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Abstract 
Buckling mode interaction in cold-formed steel (CFS) members must be considered for the structural design, 
which may lead to a significant reduction of the structural strength, usually recognized as erosion of the limit 
load. So far, the distortional-global (DG) buckling interaction is not covered by codes, e.g. Brazilian code NBR 
14762:2010. The present investigation is aimed at the DG interaction of CFS lipped channel (LC) columns, 
which is the most usual section. The methodology evolves a parametric analysis, over a single LC column under 
DG buckling interaction. First, a study of initial geometric imperfection (IGI) sensibility is performed, with the 
purpose of understanding the influence of the IGI on the column’s behavior. Moreover, the parametric 
analysis is extended to a set of yielding stress and column lengths, to understand the ultimate load under 
different types of DG buckling interaction natures. Conclusions on this research have been shown that the 
actual global buckling equation from the Direct Strength Method is already suitable to cover the DG buckling 
interaction for the case of lipped channel columns. 
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1 INTRODUCTION 

1.1 Steel cold-formed thin-walled structures and buckling modes 

Steel cold-formed members are widely applied in structural solutions, e.g. light steel frame construction, storage 
rack systems, mezzanine floors and building roofing systems. A large variety of cold-formed steel sections, CFS, can be 
manufactured with the help of light gage cold forming machines, supported by CAD/CAM facilities allowing performing 
simple and complex geometries, including holes and slotted perforations. Besides the competitive advantages of CFS 
structural systems, designers must take into account their particular structural behavior on the basis of the Vlasov (1961) 
theory of thin-walled members, with special attention to the warping torsional behavior and the buckling modes. In this 
context, the Brazilian standard ABNT NBR 14762 (ABNT, 2010) includes procedures for the structural design of CFS 
members, and the buckling effect on the strength of the members is of utmost importance. 

CFS members with open sections display local (L), distortional (D) and global (G) buckling (Figure 1), with the 
respective axial compression critical loads crLP , crDP  and crGP . The identification of the critical buckling loads and the 
associated modes can be obtained with the help of a numerical solution based on the finite strip method (FSM), with 
practical advantages when compared with the finite element method (FEM), due to a significant reduction in the degrees 
of freedom of the structural model. In addition, the FSM allows automatic buckling analysis along a defined member 
length range, allowing defining the variation of the buckling loads and the associated buckling modes, which is clearly 
presented to the user as the “signature curve” of the section. This arrangement is not easily available for FEM and would 
be much more time consuming if compared with the FSM. The computational program CUFSM, is a well-established 
reference by Li and Schafer (2013) and Ádany and Schafer (2006), and offers access to the signature curve (namely crP  
vs. length L of the member) of the CFS section, allowing the identification of the buckling modes of members under axial 
compression, bending or any kind of initial stress distribution. Consequently, the identification of the single buckling 
modes, L, D and G, is an important step for the structural design of thin-walled CFS members. In addition, the buckling 
modes interaction must be considered for the structural design, since the modal interaction may lead to an important 
reduction of the structural strength, usually recognized as erosion of the limit load. 

 
Figure 1 CFS lipped channel column and its buckling modes: (a) local L; (b) distortional D; (c) global G or FT (flexural-torsional); (d) 

global G or F (flexural). 

1.2 Distortional-global interaction: relevance & concepts 

In the literature so far, the coupled instability phenomenon can be found as compound buckling, simultaneous 
buckling, interaction buckling and many other denominations. Historically, Koiter (1945) and Budiansky (1974) were the 
first two researchers that included the coupled instability phenomenon. 

The nature of the phenomenon is complex and difficult to predict. Due to that, many authors try to classify the 
buckling interaction in various ways. Gioncu (1994) shows an overall of the couple instability state-of-art from over 230 
papers until 1994, explaining concepts and classifications for the nature of the coupled phenomenon. 

The distortional-global (DG) interaction can be classified by its type and nature. As reported by Martins, Camotim and Dinis 
(2018a), the type of distortional-global interaction can change depending on the type of the global buckling mode: (i) 
distortional/major-axis flexural-torsional (DMFT) and (ii) distortional/minor-axis flexural (DmF). However, for lipped channel 
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columns, the DMFT interaction is more common to occur, while the DmF interaction happens more often on zed-sections 
columns. In addition, related to the nature of the DG buckling interaction, Martins, Camotim and Dinis (2018a) states a 
classification based on the ratio between global and distortional critical loads, /GD crG crDR P P= , which gives the basis for the 
identification of the presence of the DG buckling interaction. Following the same idea, in the present study the slenderness ratio 
is considered, i.e. / /GD G D crD crGR P Pλ λ λ= = , since the slenderness factor λ  is commonly applied to design procedures and, 
in addition, gives a more clear identification of the effect of buckling behavior of CFS members. 

The categories proposed by Martins, Camotim and Dinis (2018a), with the slenderness parameter GDR  and GDRλ , 
are classified as: 

(i) True DG interaction (TI): when the distortional and global critical buckling are close; this scenario may always happen 
for . .GD0 90 R 1 10< <  or . .GD0 95 R 1 05λ< < . According to Martins, Camotim and Dinis (2018a), this state can behave 
differently in three different groups, depending on the critical slenderness: (i.1) abrupt collapse for stocky columns, 

.cr 1 0λ ≤ ; (i.2) collapse after starting of yielding for slender columns, . .cr1 0 2 0λ< < ; (i.3) elastic-plastic strength reserve 
before collapse for very slender columns, .cr 2 0λ ≥  (this group has shown local deformations, experiencing LDG 
interaction on lipped channel columns), with ( )  ,cr D Gmaxλ λ λ= ; 

(ii) Secondary-distortional bifurcation DG interaction (SDI): occurs for yield strength sufficiently high, enabling the 
buckling interaction to develop. This situation is more common in the range .GDR 0 90≤  or .GDR 1 05λ ≥ ; 

(iii) Secondary-global bifurcation DG interaction (SGI): also occurs for yield stress sufficiently high, enabling the buckling 
interaction to arise. Nonetheless, this one is more likely to develop due to its high post-critical strength reserve caused by 
the distortional buckling. This condition is more commonly observed in the range .GDR 1 10≥  or .GDR 0 95λ ≤ , and it is 
possible to observe other buckling modes interaction of the lipped channel CFS column, as LDG or just LD. 

1.3 Design approaches for cold-formed steel columns under DG interaction 

The direct strength method (DSM) is the most accepted design approach because of its simple application for civil 
engineers’ design of thin-walled structural steel elements, based on the limit states associated with local, distortional, 
global and the local-global interactive buckling modes. The DSM is based on the Winter-type equation (Winter, 1968) & 
(Winter, 1947) for the local and distortional strength curves, and the “classical” column design curve for the global mode, 
taken from specifications of hot-rolled steel columns (e.g. ABNT NBR 8800 (ABNT, 2008) and ANSI/AISC 360-16 (2016)). 

The DSM nominal axial strength for the global buckling of CFS members is presented by Eq. (1). 
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where yP  is the squash load, defined as the gross sectional area times the steel yielding stress; Gλ  is the global 
slenderness; crGP  is the elastic critical global buckling load. 

The DSM nominal axial strength for the distortional buckling, as described in the DSM, is expressed in Eq. (2). 
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where Dλ  is the distortional slenderness and crDP  is the elastic critical distortional buckling load. 
One advantage of the DSM procedure is the capacity to express straightforward interactive equations, as shown by 

Schafer (2002). In the past few years, additional equations have been proposed considering interactive modes and also 
recalibration of the Winter-type equation (1968) coefficients for global and distortional equations, e.g. Dinis et al. (2020), 
Liu et al. (2020), and Santos et al. (2020). 

Unlike the LG coupled phenomenon, the DSM-based nominal axial strength for the distortional-global (DG) 
interactive buckling has not been included in the standards. In the past few years, authors have been studying the DG 
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coupled phenomenon behavior, as shown by Dinis and Camotim (2011) and Martins et al. (2018a). However, there is still 
a lack of studies of this phenomenon, mainly laboratory experiments. 

Schafer (2002) proposed an approach to the DSM that considers the DG interaction, shown in Eq. (3). A recent study 
carried out by Martins, Camotim and Dinis (2018a) tested the procedure proposed by Schafer (2002) on the basis of a 
parametric study, showing that this procedure is quite conservative, when compared with FEM results. Martins, Camotim 
and Dinis (2018a) also studied an additional approach that includes the DG interaction, as shown in Eq. (4). 

Basically, the approach in Eq. (3) involves in replacing the squash load yP  from the distortional buckling equation 
by the DSM nominal strength for global buckling nGP . As, in Eq. (4), the approach consists of replacing the squash load 

yP  from the global buckling equation by the DSM nominal strength for the distortional buckling nDP . 
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where nGP  is the DSM nominal axial strength for the global buckling presented by Eq. (1); DGλ  is the distortional 
slenderness based on the global strength nGP ; nDP  is the DSM nominal axial strength for the distortional buckling 
described by Eq. (2); GDλ  is the global slenderness based on the distortional strength nDP . 

