𝐿,𝜔𝜔)
𝐞𝐞′′(𝐿𝐿,𝜔𝜔)⎭

⎬

⎫
𝐚𝐚, (17) 

whereby applying boundary conditions provides 

𝒇𝒇(𝜔𝜔) = 𝐸𝐸𝐼𝐼 �
−𝑖𝑖𝑘𝑘3 𝑘𝑘3 𝑖𝑖𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿𝑘𝑘3 −𝑒𝑒−𝑖𝑖𝐿𝐿𝑘𝑘3
−𝑘𝑘2 𝑘𝑘2 −𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿𝑘𝑘2 −𝑒𝑒−𝑖𝑖𝐿𝐿𝑘𝑘2

𝑖𝑖𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿𝑘𝑘3 −𝑒𝑒−𝑖𝑖𝐿𝐿𝑘𝑘3 −𝑖𝑖𝑘𝑘3 𝑘𝑘3
−𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿𝑘𝑘2 𝑒𝑒−𝑖𝑖𝐿𝐿𝑘𝑘2 −𝑘𝑘2 𝑘𝑘2

� 𝐚𝐚 =  𝑮𝑮(𝜔𝜔)𝐚𝐚. (18) 

By replacing the 𝐚𝐚 = 𝑯𝑯𝑩𝑩(𝜔𝜔)−1𝒅𝒅 in Equation (14), we relate the nodal forces to the nodal displacement 

𝒇𝒇 = 𝑮𝑮(𝜔𝜔)𝑯𝑯𝐵𝐵
−1(𝜔𝜔)𝒅𝒅 = 𝑹𝑹𝐵𝐵(𝜔𝜔)𝒅𝒅, (19) 

where 𝐒𝐒B(ω) =  𝐆𝐆(ω)𝐇𝐇B
−1(ω) is the dynamic stiffness matrix of the Euler-Bernoulli beam spectral element. 

3.2 Semi-infinite or throw-off beam spectral element 

The semi-infinite or throw-off beam spectral element is a particular case to an intact beam where node 2 tends to 
infinity as represented in Figure 3. 

 
Figure 3 Throw-off beam spectral element. 



Damage indices evaluation for one-dimensional guided wave-based structural health monitoring Lucas S. Barreto et al. 

Latin American Journal of Solids and Structures, 2021, 18(2), e354 7/17 

The theory of the throw-off beam spectral element is similar to the beam spectral element theory when the spectral 
dynamic stiffness matrix is (Doyle,1997) 

𝑹𝑹𝑡𝑡(𝜔𝜔) = 𝐸𝐸𝐸𝐸
𝐿𝐿3
�
(𝑖𝑖 − 1)𝑘𝑘3 𝑖𝑖𝑘𝑘2

𝑖𝑖𝑘𝑘2 (𝑖𝑖 − 1)𝑘𝑘3
�. (20) 

3.3 Cracked beam spectral element 

The beam spectral element with a transversal and non-propagating crack (Krawczuk, 2002) is illustrated in Figure 4. 
The element contains two nodes with two degrees of freedom per node, where 𝐿𝐿 is the beam length, 𝐿𝐿1 is the crack 
position from node 1, and ′𝑎𝑎′ is the crack depth related to the cross-section high. The crack is modelled by dimensionless 
local flexibility represented by 𝜃𝜃, which is calculated by Castigliano’s theorem and the laws of fracture mechanics. 

 
Figure 4 Cracked beam spectral element. 

The solution applied to this element is divided into two parts, the left 𝑣𝑣�𝑛𝑛(𝑥𝑥) and the right 𝑣𝑣�𝑉𝑉(𝑥𝑥) side crack. 
Therefore, the nodal displacements are 

𝑣𝑣�𝑛𝑛(𝑥𝑥) = a1𝑒𝑒−𝑉𝑉(𝑖𝑖𝑥𝑥) + a2𝑒𝑒−(𝑖𝑖𝑥𝑥) + a3𝑒𝑒−𝑉𝑉𝑖𝑖(𝐿𝐿1−𝑥𝑥) + a4𝑒𝑒−𝑖𝑖(𝐿𝐿1−𝑥𝑥) [0 ≤ 𝑥𝑥 ≤ 𝐿𝐿1], (21) 

𝑣𝑣�𝑉𝑉(𝑥𝑥) = a5𝑒𝑒−𝑉𝑉𝑖𝑖(𝐿𝐿1+𝑥𝑥) + a6𝑒𝑒−𝑖𝑖(𝐿𝐿1+𝑥𝑥) + a7𝑒𝑒−𝑉𝑉𝑖𝑖�𝐿𝐿−(𝐿𝐿1+𝑥𝑥)� + a8𝑒𝑒−𝑖𝑖�𝐿𝐿−(𝐿𝐿1+𝑥𝑥)� [0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 − 𝐿𝐿1]. (22) 

The coefficients a𝑉𝑉 , (𝑖𝑖 = 1: 8) can be calculated as a function of the nodal spectral displacements, considering the 
boundary conditions for the element. Thus, for the cracked beam element, the boundary conditions at the ends of the 
beam and the crack position must be considered as follows 

• On the left side of the element for 𝑥𝑥 = 0: 

𝑣𝑣�𝑛𝑛(𝑥𝑥) = 𝑣𝑣�1   𝜕𝜕𝑣𝑣�𝑙𝑙(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝜙𝜙�1. (23) 

• In the crack position, displacement and rotation are considered for 𝑣𝑣�𝑛𝑛(𝑥𝑥). So, 𝑥𝑥 = 𝐿𝐿1 and for 𝑣𝑣�𝑉𝑉(𝑥𝑥) where 𝑥𝑥 = 0: 

𝑣𝑣�𝑛𝑛(𝑥𝑥) = 𝑣𝑣�𝑉𝑉(𝑥𝑥), 

𝜕𝜕𝑣𝑣�𝑉𝑉(𝑥𝑥)
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑣𝑣�𝑛𝑛(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝜃𝜃
𝜕𝜕2𝑣𝑣�𝑉𝑉(𝑥𝑥)
𝜕𝜕𝑥𝑥2

, 

𝜕𝜕2𝑣𝑣�𝑛𝑛(𝑥𝑥)
𝜕𝜕𝑥𝑥2

=
𝜕𝜕2𝑣𝑣�𝑉𝑉(𝑥𝑥)
𝜕𝜕𝑥𝑥2

 

𝜕𝜕3𝑣𝑣�𝑙𝑙(𝑥𝑥)
𝜕𝜕𝑥𝑥3

= 𝜕𝜕3𝑣𝑣�𝑟𝑟(𝑥𝑥)
𝜕𝜕𝑥𝑥3

 . (24) 

• On the right side of the element for 𝑥𝑥 = 𝐿𝐿 − 𝐿𝐿1: 
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𝑣𝑣�𝑉𝑉(𝑥𝑥) = 𝑣𝑣�2   𝜕𝜕𝑣𝑣�𝑟𝑟(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝜙𝜙�2. (25) 

Then, considering the equations that describe the nodal spectral displacements, Equations (19) to (21), to the left 
and right of the crack, applying the boundary conditions and writing in matrix form 

𝑯𝑯𝐶𝐶(𝜔𝜔) = 𝐸𝐸𝐸𝐸
𝐿𝐿3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 1 𝔞𝔞 𝔟𝔟
−𝑖𝑖𝑘𝑘 −𝑘𝑘 𝑖𝑖𝑘𝑘𝔞𝔞  𝑘𝑘𝔟𝔟
𝔞𝔞 𝔟𝔟 1 1