1.4 The state-of-the-art 

Many research efforts have been made since the early investigations devoted to the buckling modes interaction. 
Since then, the design prescriptions in the codes and standards have been revised and, by now, the rules for local-global 
interaction, LG, for both columns and beams are widely recognized leading to safe and economic solutions, e.g. Batista 
(2010), Brazilian code NBR 14762 (ABNT, 2010), North American AISI S100-16 (2016), Australian/New Zealand standard 
AS/NZS 4600 (2018) and European code EN 1993-1-3 (2005). Other buckling mode interactions have been under 
investigation during these last decades and one may find recent results indicating robust conclusions and design 
propositions to handle these particular cases: (i) local-distortional, LD (e.g. Yang and Hancock (2004), Dinis et al. (2007), 
Camotim et al. (2009), Kwon et al. (2009), Silvestre et al. (2012), Martins et al. (2018c), Matsubara et al. (2019)), (ii) 
distortional-global, DG (e.g. Dinis and Camotim (2008), Rossi et al. (2010), Dinis and Camotim (2011), Niu et al. (2014a), 
Niu et al. (2014b), Anbarasu and Murugapandian (2016), Martins et al. (2016), Martins et al. (2017a), Martins et al. 
(2017b), Martins et al. (2018b), Martins et al. (2018d)) and (iii) local-distortional-global, LDG (e.g. Dinis et al. (2011), 
Santos (2014), Santos et al. (2014a), Santos et al. (2014b), Cava et al. (2016), Young et al. (2018), Dinis et al. (2018) and 
Matsubara and Batista (2019)). However, the challenge is to define as simple as possible rules following an integrated 
format, with clear physical meaningful and avoiding intricate black box solution. Nowadays, the most accepted design 
method is the Direct Strength Method, DSM, originally proposed by Schafer and Peköz (1998b), based on an original 
concept from Hancock et al. (1994), which offers a general formulation for the design of structural members affected by 
the buckling modes L, D and G, isolated and LG interaction. 

The present investigation is aimed at the DG interaction of CFS columns and one must observe that the buckling 
mode interactions develop the closer are critical loads: crDP  and crGP  must be close, at the same time crLP  must be high 
enough to avoid the development of a combination of modes that includes the local buckling one. In the present case of 
DG, the investigated CFS column is the lipped channel, the most usual section in many applications, which is illustrated 
in Figure 1 with the identification of the fundamental buckling modes L, D and G. 

2 NUMERICAL MODEL DESCRIPTION 

For a numerical investigation of DG buckling interaction, a Finite Element Method (FEM) analysis is performed in order to 
understand the structural behavior (with assistance of ANSYS Mechanical APDL (ANSYS, 2016)). The FEM is addressed to capture 
and observe the nonlinear equilibrium path and detect the strength of the structural element. 
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The adopted model is described in six different groups: (i) discretization, (ii) end boundary condition, (iii) loading, (iv) material 
model, (v) initial geometric imperfections (IGI) and (vi) analysis method. For each group, the model is explained in detail, according 
to the ANSYS Mechanical APDL reference (ANSYS, 2016) and considerations retrieved from the literature. 

Figure 2 shows an illustration of a CFS column with a lipped channel section and both ends fixed. This figure illustrates some 
of the main components of the numerical model, such as discretization, end boundary condition and loading. Figure 2-a illustrates 
the finite element meshes, as well as the actual thickness of the end plate and the structural CFS lipped channel member. Figure 
2-b and Figure 2-e display both end boundary condition with the axial loading and the degrees of freedom restrictions, configuring 
fixed-fixed ends condition. Figure 2-c exhibits the shell finite elements mesh of the thin-walled CFS column. Finally, Figure 2-d 
shows the mid length restriction for longitudinal displacements of the column. 

2.1 Discretization 

The adopted finite element type is the ANSYS SHELL281 (ANSYS, 2016). According to the ANSYS Theory Reference 
(ANSYS, 2016), the SHELL281 has 8 nodes, with 6 degrees of freedom per node, and is appropriate for linear, large 
rotation and large strain nonlinear situations. In addition, the SHELL281 formulation is placed on logarithmic strain and 
true stress measures. For this research, the finite element option contemplates the shell structural stiffness with bending 
and membrane considerations. 

The mesh generation included quadrilateral and triangle-shaped elements with element size of 5 mm. This mixed mesh 
occurs resulting from the predefined geometric initial imperfections defined with the help of FStr Computer Application Lazzari 
(2020) (described in section 2.5) and is also due to the automatic mesh generation of the end plates of the column. Although the 
element shape chosen for the whole column is quadrilateral, some triangle-shaped elements may emerge, when the mesh is 
generated. This happens because the mesh generation of the structural member is formed by non-planar surfaces. According to 
ANSYS Theory Reference (ANSYS, 2016), SHELL281 provides more reliable results for triangular elements, while SHELL181 is not 
recommended for triangular-shaped elements. Figure 3 shows the mesh at the end plate of the column, detailing both types of 
possible mesh occurrences, quadrilateral and triangular shell element. 

 
Figure 2 Finite Element Model description of steel lipped channel cold-formed column: (a) shell finite element mesh of CFS member 
and thick steel plate at the fixed-end; (b) boundary condition and axial loading; (c) shell finite element mesh along the column; (d) 

restriction to longitudinal displacement at mid span; (e) boundary condition and axial loading. 
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Figure 3 Detail of the end plate, showing the type of possible mesh occurrences, quadrilateral and triangular shell element. 

2.2 End boundary conditions 

With respect to the boundary conditions, the column has a fixed-fixed end condition. The reason for this assumption 
is the actual condition of experimental tests, with fixed-fixed end sections condition, since fully pinned-pinned supports 
are more difficult to obtain in the laboratory (free bending in both minor and major axis). In addition, a fixed-fixed 
warping condition would always occur at the ends of the column under compression test. The constraints at the ends of 
the column are designed with a stiff plate rigidly fixed to the column cross-section, as illustrated in Figure 2-a. 

In order to follow these support conditions, the FEM model includes constraints of the displacements in x and y 
directions, as well as the rotations around x, y and z direction at both ends of the column (see Figure 2-b and Figure 2-e). 
Another displacement constraint is placed at mid length of the column, at the center of the web, which prevents 
displacements in the longitudinal direction z (Figure 2-d). This additional constraint in the middle of the columns is 
needed to avoid free body translation, considering that symmetric behavior develops in the longitudinal direction of the 
column, imposed by the symmetric end boundary condition. 

2.3 Loading 

Equal compressive loads are applied at the ends of the column (see Figure 2-b and Figure 2-e). The external loads 
are applied at both ends as concentrated loads over the external face of the thick end plates, aligned with the centroidal 
axis of the column. The non-linear analysis, up to the column strength capacity, is based on loading steps. The maximum 
load is set up to be 1 N/N, and the first load step is 0.05 N/N for the arc-length method (described in section 2.6 Analysis 
methods). 

2.4 Material model 

The material model is defined as a balance of simplicity and strict accordance with the actual mechanical 
performance of the steel, in order to obtain an accurate parametric study. In this case, the material model with bilinear 
isotropic hardening (elastic-perfect plastic model) is considered, which applies the Von Mises yield criteria with an 
isotropic work hardening rule. This material model considers the initial slope of the stress-strain curve with the expected 
elastic Young modulus (  E 200GPa= ) in the elastic strain region and a tangent slope modulus with zero magnitude, in 
the plastic strain region (    Et 0 MPa= ). The yield strength of the material varies, depending on the objective of the 
numerical test of the column, allowing variations of the column slenderness including all the buckling modes L, D and G. 
Also, the plates rigidly fixed to the ends of the column have the same mechanical properties as the CFS column. In 
addition, the major Poisson’s ratio is n = 0.3 and an engineering stress-strain model. 

With respect to the effects of the residual stresses and the cold-forming of the corners of the steel lipped channel member, 
the major part of investigations in the literature have neglected these effects. Dinis and Camotim (2015) has shown an insignificant 
impact in the numerical ultimate column load. Also, according to Ellobody and Young (2005), the small membrane residual 
stresses have demonstrated an irrelevant effect on the numerical ultimate load, stiffness of the column, load-shortening behavior 
and in the failure mode. In Matsubara et al. (2019), a recent finite element modeling of local-distortional coupled phenomena in 
lipped channel CFS columns, the residual stresses and rounded corners effects were also neglected and the numerical FEM results 
indicate an accurate agreement with experimental results. 
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2.5 Generation of the initial geometric imperfections with FStr computational program 

For the present research the original perfect geometry and imperfections of the column are created with the help 
of a previous finite strip method (FSM) analysis. The FStr computer application Lazzari (2020) performs previous elastic 
buckling analysis and, with the obtained modal critical shape, generates a node-mesh that is inserted into an APDL 
routine code as KEYPOINTS. The modal critical shape is inserted as the initial geometric imperfection (IGI), with a 
maximum amplitude depending on the buckling mode. In this case, the initially imperfect geometry of the column is 
composed of non-planar surfaces, connecting 4 nearby KEYPOINTS. Figure 4 shows the structural geometry generation 
with predefined imperfections given by KEYPOINTS produced by the FStr Computer Application. 

The maximum amplitude parameters for the initial geometric imperfections for global and distortional buckling 
shapes are distinct. As proposed by Martins, Camotim and Dinis (2018a), the present research adopts /L 1000  for global 
imperfection and .0 94t  for distortional imperfection. The latter was originally proposed by Schafer and Peköz (1998a), 
as corresponding to a 50% probability that a random imperfection amplitude is below or above this value. Moreover, 
Santos (2017) has shown, in a study of lipped channel CFS columns under distortional buckling, that the ultimate load 
has not changed excessively (failure load variation below 5%) with the maximum amplitude of the distortional buckling 
geometric shape ranging from .0 1t  up to .1 0t . 