(𝑖𝑖𝑘𝑘 + 𝜃𝜃𝑘𝑘2)𝔞𝔞
−𝑖𝑖𝑘𝑘2𝔞𝔞
−𝑖𝑖𝑘𝑘3𝔞𝔞

0
0

(𝑘𝑘 − 𝜃𝜃𝑘𝑘2)𝔟𝔟
𝑘𝑘2𝔟𝔟
−𝑘𝑘3𝔟𝔟

0
0

𝜃𝜃𝑘𝑘2 − 𝑖𝑖𝑘𝑘
−𝑘𝑘2
−𝑖𝑖𝑘𝑘3

0
0

−𝑘𝑘 − 𝜃𝜃𝑘𝑘2
𝑘𝑘2𝔞𝔞
𝑘𝑘3
0
0

0 0 0 0
0 0 0 0
−𝔞𝔞 −𝔟𝔟 −𝔠𝔠 −𝔡𝔡

 −𝑖𝑖𝑘𝑘𝔞𝔞
𝑘𝑘2

−𝑖𝑖𝑘𝑘3𝔞𝔞
𝔣𝔣

−𝑖𝑖𝑘𝑘𝔣𝔣

−𝑘𝑘𝔟𝔟
−𝑘𝑘2𝔟𝔟
𝑘𝑘3𝔟𝔟
𝔤𝔤

−𝑘𝑘𝔤𝔤

 𝑖𝑖𝑘𝑘𝔠𝔠
𝑘𝑘2𝔠𝔠
𝑖𝑖𝑘𝑘3𝔠𝔠

1
𝑖𝑖𝑘𝑘

𝑘𝑘𝔡𝔡
−𝑘𝑘2𝔡𝔡
−𝑘𝑘3𝔡𝔡

1
𝑘𝑘 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (26) 

where 𝔞𝔞 = 𝑒𝑒𝑉𝑉𝑖𝑖𝐿𝐿1 , 𝔟𝔟 = 𝑒𝑒−𝑖𝑖𝐿𝐿1 , 𝔠𝔠 = 𝑒𝑒−𝑉𝑉𝑖𝑖(𝐿𝐿−𝐿𝐿1), 𝔡𝔡 = 𝑒𝑒−𝑖𝑖(𝐿𝐿−𝐿𝐿1), 𝔣𝔣 = 𝑒𝑒−𝑉𝑉𝑖𝑖𝐿𝐿, 𝔤𝔤 = 𝑒𝑒−𝑖𝑖𝐿𝐿. 
Equation (26) falls into the general formulation of the element, where 𝒅𝒅 = 𝑯𝑯𝐶𝐶(𝜔𝜔)𝐚𝐚. The coefficients can be related 

to nodal spectral displacements by 

a𝑉𝑉 = 𝐻𝐻𝑉𝑉𝑉𝑉1−1𝑣𝑣�1 + 𝐻𝐻𝑉𝑉𝑉𝑉2−1𝜙𝜙�1 + 𝐻𝐻𝑉𝑉𝑉𝑉3−1𝑣𝑣�2 + 𝐻𝐻𝑉𝑉𝑉𝑉4−1𝜙𝜙�2. (27) 

At this point, the 𝑯𝑯𝐶𝐶(𝜔𝜔) matrix, originally of 8x8 dimension, is reduced to an 8x4 matrix. This process occurs 
according to Equation (27), where 𝐻𝐻𝑉𝑉𝑉𝑉𝑐𝑐−1 represents the elements of the inverse matrix of Equation (26). The nodal spectral 
forces can be represented by differentiating the spectral displacements 𝑣𝑣�𝑛𝑛 and 𝑣𝑣�𝑉𝑉  related to 𝑥𝑥, and, in this case, generally 
represented by 𝒇𝒇 = 𝑮𝑮(𝜔𝜔)𝐚𝐚. In the matrix form, we have 

⎩
⎪
⎨

⎪
⎧𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4⎭
⎪
⎬

⎪
⎫

=  �
𝑖𝑖𝑘𝑘3 −𝑘𝑘3 −𝑖𝑖𝑘𝑘3𝔞𝔞 𝑘𝑘3
−𝑘𝑘2 𝑘𝑘2 −𝑘𝑘2𝔞𝔞 𝑘𝑘2

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
𝑖𝑖𝑘𝑘3𝔣𝔣 −𝑘𝑘3𝔤𝔤 −𝑖𝑖𝑘𝑘3 𝑘𝑘3

−𝑘𝑘2𝔣𝔣 𝑘𝑘2𝔤𝔤 −𝑘𝑘2 𝑘𝑘2
�

⎩
⎪⎪
⎨

⎪⎪
⎧

a1
a2
a3
a4
a5
a6
a7
a8⎭
⎪⎪
⎬

⎪⎪
⎫

  (28) 

From the nodal forces and displacements, Equations (28) and (26), the frequency-dependent dynamic stiffness 
matrix of the Euler-Bernoulli beam element with an open, non-propagating crack related to the nodal forces and 
displacements is, 

𝒇𝒇[4𝑥𝑥1] = 𝑮𝑮𝑉𝑉(𝜔𝜔)[4𝑥𝑥8]𝑯𝑯𝑉𝑉
−1(𝜔𝜔)[8𝑥𝑥4]𝒅𝒅 = 𝑹𝑹𝒄𝒄(𝜔𝜔)[4𝑥𝑥4]𝒅𝒅, (29) 

where 𝐒𝐒𝐜𝐜(ω) is a 4x4 cracked beam dynamic stiffness matrix. 

3.4 Local crack flexibility 

The crack flexibility coefficient 𝜃𝜃 is calculated using Castigliano’s theorem, where the flexibility in the crack position 
for a one-dimensional beam spectral element can be obtained by (Tada et al., 1973) 

𝑐𝑐 = 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑃𝑃2

,  (30) 

where 𝑈𝑈 denotes the elastic deformation energy due to cracking, and 𝑀𝑀 is the element’s nodal load. Considering that 
only crack mode 𝐼𝐼 is present in the beam element, the elastic deformation energy can be expressed as (Tada et al., 1973) 

𝑈𝑈 = 1−𝜈𝜈2

𝐸𝐸 ∫ 𝐾𝐾𝐸𝐸2𝑅𝑅𝑐𝑐
𝑑𝑑𝑅𝑅𝑉𝑉 , (31) 
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which ν is the Poisson’s ratio, 𝑅𝑅𝑉𝑉 is the cracked area, and 𝐾𝐾𝐸𝐸 is a stress intensity factor corresponding to mode 𝐼𝐼 of the 
crack, which can be represented by (Tada et al., 1973) 

𝐾𝐾𝐸𝐸 = 6𝑅𝑅
𝑏𝑏ℎ2 √𝜋𝜋𝛼𝛼𝑓𝑓 �

𝛼𝛼
ℎ
�,  (32) 

where b is the base and h the height of the beam cross-section, α is the variation in the crack depth, as shown Figure 5, 
𝑅𝑅 is the bending moment in crack position, and f is a correction function of the mode I stress intensification factor, which 
can be written as (Tada et al., 1973) 

𝑓𝑓 �𝛼𝛼
ℎ
� = �2ℎ

𝜋𝜋𝛼𝛼
𝑡𝑡𝑎𝑎𝛼𝛼 �𝜋𝜋𝛼𝛼

2ℎ
�
0.923+0.199�1−𝑛𝑛𝑉𝑉𝑉𝑉�𝜋𝜋𝜋𝜋2ℎ��

4

𝑉𝑉𝑛𝑛𝑛𝑛�𝜋𝜋𝜋𝜋2ℎ�
.  (33) 

 
Figure 5 Cross-section of the cracked beam in the crack position. 

The coefficient c that calculates the crack flexibility is expressed as follows (Tada et al., 1973) 

𝑐𝑐 = 72𝜋𝜋
𝑏𝑏ℎ2 ∫ 𝛼𝛼𝑓𝑓2(𝛼𝛼)𝑑𝑑𝛼𝛼𝛼𝛼

0 , (34) 

where 𝛼𝛼 = 𝑉𝑉
ℎ

 . Finally, the dimensional local flexibility is given by 

𝜃𝜃 = 𝐸𝐸𝐸𝐸𝑉𝑉
𝐿𝐿

.  (35) 

4 NUMERICAL RESULTS 

The simulations were performed in the MATLAB software and considered a steel beam with a length of 𝐿𝐿 = 4m, 
a cross-section with a height of ℎ = 0.03m, and width of 𝑏𝑏 = 0.01m. The material properties are Young’s modulus of 
𝐸𝐸 = 210GPa, the material density of 𝜌𝜌 = 7800 kg/m3, and damping factor as 𝑖𝑖 = 0.01. The structural damping was 
modelled by a complex elastic modulus, 𝐸𝐸 = 𝐸𝐸(1 + 𝑖𝑖𝑖𝑖). The numerical investigations verified the beam’s structural 
integrity. The damages were simulated considering a non-propagating open crack. The beam has a free-free boundary 
condition connected to a throw-off spectral element, with a toneburst excitation pulse at the node 1. The cracked and 
healthy beams, both with the same geometries and properties, are shown in Figure 6 (a-b). 

 
Figure 6: Structural representation: (a) Cracked beam models; (b) Healthy beam models. 
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The impulsive pulse force improves the visualisation of the wave propagating through the beam and indicates a 
possible discontinuity or crack. The excitation toneburst signal was obtained with a sine function of 20 periods modulated 
by a Hanning window of 0.10𝑚𝑚𝑚𝑚 duration and a carrier frequency (𝑓𝑓𝑉𝑉) of 50 𝑘𝑘𝐻𝐻𝑘𝑘. Figure 7 (a-b) shows the toneburst 
pulse signal in the time and frequency domains. 