2.6 Analysis methods 

For the present case the material and geometry nonlinearities are considered in a post-buckling behavior. The 
ANSYS built-in analysis method is based on the arc-length method, known as “The modified Riks method” (introduced by 
Riks (1979), Riks (1972) and Wempner (1971) with modifications being carried out later by many authors, e.g. Crisfield 
(1981), Crisfield (1983)). The method has a displacement control, during the loading, in order to find the fundamental 
paths before and after the limit point. This method is convenient for solutions of unstable problems that has a nonlinear 
static equilibrium. 

 
Figure 4 Geometry and initial geometric imperfections generation (IGI): (a) amplified 3D buckling mode obtained by the FStr 

Computer Application; (b) KEYPOINTS location in ANSYS, generated from the buckling mode; (c) non-planar surfaces, connecting 4 
nearby KEYPOINTS; (d) mesh automatic generation (5 by 5 mm); (e) final model in ANSYS with IGI. 

3 NUMERICAL MODEL VALIDATION 

3.1 Global buckling mode validation 

The global (flexural-torsional) buckling validation is performed using three columns tested by Heva (2009), described 
in Table 1. This author has performed laboratory tests of multiple columns under different temperatures developing the 
flexural-torsional buckling. Updated information about the experiments can be found in Gunalan et al. (2014). For the 
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present research, only the results for the specimen with room temperature (20oC) are considered. Table 1 shows all the 
parameters and results of the numerical and laboratory tests performed by Heva (2009) and also the results obtained in 
the present research. Also, Table 1 includes all the measured geometries of the specimen, the material properties given 
by standard tensile tests and the measured specimen imperfections. 

Table 1 Ultimate load results for room temperature (20oC) of specimens from Heva (2009), both numerical and lab tests, and the 
numerical results obtained in the present research. 

Column 

Measured Geometry 

𝒇𝒇𝒚𝒚 𝑬𝑬 Imperf. 

Ultimate Load 

t  wb  fb  sb  L  
Heva (2009) 

Current 
work 

Bilinear 

Current 
work 

Multilinear 

PU TEST PU FEM PU B. FEM PU M. FEM 

[ # ] [mm] [mm] [mm] [mm] [mm] [MPa] [MPa] [mm/mm] [kN] [kN] [kN] [kN] 

G250-1.95-1800 1.95 74.82 50.06 14.87 1740 271 188000 L/2558 87.94 90.70 93.59 93.81 

G450-1.90-1800 1.88 74.67 49.94 14.51 1740 515 206000 L/2949 120.42 129.00 127.60 121.77 
G550-0.95-1800 0.95 54.94 34.88 8.00 1740 615 205000 L/2485 24.72 25.40 25.71 24.72 

Detailed information about the stress-strain curves and mechanical properties of CFS described in Table 1, can be 
found in Kankanamge and Mahendran (2011), for 250 and 450 steel grades, and in Ranawaka and Mahendran (2009), 
for 550 steel grade. 

The actual stress-strain curves are obtained with a strain gauge at ambient temperature, as illustrated in Figure 5. 
Based on the stress-strain tests results, the material models adopted in the present investigation are bilinear and 
multilinear isotropic hardening, also graphically illustrated in Figure 5. The bilinear model is adopted with 0 yfσ =  and 

tE 0= . According to ANSYS APDL Theory Reference (ANSYS, 2016) the multilinear model is described by parts of the 
stress-strain curve, starting at the origin and defined by sets of positive stress and strain values with always positive 
slopes of the stress-strain curve. 

 
Figure 5 Stress-Strain models from Heva (2009) for (a) 1.95mm and 250 MPa, (b) 1.90mm and 450 MPa and (c) 0.95mm and 550 

MPa cold-formed steel. 

Table 1 also provides the column strength for 4 cases: (i) the column strength U  FEMP  from FEM analysis by Heva 
(2009), (ii) from the experimental tests U  TESTP  performed by Heva (2009), (iii) the column strength .U  B  FEMP  with the 
bilinear material FEM model given by the present investigation and (iv) with the multilinear material model FEM .U  M  FEMP  
also given by the present study. 

It should be noticed that the author’s present research numerical ultimate load is similar to the numerical model 
and laboratory tests presented by Heva (2009). The proposed numerical bilinear model has a relative difference of 6.4%, 
6.0% and 4.0% with regard to tests of Heva (2009) and 3.2%, -1.1% and 1.2% differences with regard to with the numerical 
solution of Heva (2009), respectively for the models G250-1.95-1800, G450-1.90-1800 and G550-0.95-1800. Regarding 
the multilinear model, the relative difference is 6.7%, 1.1% and 0.0% when compared with tests of Heva (2009) and 3.4%, 
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-5.6% and -2.7% differences with the numerical solution of Heva (2009), respectively for the models G250-1.95-1800, 
G450-1.90-1800 and G550-0.95-1800. 

For more convincing results, the graphs load versus displacement out of plane in the middle top flange at mid span 
(displacement position exemplified in Figure 6-b) for the 3 column specimens in Table 1 are shown in Figure 6 and Figure 
7. These graphs show the displacement behavior of a specific point during the loading procedure. 

 
Figure 6 Load versus displacement out of plane in the middle top flange at the column mid span of models (a) G250-1.95-1800 and 

(b) G550-0.95-1800 (both for room temperature 20oC). 

 
Figure 7 Results from model G450-1.90-1800: (a) comparison of flexural-torsional failure mode for (a.1) the present numerical 

model, (a.2) the laboratory test from Heva (2009) and (a.3) numerical model from Heva (2009); (b) load versus displacement out of 
plane in the middle top flange at the column mid span. 

It can be noted in Figure 6-b that the author’s FEM has a similar equilibrium path as Heva’s (2009) test, with a better 
fit with the multilinear model. On the other hand, in Figure 7-b, the laboratory tests are translated into the displacement 
direction, with a smooth equilibrium path. However, the bilinear numerical model examined in this research has a similar 
behavior as the numerical model examined by Heva (2009). Another important observation is concerned with the model 
G250-1.95-1800, shown in Figure 6-a. Note that comparing with the experiment, the present numerical model does not 
fit well with the experimental records. However, comparing the author’s present study, both bilinear and multilinear, 
with the numerical model from Heva (2009), an almost exact fit of the equilibrium paths can be noticed. 

Although, the multilinear material model has indicated better results for the column strength, it is more convenient 
to adopt the bilinear isotropic hardening model for the parametric study, because it makes the finite element analysis 
simpler, with satisfactory results. The main advantage of using a multilinear material model is to acquire more precise 
numerical results. However, the bilinear material model seemingly not influence significantly in the numerical results 
(equilibrium paths and column strength are somewhat close, with a maximum difference of 5% in the column strength), 
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and it is a straight forward approach to perform in a parametric study. To sum up, the obtained results allow to conclude 
that the developed finite element model is validated for flexural-torsional buckling analysis. 

3.2 Distortional buckling mode validation 

The distortional buckling validation is performed using a single lipped channel column tested by Salles (2017), with 
the measured geometric dimensions referred to the out-of-section measurements illustrated in Figure 8-a. The test was 
performed at the COPPE Laboratory of Structures and Materials Professor Lobo Carneiro (LabEST). Updated information 
about the tested column can be found in Matsubara et al. (2019). The lipped channel CFS column specimen was 2529 
mm long, with material properties of 342 MPa of yield strength, 179.468 GPa of elastic modulus (quite low average Young 
modulus extracted from a set of standard tensile tests) and 9.845 GPa of tangent slope modulus ( tE ). As a result, the 
specimen reached its experimental column strength of 33.4 kN, while the finite element model in this research, lead to 
a numerical ultimate load of 35.3 kN. A maximum amplitude of 0.1𝑡𝑡 for the distortional buckling mode as initial geometric 
imperfection and a bilinear model for the strain-stress curve were considered. Figure 8-b shows a comparison of the 
equilibrium path of the web extremities at mid span, for the experimental test and the FEM solution. 

 
Figure 8 Lipped Channel specimen by Salles (2017): (a) LC geometry (out-of-section measurements) and displacement transducers location;  

(b) load versus displacement of the web extremities D1 and D3 at mid span of test and numerical FEM results for the present study. 

It can be noted in Figure 8-b that the equilibrium path of the FEM is close to that of the experimental results for 
small displacements. For larger displacements, the FEM model tends to follow a stiffer linear path until it collapses, while 
the laboratory test shows a long and smooth plateau before the collapse. Figure 9 shows the shape of the flange 
displacement out of plane measured by displacement transducer D4 along the column length, and Figure 10 for the 
displacement transducer D5, both for 5 loading steps. It can be observed that the same behavior of distortional buckling 
is clearly shown in the FEM and in the experimental test, with 3 half-waves of distortional modal shape. In addition, the 
buckling mode deformation increases with the load increment, until the column collapse. A fine agreement between 
numerical and experimental results is observed in Figure 9 and Figure 10. 
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Figure 9 Displacement D4 along the column’s length, with 5 load steps of numerical FEM results of the present study and 

experimental results Salles (2017). 

 
Figure 10 Displacement D5 along the column’s length, with 5 load steps of numerical FEM results of the present study and 

experimental results Salles (2017). 

The presented results indicate that the FEM model developed in the present investigation is able to accurately 
follow the equilibrium paths of both, global flexural torsional and distortional buckling modes of lipped channel cold-
formed columns. 

4 PARAMETRIC ANALYSIS ON DG BUCKLING INTERACTION 

First, a numerical parametric study is addressed to a lipped channel cold-formed steel column under true DG 
interaction, with different combinations of initial geometric imperfections (IGIs). Additionally, the study included a 
variation of the yield stress and column length, in order to understand the nature of behavior and strength of the DG 
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interaction in a slenderness range, including Secondary-Global bifurcation DG interaction (SGI), True DG Interaction (TI) 
and Secondary-distortional bifurcation DG interaction (SDI). Figure 11 displays the critical load versus GDRλ  of the LC 
100x70x15x2.70 mm (out-to-out dimensions), performed by FStr and CUFSM (pure modes only), in a length range from 
1000 to 3000 mm, i.e. . .GD0 60 R 1 50λ< < , with / /GD G D crD crGR P Pλ λ λ= = . This ratio measures how far the critical loads 
of global and distortional modes are from each other. 

 
Figure 11 Critical load vs. GDRλ  for LC 100x70x15x2.70 mm, illustrating SGI, TI, and SDI regions in all mode analysis (signature curve) 

and pure mode analysis ( .GDR 0 84λ =  gives  L 1500 mm= , .GDR 1 01λ =  gives  L 1850 mm=  and .GDR 1 18λ =  gives   L 2200 m= ). 

According to Martins, Camotim and Dinis (2018a), when (i) . .GD0 95 R 1 05λ< <  the column develops TI, (ii) .GDR 1 05λ ≥  

there is SDI and (iii) for .GDR 0 95λ ≤  there is SGI, which /GD GDR 1 Rλ = , and /GD crG crDR   P   P= , the latter is the variable adopted 
by Martins, Camotim and Dinis (2018a). 

4.1 Sensibility analysis of the IGIs’ combination 

This study consists of analyzing the structural behavior of a cold-formed lipped channel out-to-out section 
dimensions  wb 100 mm= ,  fb 70 mm= ,  sb 15mm= , .  t 2 70 mm= ,  L 1850 mm= , and with a cross-sectional area of 699.84 
mm2, with different initial geometric imperfections (IGI) and yield strength. The goal of this study is to identify the 
column’s strength and behavior IGIs sensibility using “impure” buckling mode combinations. The geometry is determined 
for a column experiencing strong DG interaction, for a length L characterizing True DG interaction (TI). 

The main reason of combining the buckling modes as IGI, emerged due to the difficulty in finding the DG buckling 
interaction in a simple elastic buckling analysis. 

The combination of elastic buckling modes, as an alternative including the distortional and global buckling modes 
as IGI in the nonlinear analysis, arose because of the difficulty in obtaining a true distortional-global buckling shape 
through an elastic buckling analysis. Therefore, combining the global and distortional shapes as IGI, enabled the possible 
occurrence of DG coupled phenomenon. Figure 11 shows the critical load versus GDRλ  for the proposed geometry and, 
as can be observed, the derivative of the curve for the first mode before .GDR 1 01λ =  (i.e. L=1850 mm) and after this 
slenderness factor, changes drastically, as well as the critical modal shape. In this case, it is difficult to get a shape that 
presents a clear DG interaction. Because of this obstacle of getting a DG interaction shape mode, the first (Figure 12, for 

0θ = ° ) and second mode (Figure 12, for 90θ = ° ) are combined. 
The buckling modal combination is performed using the first and the second mode shape, for a length of 1850mm. 

The buckling modes are illustrated in Figure 12 (global mode for o0θ =  and distortional mode for o90θ = ), and details 
about mode composition and critical loads are given in Table 2. The critical load and the modal shapes are provided by 
the FStr Computer Application Lazzari (2020). The modal participation percentages are given by the Constrained Finite 
Strip Method, cFSM, with the help of CUFSM computer program Schafer (2020), confirming, in addition, the same 
accurate agreement between FStr and CUFSM results (see in Lazzari (2020)). 
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Figure 12 Analogy of modal shape initial imperfection combination in function of θ  initial imperfection parameter (modal shapes 

amplified 10 times). 

Table 2 Critical load and modal buckling participation for first and second mode of LC 100x70x15x2.70. 

Mode 
Critical Load Half-wave 

Modal Participation (CUFSM Vector Norm) 

Type Shape 
Mode # Global Distortional Local Other 

[#] [kN] [#] [%] [%] [%] [%] 

First Mode Global (FT) 1o 354.5 1 88.6% 11.0% 0.3% 0.1% 

Second Mode Distortional 2o 356.2 4 1.6% 95.8% 2.4% 0.1% 

It can be noted that the first mode (Table 2) is clearly a “global” one, which is more precisely defined as a flexural-
torsional mode. In this case, the DG buckling interaction is mainly focused in the distortional-flexural-torsional (D-FT) 
interaction of lipped channel cross sections. In order to study additional DG buckling interactions, such as the flexural-
distortional and torsional-distortional coupled phenomena, another geometric cross section is required that exhibits the 
flexural or torsional buckling mode, in transition with the distortional mode. Also, the first and second buckling modes 
(Table 2) are not pure modes, since they are obtained with the signature curve. 

Table 3 shows slenderness factors, ratios between slenderness factors and column strength computed with the 
direct strength method for both distortional and global buckling, for each value of the yield stress, i.e. corresponding to 

/y crP P  ratios 0.7, 1.0, 2.0, 3.0, and Elastic, with   y yP A f=  as the column squash load. 

Table 3 Slenderness, ratios, and DSM strength of LC 100x70x15x2.70 at different yield stress. 

yf  
Lλ  Dλ  Gλ  λGDR  λDLR  /y crP P  nDP  nGP  

[MPa] [kN] [kN] 

345 0.69 0.82 0.83 1.00 1.20 0.7 208.6 181.6 

508 0.83 1.00 1.00 1.00 1.20 1.0 266.8 233.6 
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yf  
Lλ  Dλ  Gλ  λGDR  λDLR  /y crP P  nDP  nGP  

[MPa] [kN] [kN] 

1016 1.18 1.41 1.42 1.00 1.20 2.0 392.1 307.1 

1523 1.44 1.73 1.73 1.00 1.20 3.0 480.6 310.9 

Inf. Inf. Inf. Inf. 1.00 1.20 Elastic - - 

In Table 3: Lλ , Dλ  and Gλ  are the local, distortional and global slenderness factor; /GD G DRλ λ λ= is the ratio 
between Gλ  and Dλ ; /DL D LR  λ λ λ=  is the ratio between Dλ  and Lλ ; /y crP P  is the ratio between the squash load over 
the minimum critical load (in this case of True DG buckling interaction, crD crGP P≈ ); nGP  and nDP  are the DSM nominal 
axial strength given by DSM for distortional and global buckling, given by Eq. (1) and Eq. (2), respectively. 

According to Matsubara et al. (2019), for values of DLRλ  higher than 1.20, the LD buckling interaction will not 
develop. Also, the proposed LD interaction equation by Matsubara et al. (2019) converts to the pure distortional Winter-
type equation when .DLR 1 05λ ≥ . Based on the ratio values in Table 3, .DLR 1 2λ =  and .GDR 1 0λ = , probably True DG 
buckling interaction will occur. 

Now, the buckling modal combination is carried out using the displacement field ({ }Tu v w ) obtained in the finite 
strip method analysis and combining linearly the first and second mode displacements. Equation (5) shows the linear 
combination of the displacements, obtained from the eigenvectors [ ]Φ , given by the eigenvalue equation, 

[ ][ ] [ ][ ][ ]K KGΦ = Λ Φ . The matrix of the critical modal shapes [ ]Φ  represents the nodal line displacements for the 

degrees of freedom for each mode. This means that each column of the matrix [ ]Φ  represents the critical modal shape 
for one mode. Executing the proper space transformation, with a shape function matrix, it is possible to obtain the 
displacement field at any point inside each strip from the nodal line’s displacement. More information about the matrix 
formulation can be found in Lazzari (2020). 

 , , .1 2
1 2 1 1 2 2

1 2 1 2
Mode 1 Mode 2

u u u
C Cv v v where A   A

C C C C
w w w

β β β β
     
     = + = =     

+ +     
     

  (5) 

Since the displacement field is normalized, with a maximum displacement of 1.0, the coefficients 1β  and 2β  are the 
parameters of amplification of these shapes. These parameters are also defined in Eq. (5), where: ( )C1  cos θ= ; ( )C2  sin θ= ; 
θ  is an angle for changing the buckling modal combination; 1A  and 2A  are the maximum amplitude for IGI, for the first and 
second mode respectively. 

It should be noted that the parameters 1β  and 2β  (Eq. (5)) show a combination of the maximum amplitude for the 

initial imperfection. When o  0θ = , then, 1 1  Aβ =  and 2   0β = , on the other hand, when o  90θ = , then, 1   0β =  and 

2 2  Aβ = . Basically, θ  is a single parameter that allows changing the IGIs and consequently the buckling modal 
combination shape. In order to illustrate the modes combination, Figure 12 shows the product 1 1C A  and 2 2C A  varying 
in a “trigonometric ellipse”. This idea of combining the buckling modes in a “trigonometric ellipse” is inspired in a similar 
procedure proposed by Martins, Camotim and Dinis (2018a). 