 
Figure 7: Excitation toneburst pulse (𝑓𝑓𝑉𝑉 = 50𝑘𝑘𝐻𝐻𝑘𝑘): (a) Excitation signal in the time domain; (b) Excitation signal in the frequency 

domain. 

Excitation and response are applied at node 1 (see Figure 6). The wave travels through the structure until it reaches 
node 2 where it is reflected and continues through the throw-off element that dissipates the remaining energy of the 
system. The amplitude of vertical acceleration decreases throughout the structure’s length due to internal damping 𝑖𝑖. 
Figure 8 (a) shows the temporal acceleration response for the healthy structure, which presents two pulses: one in the 
excitation time (node 1) of the incident wave, and the other in the reflection time (node 2). The temporal acceleration 
response of the cracked beam has two additional pulses, as shown in Figure 8 (b): one between the incident and reflection 
time and the other after the reflection time. These additional pulses characterise the waves that are partially reflected 
and transmitted due to a localised material discontinuity, which could indicate the existence of a discontinuity or crack. 
These results show that the SEM model can reproduce the wave propagation behaviour throughout the beam and 
therefore identify the crack. 

 
Figure 8: Acceleration response for (a) healthy beam; (b) Cracked beam with damage of 30% at 𝐿𝐿1 = 0.5𝐿𝐿. 

The influence of crack depth associated with the crack position in the cracked beam response is compared to the 
healthy beam. Seven values assumed for the crack depth range between 0% (no-crack), 1%, 5%, 10%, 15%, 20%, 25%, 
and 30% of the beam’s cross-section height, and crack positions were chosen at 𝐿𝐿1 = 0.18𝐿𝐿, 𝐿𝐿1 = 0.5𝐿𝐿, and 𝐿𝐿1 = 0.82𝐿𝐿 
from node 1. Figure 9 (a-c) shows the temporal response estimated for each crack location and different crack depth. 
The curves obtained for each crack are displayed in parallel for better visualisation of the results. 
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Figure 9: Acceleration temporal response for healthy and cracked beams with crack depth of 0% (no-crack), 1%, 5%, 10%, 15%, 

20%, 25% and 30% at crack positions: (a) 𝐿𝐿1 = 0.18𝐿𝐿, (b) 𝐿𝐿1 = 0.5𝐿𝐿, and (c) 𝐿𝐿1 = 0.82𝐿𝐿. 

Figure 9 (a) shows the beam time response with the crack location at 𝐿𝐿1 = 0.18𝐿𝐿 and crack depth varying from 0 to 
30% of the cross-section height. In this case, the crack is located close to the excitation point. An additional pulse in the 
response with a crack of up to 5% is not identified, for a crack depth varying from 10% to 20% a pulse between the 
excitation and reflection time and after the reflection time is observed. It increases its amplitude as the crack grows. For 
a crack depth of 25% and 30%, an instability over the time response leads to a numerical inconsistency and no physical 
meaning representation. In these cases, the time responses plotted in grey (dashed lines) increased in amplitude and it 
is therefore not possible to identify the impulse force, boundary, and crack reflections. 

In Figure 9 (b), the crack position was set at 𝐿𝐿1 = 0.5𝐿𝐿 and the crack depth varied from 0% to 30%. The time response 
shows a clear reflection due to the crack in all cases. The crack expressing 10% of the beam’s cross-section height 
exhibited one pulse between the excitation and boundary reflection, related to the crack, and another after the boundary 
reflection. The size of the crack increased the pulse amplitudes of the reflection. By locating the crack at 𝐿𝐿1 = 0.82𝐿𝐿, the 
reflection because of the crack is closed to the wave reflection from the boundary, and the amplitude increased as the 
crack grew in depth. To achieve a more real analysis and to include possible randomness in the numerical model, 
presented in the acquisition of signals, we have included a white noise with 5% and 10% to the temporal responses. 