The maximum amplitude for the IGI, which is   1A L 1000= ⁄  and   .  2A 0 94t= , are chosen based on studies by Martins, 
Camotim and Dinis (2018a) and Schafer and Peköz (1998a). With respect to these amplitudes, Table A.1 (Appendix) 
provides the percentage of each initial imperfection, in function of the θ  initial imperfection parameter. This table shows 
the mode contribution changing from 100% to -100% for each mode, but with a total modulus summation of 100%. 
Basically, the negative percentage of the mode represents a buckling modal combination in opposite modal shape, i.e. 
multiplied by -1. Thereby, all the possible cases are combined. 

Figure 13-a shows clearly a cyclic behavior of the ultimate load and its behavior. Additionally, the symmetry of the 
behavior can be seen in the first quadrant. Basically, the behavior of the first and second quadrant are the same as the 
third and fourth. Another way to depict this cyclic behavior can be with the deformed columns at the ultimate load step 
displayed in Figure 13-b. 

Table 3. Continued... 
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Figure 13 LC columns results for fy =345 MPa ( / .Py Pcr 0 7=  ): (a) FEM ultimate load versus θ  parameter; (b) maximum vector 

displacement at the limit load (or column strength) step for 0= oθ     to 360o , incremented by 45o . 

Note that in Figure 13-b the maximum displacement at ultimate load step changes based on the IGI shape. This 
shows the sensitivity of the column structural behavior depending on the initial geometric imperfection shape. Also, the 
cyclic behavior of the maximum displacement, from a global failure to a distortional one, is even clearer to notice. The 
maximum displacement cycle starts at mid span at the top flange and moves to the nearest distortional maximum half-
wave deformation (around 40% of the maximum length). From that, the maximum displacement “jumps” to the bottom 
flange, with a distortional shape collapse. From that point, the maximum displacement moves to the mid span again, but 
at the bottom flange and, after that, the cycle repeats. Those modal shapes on the column strength step show that an 
analysis from   o0θ =  until   o180θ =  is already sufficient to perform a complete DG interaction investigation. 

However, another cyclic and symmetric behavior for θ  in first and second quadrant can be noticed. To conclude, a 
complete description of the relation between buckling modes combination (definition of the initial geometric 
imperfection) and the collapse mechanism, a more thorough analysis based on accurate observation of the equilibrium 
paths of the columns is required to avoid erroneous conclusions. In this case, the post-buckling equilibrium paths for 

 ,o o0 180θ  =   , spaced with an increment of o15 , are illustrated below in Figure 14, Figure 15, and Figure 16. Each figure 

reveals the FEM results of the post-buckling paths for a different point in the cross-section. 
Comparing the post-buckling paths, a symmetric behavior among the initial imperfections with  ,o o0 90θ  =    and 

 ,o o90 180θ  =   , is detected. Analyzing the NT1 and NT3 displacements, Figure 14-a and Figure 15-a respectively, it is found that 

the initial imperfections with  ,o o0 90θ  =    for the NT1 displacement (Figure 14-a.1), has the same behavior as the initial 

imperfection with  ,o o90 180θ  =    for the NT3 displacement (Figure 15-a.2), as well as vice-versa. The same behavior happens 

comparing the displacement NT4 (Figure 15-b) and NT5 (Figure 16-a). While for the NT2 displacement (Figure 14-b), it has a 
symmetric behavior among its IGI with  ,o o0 90θ  =    and  ,o o90 180θ  =   . Basically, this symmetric behavior evidences a 

“mirroring” behavior of the initial imperfection with θ  from the first and second quadrant. This conclusion supports the 
parametric analysis of a large set of columns, to be conducted only with the initial imperfection for  ,o o0 90θ  =   . 
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Figure 14 Post-buckling equilibrium paths, load steps vs. out-of-plane displacement: (a) NT1, with    yf 345 MPa=  and 

  .  crP 354 5kN=  ( /   .y crP P 0 7= ) at .0 4L , from (a.1)  ,o o0 90θ  =    and (a.2)  ,o o90 180θ  =   ; (b) NT2, with    yf 345 MPa=  and 

  .  crP 354 5kN=  ( /   .y crP P 0 7= ) at .0 4L , from (b.1)  ,o o0 90θ  =    and (b.2)  ,o o90 180θ  =   . 

 
Figure 15 Post-buckling equilibrium paths, load steps vs. out-of-plane displacement: (a) NT3, with    yf 345 MPa=  and   .  crP 354 5kN=   

( /   .y crP P 0 7= ) at .0 4L , from (a.1)  ,o o0 90θ  =    and (a.2)  ,o o90 180θ  =   ; (b) NT4, with    yf 345 MPa=  and   .  crP 354 5kN=  (

/   .y crP P 0 7= ) at .0 4L , from (b.1)  ,o o0 90θ  =    and (b.2)  ,o o90 180θ  =   . 
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Figure 16 Post-buckling equilibrium paths, load steps vs. out-of-plane displacement (a) NT5, with    yf 345 MPa=  and   .  crP 354 5kN=   

( /   .y crP P 0 7= ) at .0 4L , from (a.1)  ,o o0 90θ  =    and (a.2)  ,o o90 180θ  =   , as well as (b) the displacements nomenclature and 

reference. 

4.1.1 IGI Combination with different yield stresses 

The next step is to investigate columns with a higher yield strength. The same analysis conducted for columns with 
345 MPa ( / .y crP P   0 7= ) yield stress is performed for columns with 508 MPa ( / .y crP P  1 0= ), 1016 MPa ( / .y crP P  2 0= ), 

1523 MPa ( / .y crP P  3 0= ) and an elastic behavior analysis ( /y crP P   ∞→ ), taking ,o o 0 90θ  =   . This type of analysis is 

useful when examining the behavior of columns in a much larger elastic buckling range. The results for these analyses 
are shown in Lazzari (2020), on the other hand, the table with slenderness, ratios and DSM strength, is shown in Table 3 
of the present investigation. 

In order to visualize and compare the influence of each yield strength in the column structural behavior, the post-
buckling equilibrium paths are presented. These results are shown in Figure 17, for , ,o o 0 45θ =  and o90 , i.e. 1G+0D, 
0.5G+0.5D, and 0G+1D, respectively, related to NT5 displacement (results with , ,o o o 15  30  60θ = , and o75  are in Lazzari 
(2020)). Those figures also show the failure mode at the ultimate load with equivalent stress contour plots, related to 
the von Mise’s yield criterion (the red areas represent the material reached the yielding condition). The color scale is 
proportional to the yield stress of each column, i.e. (i) yf 345 MPa= , (ii) yf 508 MPa= , (iii) yf 1016 MPa= , (iv) 

yf 1523 MPa= , and (v) elastic. 
Firstly, one may note that all equilibrium paths follow the elastic behavior until a bifurcation point. 

Specifically, for o0θ =  (1G+0D IGI, Figure 17-a) the bifurcation point is located on the elastic path for 
/ .Py Pcr 1 0≤ . Clearly, the stability behavior for ,o o0 45θ  =    (see Figure 17-a.2 and, Figure 17-b.2), i.e. only global 

and mixed global + distortional initial geometric imperfection, shows a transition behavior, while, surprisingly, 
for only distortional initial imperfection ( o90θ = , Figure 17-c.2), the behavior is quite unique, with a smaller 
maximum displacement. This singular behavior is probably affected by a considerable absence of the global mode 
participation. Furthermore, for θ  initial imperfection combination parameter close to o90 , the ultimate load 
occurs on larger displacements, and for o90θ =  (0G+1D), the ultimate load occurs in small displacements. 
Unfortunately, the finite element model with initial imperfection of 0G+1D did not converge for a higher squash 
load. 

Evidently, all the elastic columns behave in global mode for larger displacements (except for columns with 
0G+1D IGI, Figure 17-c.1). For columns with lower yield strength, on the other hand, the distortional mode 
develops at the beginning of the loading steps, when the distortional initial imperfection has a significant 
influence (see Figure 17-b.2). 
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Moreover, it is noticed that for columns with a predominance of global initial geometric imperfection, the 
yielding of the material is symmetric and more concentrated at mid span. Whereas for columns with more 
distortional initial imperfection, the yielding process is more widely distributed. 

 
Figure 17 Failure modes with von Mises's yield criterion distribution for (a.1) 1G+0D, (b.1) 0.5G+0.5D, and (c.1) 0G+1D initial 

imperfection and post-buckling equilibrium paths ( /P Pcr  vs. /d t  of displacement NT5 at .0 4L ) for different ratios of /Py Pcr , 

for (a.2) 1G+0D, (b.2) 0.5G+0.5D, and (c.2) 0G+1D IGI, where   .  crP 354 5kN=  and .  t 2 70 mm= . 

Comparing the strength of these columns with different IGI combination and different yield strength, it is possible 
to notice which initial imperfection influences more the column’s load capacity. Figure 18 shows the column strength vs. 
squash load, normalized with a critical load in both axes. 

As it was expected, and seen in Figure 18, for more elastic columns, the ultimate load increases. For / .y crP P 0 7= , 

the lower ultimate load occurs with only distortional initial imperfection ( o90θ = ). However, for / .y crP P 1 0= , the most 

detrimental load takes place with 50% of global and 50% of distortional mode contribution ( o45θ =  or 0.5G+0.5D) of IGI. 
Moreover, for higher yield stress, the lower ultimate load is affected only by global IGI ( o0θ = ). 

Basically, the proposed study of IGI combination allowed a thorough understanding of the complex behavior of the 
True DG buckling interaction (TI). It has shown that the different IGI combination affects the ultimate load and structural 
behavior for a column under the TI DG buckling interaction nature. Now, it is important to study the behavior of the DG 
buckling interaction with different types of buckling interaction, i.e. under SDI and SGI regions. 
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Figure 18 /u crP P  vs. /y crP P  of columns under different IGI combination, , o o0 90θ  =    and with yield stress of 345 MPa, 508 

MPa, 1016 MPa, and 1523 MPa. 

4.2 Analysis of DG buckling interaction nature 

This study consists of investigating columns with different slenderness factors, to better understand the influence 
of the interaction nature on the column’s strength. For this study the section LC 100x70x15x2.70 mm is considered with 
same geometry employed in the IGI combination analysis. However, the length of the column is modified, ranging from 
1500 to 2200 mm, with an increment step of 50 mm (total of 15 lengths). This changing of column’s length permits a 
modification of the global and distortional slenderness ratios and its contribution to the column behavior. 

Basically, the investigation is performed for columns with three different natures: secondary-global bifurcation DG 
interaction (SGI), true DG interaction (TI) and secondary-distortional bifurcation DG interaction (SDI). In other to illustrate 
the DG buckling interaction investigation, Figure 11 shows the signature curve in contrast with the pure local, distortional, 
and global buckling mode curves. 

Notice in Figure 11 that .GDR 0 84λ =  represents the length of 1500 mm, .GDR 1 01λ =  is correlated with a length of 
1850 mm and .GDR 1 18λ =  is associated with a length of 2200 mm. As can be observed, the range of SGI and SDI is not 
that extensive, because the analysis is limited to only one cross-section geometry. For a deeper understanding of the DG 
buckling interaction nature, it would be necessary to examine a wider variety of cross-section geometries (larger GDRλ  
range). The analysis performed in this research is focused on the TI nature, with fewer columns in the SGI and SDI regions. 

Before starting the parametric analysis, it is important to define the IGI. This investigation is concerned with two 
different types of IGI: 100% Global (1G+0D) buckling mode IGI and 50% Distortional + 50% Global (0.5G+0.5D) buckling 
mode IGI. The reason of adopting those two initial imperfections is based on the results from the last study in the 
subsection 4.1 (Sensibility analysis of the IGIs’ combination). Based on that study, it is concluded that for columns with a 
higher yield strength, 1G+0D IGI presents the lower ultimate column capacity. However, for columns with a lower yield 
strength, the 0.5G+0.5D IGI combination can give the lower column strength. These results revealed that a parametric 
study considering both IGI could indicate a difference in the column’s strength, and consequently, some unconformity 
with the Direct Strength Method (DSM). 

As a result of the IGI combination analysis, the following parametric study consists of using two different IGI (1G+0D 
and 0.5G+0.5D) for three different yielding stresses, 345 MPa, 508 MPa and 1016 MPa, i.e. applying 1G+0D with three 
yield stresses, and 0.5G+0.5D with also three yield stresses. For each of those yield stresses, the column strength capacity 
is reached, for 15 lengths, and compared with the actual distortional (Eq. (2)) and global direct strength equation (Eq. 
(1)). In addition, the strength is also compared to the proposed DG buckling interaction equations, proposed by Schafer 
(2002) (Eq. (3)) and by Martins, Camotim and Dinis (2018a) (Eq. (4)). 

To sum up, 15 columns with different lengths, 3 types of yield stresses and 2 different IGI, totalizing 90 columns, 
were analyzed. The critical loads, slenderness factors, ultimate loads, and nominal axial strength for the 90 columns are 
reported in Table A.2 (appendix). With the purpose of a clear data visualization, Figure 19 illustrates graphically all the 
columns strength compared with DSM-based equations, for each yielding and IGI. Each graph shows a comparison with 
the global (Eq. (1)), distortional (Eq. (2)), distortional-global (Eq. (3)) and global-distortional (Eq. (4)) equations. More 
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specifically, Figure 19-a shows the results for 345 MPa, Figure 19-b displays the results for 508 MPa and Figure 19-c reveal 
the results for 1016 MPa. 

Several observations can be made from Figure 19-a. First of all, the strength equation global-distortional, nGDP , 
(Eq. (4)) provides the most conservative approach, compared to the distortional-global (Eq. (3)) and global (Eq. (1)) 
equations, respectively nDGP  and nGP . Secondly, the DSM nominal axial strength for global buckling (Eq. (1)), gives 
explicitly the lowest nominal strength, when compared to the DSM nominal strength for distortional buckling, nDP , 
(Eq. (2)), because all the /u nDP P  data is below the /u nGP P  data, and since the uP  value is constant for both cases, it 
means that nDP  is higher than nGP . Thirdly, in Figure 19-a.1 a small discontinuous gap can be observed for all the /u nP P  
ratios ( .GDR 1 07λ ≈ ). This gap refers to the half-wave switch from 4 to 5 waves, in the distortional buckling mode as 
IGI. It was realized that this half-wave changes interfered in the ultimate load, resulting in a slight reduction of the 
column strength. With respect to the type of initial imperfection, the 1G+0D initial imperfection has shown a smoother 
changing of the ultimate load, without discontinuous gaps. Finally, another interesting observation is the variation of 
the ratio /u nDP P , which displays a continuous decreasing related to the ratio GDRλ . This illustrates the fact that the 
column is approaching a global critical buckling region, since it is “leaving” the distortional critical buckling region. 

There are a few remarks concerning the results for yield stress of 508 MPa, displayed in Figure 19-b. As reported by 
yielding of 345 MPa (Figure 19-a), the DSM-based equation global-distortional nGDP  (Eq. (4)) provides the most 
conservative approach. Moreover, the DSM nominal axial strength for global buckling, nGP , is lower than the nDP  
equation, which according to the DSM, the global buckling mode is the one which governs the instability limit state of 
the structural element in all GDRλ  range. Related to the IGI, the 1G+0D combination also has shown a softer changing of 
the ultimate load, without discontinuous gaps. As a final remark, the ratio /u nDP P  has also demonstrated a similar 
behavior, as well as for yielding of 345 MPa. This result undoubtedly emphasizes the assumption that the columns reach 
a global critical buckling region. 

 
Figure 19 Numerical-to-DSM-based ultimate loads vs DG slenderness ratio, for global Eq. (1), distortional Eq. (2), distortional-global 
Eq. (3), and global-distortional Eq. (4) DSM equations, with yielding stress of: (a) 345 MPa and (a.1) 0.5G+0.5D and (a.2) 1G+0D IGI; 

(b) 508 MPa and (b.1) 0.5G+0.5D and (b.2) 1G+0D IGI; (c) 1016 MPa and (c.1) 0.5G+0.5D and (c.1) 1G+0D IGI.  

One important observation in Figure 19-a.1 is the presence of two discontinuous gaps ( .DGR 0 87λ ≈  and .DGR 1 07λ ≈ ). 
These gaps are related to the change of the half-wave number of the IGI for the distortional buckling mode. It was noticed that 
the first gap corresponds to the half-wave switch from 3 to 4 half-waves, and the second gap from 4 to 5 half-waves. With even 
numbers of half-waves, there is a slight increase in the ultimate load. The possible reason for this strength increase is due to the 
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initial imperfection maximum displacement. When the half-wave number is odd, the maximum displacement from global and 
distortional modes coincides in the same cross-section, which is at mid span. Consequently, the maximum initial imperfection 
amplitude from each mode amplifies the maximum total displacement in the column, which end up resulting in a lower column 
strength capacity. 

Even though the data results for yielding of 345 and 508 MPa are similar in some aspects, the results for yield stress of 1016 
MPa, included in Figure 19-c, has shown a particular response. Since the columns with yield strength of 1016 MPa became further 
elastic, the behavior of the numerical ultimate load changed. It was noticed that the ratio /u nDP P  decreases faster when GDRλ  
increases. Furthermore, the /u nGP P  begins with 0.84 and speedily rises to 1.06 in both cases of IGI, showing that the ultimate 
load from the FEM approaches the DSM global equation quickly. On the other hand, the distortional-global nDGP  (Eq. (3)) and 
global-distortional nGDP  (Eq. (4)) interaction equations seem to stabilize on a plateau, with no abrupt changes. 

So far, the FEM data results are analyzed with the four possible equations separately. In order to compare the 
numerical ultimate load with the available standard DSM approach, Figure 20 provides a graphical illustration, where 

( ), , nDSM nLG nD nGP min P P P= . Figure 20-a shows the results for 0.5G+0.5D IGI, and Figure 20-b exhibits the results for 1G+0D 
IGI combination. 

 
Figure 20 FEM ultimate Load over DSM Nominal Axial Strength versus DG slenderness ratio, considering (a) 50% global + 50% 

distortional initial imperfection and (b) 100% global initial imperfection.  