A common practice in damage detection is to compare the response-signal of the undamaged structure with that 
of the damaged structure. Various techniques have been developed to define and extract signal features to identify 
structural damages. The DIs function as an indicator to describe the damage detection. The DIs that use time domain 
response derived from wave propagation are analysed in this section, where their advantages and limitations are 
explored. The RMSD, MAPD, COV, and CCD indices, applied for such analysis, presented differences in the amplitude 
scale or the inexistence of magnitude, rendering them difficult to be used and evaluated. We performed normalisation 
of the DIs by dividing the result to the highest absolute value found in each DI, as demonstrated in Section 2. Therefore, 
the DIs is presented in values between zero to a unity, where zero accuses no damage and a higher value up to unity 
indicates the presence of a crack and its severity within the analysis scenario. 
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Figure 10: DIs comparison with the crack position at 𝐿𝐿1 = 0.18𝐿𝐿, and crack depth ranging between 0% (no-crack), 1%, 5%, 10%, 

15%, 20%, 25%, and 30% of the cross-section height. Responses without noise (a), 5% of noise (b), and 10% of noise (c). 

The results of the DIs obtained for the crack locate it at 𝐿𝐿1 = 0.18𝐿𝐿 and the crack depth ranging between 0% (no-crack), 
1%, 5%, 10%, 15%, 20%, 25%, and 30% of the beam’s cross-section height are shown in Figure 10 (a-c). Therefore, the 
identification and quantification are not straightforward because the crack is located close to the excitation point (node 1). 
Figure 10 (a) is the DIs comparison estimated with the responses without adding noise, Figure 10 (b) is the DIs estimated 
using the signals with 5% of noise and Figure 10 (c) with 10% of noise. With the crack close to excitation point and over 25% 
of the crack depth, the signal no longer corresponds to the studied phenomenon, as demonstrated in Figure 9(a). In all but 
the CCD, the damage indices were not sensitive to the crack depth. Moreover, the noise caused a small influence in the DIs 
results when the crack was located close to the excitation point because the impulse force has a high amplitude of the signal 
became dominant over DIs estimation, as demonstrated in the DI maps. The crack detection and severity are observed from 
10% of crack depth. From this point on, it is impossible to track the crack growth analysing the DIs. 

 
Figure 11: DIs comparison with the crack position at 𝐿𝐿1 = 0.5𝐿𝐿, and crack depth ranging between 0% (no-crack), 1%, 5%, 10%, 15%, 

20%, 25%, and 30% of the cross-section height. Responses without noise (a), 5% of noise (b), and 10% of noise (c). 

Positioning the crack at 𝐿𝐿1 = 0.5𝐿𝐿, with a reflection around 0.5ms, indicates the presence of the crack, as shown in 
Figure 11 (a-c). It is possible to clearly identify the crack at any depth over 15% and a crack depth under 10% may 
compromise the damage detection by visual inspection. For the signal without noise, the DIs increased exponentially as 
the crack depth grew, which fulfils the damage detection in each crack assessment. By adding 5% and 10% of noise in 
the signals, RMSD, COV and CCD indices increased in the index amplitude caused by the noise and, with up to 15% of 
crack, there is no expressive changes in the DI level. MAPD index presented an abrupt change for the crack depth of 15% 
when it considered 5% of noise and an unstable estimation with 10% of noise. The COV damage index shows an 
unexpected index level. Even a small crack (as 1%) reports a damage index of 77%, with limited sensitivity to the increase 
in the crack depth. This instability is better seen in the DI map. 

 
Figure 12: DIs comparison with the crack position at 𝐿𝐿1 = 0.82𝐿𝐿, and crack depth ranging between 0% (no-crack), 1%, 5%, 10%, 

15%, 20%, 25%, and 30% of the cross-section height. Responses without noise (a), 5% of noise (b), and 10% of noise (c). 
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Figure 12 (a-c) shows the normalised DIs for the crack placed at 𝐿𝐿1 = 0.82𝐿𝐿, further from the application force. The 
results followed the crack positioned in the middle of the beam. The RMSD and CCD indices were considered the most 
appropriate and accurate to assess the damage detection in the cases studied. Their values vary little as the crack location 
changes, and they are sensitive to the increase in crack depth. The MAPD index, disregarding the presence of noise, 
proves to be effective in the detection. However, by adding noise of 5% and 10%, it showed inconsistency and failed to 
consider noticeable patterns that may indicate a correlation between the DI and the crack size. Finally, the COV index 
was ineffective in locating cracks over the range of 𝐿𝐿1 = 0.5𝐿𝐿 and 𝐿𝐿1 = 𝐿𝐿. The index cannot be considered reliable to assess 
the damage severity for a beam with this configuration. 