It is noticeable that the larger the elastic behavior range, corresponding to higher yielding stress, the lower is the 
/u nDSMP P  ratio, for .GDR 1 08λ <  with 0.5G+0.5D IGI combination, and for .GDR 1 15λ <  with 1G+0D IGI combination. 

Additionally, these columns with lower values of GDRλ  and higher yielding, seem to diverge from the original DSM 
equation, due to a possible D-G buckling interaction in a secondary-global bifurcation D-G interaction (SGI) region. Lastly, 
comparing the two cases of initial imperfection combination, it is noticed that the mean, maximum and minimum value 
of /u nDSMP P  ratio, are similar to each type of imperfection, while the 0.5G+0.5D initial imperfection combination presents 
the lower standard deviation and coefficient of variation. 

Another approach to visualize the FEM results uP  in Figure 20, is to display the corresponding data in the traditional 
column strength design curve ( /u yP P ) versus global slenderness factor ( Gλ ), taking the DSM nominal column strength 
equation (Eq. (1)), restricted to the global buckling mode. This graphical data is illustrated in Figure 21-b. This figure 
basically shows all the 90 columns strength over squash load ratio versus the global buckling slenderness factor, in 
addition with the global DSM equation and the Euler column curve for reference  / 2

G1 λ . Additionally, the same data is 
shown in Figure 21-a, but in comparison with the design approaches , , ,nG nD nGDP P P  and nDGP . 

In Figure 21-a it is shown how dispersed the DSM equations are from the ultimate load from FEM. Notice that the nDP  
procedure is clearly not corresponding to the column’s strength. Furthermore, the , nG nGDP P , and nDGP  appears to have more 
accurate approaches, even though the nGDP  and nDGP  procedures have shown to be quite conservative (points along the line -
5% of n uP P= ). 
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In addition, notice in Figure 21-b that the difference of the 0.5G+0.5D and 1G+0D IGI in the global DSM equation is 
negligible. One important observation is the influence of the yielding stress. For yielding of 345 and 508 MPa, the /u yP P  
ratios are above the nGP  equation, while for yielding of 1016 MPa, the /u yP P  ratios are mostly below the nGP  equation 
(see dashed circle in Figure 21-b). These results indicate that the global DSM equation handle well the columns under 
different types of DG buckling interaction nature (i.e. TI, SDI and SGI). 

 
Figure 21 FEM column strength over Squash Load ( /u yP P ) results, with different yield stress and IGI, compared with: (a) the DSM 

equations ( , , ,  nG nD nGD nDGP P P and P ); (b) the global DSM equation Eq. (1) and Euler / 2
G1 λ  curve. 

One important observation can be made from Figure 21-b, related to the data from 1016 MPa. The data with /u yP P  
in the range of .GDR 0 87λ <  (i.e.  .G 1 20λ ≈ ) seems to be far from the DSM nominal axial strength for global buckling. 
However, these values of nominal strength are close to the distortional equation (see dashed circle in Figure 21-a). 
Because of this, these columns are probably in a region of distortional or DG coupled phenomenon failure (as can be 
seen in the dashed circles in Figure 20 and Figure 21). 

Finally, the FEM results are compared with the proposed distortional-global equation (Eq. (3)) and global-
distortional equation (Eq. (4)). Figure 22 displays the finite element column strength over DSM-based nominal axial 
strength ( /u nP P ) versus DG slenderness ratio ( GDRλ ). The graphs illustrate the effectivity of the formulations considering 
the DG buckling interaction studied in this research, where Figure 22-a and Figure 22-b are addressed to 0.5G+0.5D and 
1G+0D initial imperfection combination, respectively. 

 
Figure 22 FEM ultimate Load over DSM-based Nominal Axial Strength versus DG slenderness ratio for distortional-global Eq. (3) and 

global-distortional Eq. (4) equations taking (a) 50% global + 50% distortional IGI and (b) 100% global IGI.  
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In general, Figure 22 has shown that the proposed equations by Schafer (2002) (Eq. (3)) and by Martins, Camotim 
and Dinis (2018a) (Eq. (4)) show a good agreement, i.e. lower standard deviation and coefficient of variation. Even though 
the standard deviation and coefficient of variation for both equations and both IGI combinations are relatively low, the 
mean, maximum, and minimum values have demonstrated that the proposed formulations are conservative. This means 
that the DSM nominal axial strength for the global buckling presented in the codes (Eq. (1)) is accurate enough for DG 
buckling interaction. These results are obviously limited by a group of the available column results, while the proposed 
DG buckling interaction equations handle quite conservatively the DSM-based nominal strength comparing to the 
ultimate load from the FEM. More specifically, note that the nDGP  equation is less conservative than the nGDP , which can 
be justified by comparing the mean, standard deviation, coefficient of variation, minimum and maximum values (Figure 
22 and Table 4). Note that nDGP  provides a lower mean, minimum and maximum value while the nDGP  and nGDP  equations 
give values of standard deviation and coefficient of variation relatively low (less than 0.044 and 3.6%, respectively). 

In addition, it is noticed that the influence of the IGI type is not a relevant factor for the FEM performance of the 
columns. Even though the 1G+0D initial imperfection combination (Figure 22-b) has shown a sparser data for the nGDP  
equation, compared to the results from the nGDP  equation with the 0.5G+0.5D initial imperfection (Figure 22-a), the 
influence on the numerical ultimate load is minimal. On the other hand, the nDGP  equation revealed to have a minor 
impact on the data dispersion, when comparing both initial imperfections standard deviation and coefficient of variation. 

Finally, comparing the nDGP , nGDP  and nGP  approaches, the conclusion can be drawn that the nGP  procedure, already 
presented in the codes, handles the DG coupled phenomenon properly, for lipped channel columns tested in this study. 
The nominal axial strength equation for global buckling from the DSM was calibrated with many experiments of columns 
under global buckling. The coefficients calibrated for this equation, were revised by many authors, and it is a quite 
consolidated formulation (from low to intermediate slenderness columns, as reported by Dinis et al. (2020)). 

Table 4 Means, standard deviations, coefficient of variation and maximum/minimum values of the numerical-to-predicted ultimate 
load ratios for 0.5G+0.5D and 1G+0D IGI (n = number of columns). 

n 

IGI (0.5G+0.5D) IGI (1G+0D) 

Pu/PnG Pu /PnD Pu /PnDG Pu /PnGD Pu /PnG Pu /PnD Pu /PnDG Pu /PnGD 

45 45 45 45 45 45 45 45 

Mean 1.01 0.85 1.14 1.18 1.03 0.87 1.17 1.20 

St. Dev. 0.068 0.102 0.029 0.023 0.084 0.118 0.026 0.044 

Coeff. V. 6.7% 12.0% 2.5% 1.9% 8.2% 13.6% 2.3% 3.6% 

Max 1.10 0.97 1.20 1.21 1.11 1.02 1.22 1.27 

Min 0.84 0.63 1.09 1.14 0.84 0.63 1.13 1.14 

5 FINAL REMARKS 

The present research mainly provided an improvement in the comprehension of the distortional-global interaction 
buckling phenomenon, including both (i) its post-buckling behavior and (ii) the column ultimate load (strength). The 
investigation was aimed at CFS lipped channel columns, since these are CFS widely applied in steel construction and are 
prone to develop a DG buckling interaction. 

Based on previous results and the numerical/computational support, a parametric study on distortional-global buckling 
interaction was carried out. The parametric analysis involved the FStr computational program for the definition of the initial 
geometric imperfections to be considered by the FEM non-linear analysis. Basically, only one cross-section of a lipped-channel 
was considered, with many combinations of yield stress yf  and column’s length L . The study was divided into two different 
investigations: (i) initial geometric imperfection combination and (ii) distortional-global buckling interaction nature, namely 
Secondary Distortional, Secondary Global and True Interaction, respectively SDI, SGI, and TI. 

5.1 The importance of the imperfection combination with different yield stress 

With respect to the initial geometric imperfection combination, the following points must be made: 

(i) Combining the initial geometric imperfection as first and second mode (which were classified as global and 
distortional mode), was an approach to include the distortional-global coupled phenomenon behavior into the 
post-buckling analysis, which was not clearly predictable by the elastic buckling analysis; 
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(ii) Using an initial imperfection combination parameter θ , the initial geometric imperfection was modified, 
combining the global (flexural-torsional) with the distortional mode in different participation levels. Through this 
combination, the column strength analysis was performed and it was concluded that when θ  belongs to the 
first and second quadrant (see Figure 12), a symmetric behavior was observed with the third and fourth 
quadrant. Indeed, the columns with an initial imperfection combination of  o o0 180θ< <  show the same results 
as columns with  o o180 360θ< < , because in theory, the initial geometric imperfections were basically rotated, 
i.e. the modes were multiplied by minus one. 

(iii) In addition to the initial imperfection combination parameter θ , an additional cyclic behavior was noticed. The 
post-buckling equilibrium path results, with  o o0 180θ≤ ≤ , show “mirroring” behavior in the ranges of 

 o o0 90θ< <  and  o o90 180θ< < . This conclusion indicates that follow up FEM analyses will be satisfactorily 
completed by simply varying θ  from o0  to o90 ; 

(iv) Surprisingly, the columns with only distortional initial geometric imperfection (  o90θ = ) have shown a post-
buckling behavior completely different from columns o o0 90θ≤ < . This curious behavior was probably triggered 
by the missing of the global buckling mode. On the other hand, the columns at the range o o0 90θ≤ <  have 
shown a similar behavior of the stability path. 