The tests were carried out for different crack depths and three different positions in Section 4. With the increase of the crack 
depth, the reflected wave became more evident in all cases. By relating the crack depth and location, it was possible to produce 
a DI map which improves the analysis. Therefore, graphs of the map in two and three dimensions cover the damage detection 
and better demonstrate the DI behaviour. The steps in both cases vary one-by-one over the entire length of the beam and up to 
30% of depth. The time responses used to calculate the DIs were without noise, with 5% of noise, and 10% of noise. 

 
Figure 13: Two and three-dimension RMSD index map without noise (a), 5% of noise (b), and 10% of noise (c). 

Damage indices map presented relevant results not seen in the single analysis. RMSD index maps in two and three-dimension, 
shown in Figure 13 (a-c), detected the damage over 5% in an area after 0.5𝐿𝐿 and had an exponential surface following the crack 
growth, which shows the high sensitivity of this index. The addition of noise in the simulations barely influenced the behaviour of the 
RMSD index surfaces. It reduced the smoothness of the curve and increased the number of critical points without affecting the 
detection. Indeed, the noise significantly impacted the prognosis and must be considered in the entire monitoring process. 

 
Figure 14: Two and three-dimension MAPD index map without noise (a), 5% of noise (b), and 10% of noise (c). 

The MAPD index maps presented in Figure 14 (a-c) were those with the most compromised performance by the 
noise. The MAPD estimated without noise presented an exponential surface following the crack growth, as expected, 
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and presented sensitivity from the small to big crack depth. However, the DI estimation using the signal contaminated 
by the noise was inconsistent. This can be explained by the fact that the calculation was made considering the absolute 
variations between the two signals estimated from the healthy and damaged beams. 

 
Figure 15: Two and three-dimension COV index map without noise (a), 5% of noise (b), and 10% of noise (c). 

Figure 15 (a-c) shows the COV index maps, which had its DI values increasing with the crack depth, combined with 
the position, demonstrating less sensitivity to damage than the other DIs. Constant levels were maintained when the 
damage was located up to 1 meter in length, from one to two meters the index values increased even for small cracks, 
and over this region, it indicated a high index level. There were slight changes in the COV-DIs with the addition of noise. 

 
Figure 16: Two and three-dimension CCD index map without noise (a), 5% of noise (b), and 10% of noise (c). 

The CCD index displayed in Figure 16 (a-c) had a similar behaviour to the RMSD and proved to be a reliable DI, as 
the RMSD, even for the signal contaminated by noises. In summary, the tendency of the DI was to increase as the crack 
grew, which can be explained by the fact that the dissipated energy, and therefore, the difference between the signals, 
increases with the size of the crack. The RMSD and CCD indices presented consistent behaviour and these techniques 
able to deal with noise in the signals. They gradually varied the DI value as the crack depth increased and were little 
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affected by the location of the crack along the beam. The MAPD index presented irregular performance when noise was 
added and produced a significant numerical error, too. The COV index indicated very high values when the crack position 
was further from the applied force and had low sensitivity to the crack depth, which can be problematic in structural 
monitoring and prognosis. By comparing the efficiency and robustness of the DIs, the RSMD and CCD performed better 
evaluation than the other DIs. 

5 CONCLUDING REMARKS 

In this article, wave propagation responses of undamaged and damaged Euler-Bernoulli beams were used to 
determine the damage indices. The tests covered a background spectral element method for healthy, semi-infinite, and 
cracked beams followed by the crack flexibility calculation based on the Castigliano Theorem. The damage indices RMSD, 
CCD, MAPD, and COV were presented based on the literature and a DI normalisation attempted to compare the 
performance of each one. The DIs estimated damage metrics by varying crack positions and depth, distance from the 
crack to the pulse application, and by adding noise to the signals. The responses generated according to the normalised 
DIs demonstrated that the RMSD and CCD indices are more reliable than the others in terms of sensitivity to changes in 
crack location and variation of crack depth. The presence of noise affected the responses of the MAPD index, leading to 
impractical and unreal information. However, the COV index was considered the least effective because it returned DI 
levels with error over the estimations, as the crack location and depth variation occurred. In general, the addition of 
noise affected the behaviour of the DIs. The MAPD index was more affected by the noise with inconsistent DI levels. The 
CCD and RMSD index showed a gradual increase as the crack grew and maintained the estimation with the crack in 
different positions. They were accurate and indicated DIs to detect and monitor damage combination with the temporal 
wave signal. 
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