(v) For the columns with a higher yield stress (developing larger elastic equilibrium path) and the geometric 
imperfections in the range of o o0 90θ≤ < , the predominance of the global mode with larger displacements was 
evident. On the other hand, columns with lower yield strength (less slender columns) developed a pronounced 
distortional buckling mode at the very beginning of the loading process, showing that the distortional initial 
imperfection significantly influences at the early steps of the loading; 

(vi) It has been shown that in columns with a lower yield strength, the distortional initial geometric imperfection 
(0G+1D) provides a lower ultimate load. For columns with intermediate slenderness, controlled in the present 
study by the variation of the yield stress, the combined initial geometric imperfection with 50% of global and 
50% of distortional mode (0.5G+0.5D) gives the lower ultimate load. While for columns with very high yielding, 
the most detrimental ultimate load takes place with only global initial geometric imperfection (1G+0D). In 
conclusion, this analysis has shown that the initial geometric imperfection may affect the ultimate load and the 
column strength in different manners, according to the nature of DG buckling interaction. 

5.2 The role of the nature of the DG buckling interaction in the behavior and strength of the columns 

Regarding the investigation of the distortional-global buckling interaction nature, the following observations were reported: 

(i) It has been noticed that for high yield strength columns in the secondary-global bifurcation DG interaction region (which 
means lower values of GDRλ ) appears to diverge from the original direct strength method, which indicates a strong 
evidence of weak-to-moderate DG buckling interaction; 

(ii) Comparing the results with the two types of initial geometric imperfection considered (0.5G+0.5D and 1G+0D), it was 
concluded that the influence of the initial imperfection form was negligible in the ultimate load. Thereby, using an initial 
geometric imperfection with only a global (flexural-torsional) mode shape is sufficient to perform a parametric study on 
the distortional-flexural-torsional coupled phenomenon; 

(iii) The proposed equations by Schafer (2002) (Eq. (3)) and Martins, Camotim and Dinis (2018a) (Eq. (4)) addressed rather 
conservative results for the strength of the lipped channel columns described in the present research. More specifically, 
between the two approaches investigated here, the nGDP  equation (Eq. (4)) has demonstrated to be more conservative 
than the nDGP  (Eq. (3)) approach; 

(iv) The direct strength method equation addressed to global buckling can handle quite well the columns under the different 
DG nature (of the buckling interaction). However, the limits of the present investigation must be pointed, addressed only 
to lipped channel columns. Additional results of columns with different cross-section shapes and a wider range of GDRλ  
are needed to strengthen this assumption as a rule; 

(v) The authors believe that the new calibrated equations for global buckling, i.e. Dinis et al. (2020), might be a good 
approach for the case of DG buckling interaction for high slenderness columns. Additionally, for different types of end 
boundary condition, the DG buckling interaction approach, might be considered combining the new calibrated equations 
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(i.e. Dinis et al. (2020) for global buckling and Liu et al. (2020) for distortional buckling) based on an idea proposed by 
Schafer (2002), i.e. replace the yP  from the distortional equation (Liu et al. (2020)) by the nGP  (Dinis et al. (2020)). 

The conclusions obtained from the DG buckling interaction behavior are basically aligned with the ones found by and 
Martins, Camotim and Dinis (2018a), Dinis and Camotim (2011) and Martins et al. (2018d). However, more investigations on this 
topic are still needed, to better understands the phenomenon, since there is a lack of experimental tests of columns experiencing 
the distortional-global buckling interaction, in different types of nature. 

To sum up, this work made possible a more thorough understanding of cold-formed lipped-channel columns under DG 
buckling interaction, with assistance of an elastic buckling analysis by the finite strip method, complimented by nonlinear FEM 
analysis. As initially proposed, the goal of this study has been achieved, with possible open topics that may be investigated in 
future research activities. 
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APPENDIX 

Table A.1. Absolute value of IGI amplification parameters with their correspondent percentage and the FEM ultimate 
compressiveload for each imperfection combination of LC 100x70x15x2.70 mm, with fy=345 MPa and L=1850 mm. 

Theta (𝛉𝛉) 
MODE* 

 1β   2β  % Mode 1 % Mode 2 
Name uP  (fy=345 Mpa) 

[Degrees] [mm] [mm] [ %] [ %] [kN] 

0 G (+) 1.85 0.00 100% 0% 1G+0D 204.6 
15 DG (+) 1.46 0.54 79% 21% 0.8G+0.2D 204.2 
30 DG (+) 1.17 0.93 63% 37% 0.6G+0.4D 202.5 
45 DG (+) 0.93 1.27 50% 50% 0.5G+0.5D 201.7 
60 DG (+) 0.68 1.61 37% 63% 0.4G+0.6D 201.7 
75 DG (+) 0.39 2.00 21% 79% 0.2G+0.8D 201.8 
90 D (+) 0.00 2.54 0% 100% 0G+1D 200.6 

105 DG (-) -0.39 2.00 -21% 79% -0.2G+0.8D 201.8 
120 DG (-) -0.68 1.61 -37% 63% -0.4G+0.6D 201.7 
135 DG (-) -0.93 1.27 -50% 50% -0.5G+0.5D 201.7 
150 DG (-) -1.17 0.93 -63% 37% -0.6G+0.4D 202.5 
165 DG (-) -1.46 0.54 -79% 21% -0.8G+0.2D 204.2 
180 G (-) -1.85 0.00 -100% 0% -1G+0D 204.6 
195 DG (+) -1.46 -0.54 -79% -21% -0.8G-0.2D 204.2 
210 DG (+) -1.17 -0.93 -63% -37% -0.6G-0.4D 202.5 
225 DG (+) -0.93 -1.27 -50% -50% -0.5G-0.5D 201.7 
240 DG (+) -0.68 -1.61 -37% -63% -0.4G-0.6D 201.7 
255 DG (+) -0.39 -2.00 -21% -79% -0.2G-0.8D 201.8 
270 D (-) 0.00 -2.54 0% -100% 0G-1D 200.6 
285 DG (-) 0.39 -2.00 21% -79% 0.2G-0.8D 201.8 
300 DG (-) 0.68 -1.61 37% -63% 0.4G-0.6D 201.7 
315 DG (-) 0.93 -1.27 50% -50% 0.5G-0.5D 201.7 
330 DG (-) 1.17 -0.93 63% -37% 0.6G-0.4D 202.5 
345 DG (-) 1.46 -0.54 79% -21% 0.8G-0.2D 204.2 

* Modal shape of the initial geometric imperfection (IGI), where (+) is the modal shape in original form and (-) is the modal shape multiplied by -1. 

Table A.2. FEM ultimate load, and DSM-based strength of LC 100x70x15x2.70 mm columns for different yield stress and length. 

fy L 
Pure Critical Load 

λD λG RλGD 

Pu 
PnD PnG PnDG PnGD 

PcrD PcrG 0.5G+0.5D 1G+0G 

[MPa] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

345 1500 396.5 561.9 0.78 0.66 0.84 209.8 217.7 215.7 201.7 189.1 183.7 
1550 395.8 527.4 0.78 0.68 0.87 208.3 216.3 215.6 199.3 187.3 181.7 
1600 395.6 496.1 0.78 0.70 0.89 208.3 214.7 215.5 197.0 185.6 179.7 
1650 393.8 467.7 0.78 0.72 0.92 207.1 212.9 215.2 194.5 183.6 177.5 
1700 390.1 441.7 0.79 0.74 0.94 206.0 211.2 214.6 192.1 181.5 175.1 
1750 387.2 417.8 0.79 0.76 0.96 204.5 209.0 214.2 189.6 179.3 172.8 
1800 384.9 396.0 0.79 0.78 0.99 203.1 206.9 213.8 187.1 177.2 170.5 
1850 383.3 375.9 0.79 0.80 1.01 201.4 204.9 213.5 184.5 175.2 168.3 
1900 382.3 357.3 0.79 0.82 1.03 199.7 202.1 213.3 182.0 173.2 166.2 
1950 381.7 340.2 0.80 0.84 1.06 197.7 199.5 213.2 179.4 171.2 164.0 
2000 381.5 324.3 0.80 0.86 1.08 189.7 196.8 213.2 176.8 169.2 161.9 
2050 381.4 309.6 0.80 0.88 1.11 187.7 193.9 213.2 174.2 167.2 159.8 
2100 379.8 295.9 0.80 0.90 1.13 185.6 190.8 212.9 171.6 165.1 157.5 
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fy L 
Pure Critical Load 

λD λG RλGD 

Pu 
PnD PnG PnDG PnGD 

PcrD PcrG 0.5G+0.5D 1G+0G 

[MPa] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 
2150 378.0 283.2 0.80 0.92 1.16 183.5 187.7 212.6 169.0 162.9 155.3 
2200 376.6 271.3 0.80 0.94 1.18 181.3 184.4 212.3 166.4 160.7 153.0 

508 1500 396.5 561.9 0.95 0.80 0.84 267.5 284.0 278.3 272.8 234.6 226.2 
1550 395.8 527.4 0.95 0.82 0.87 262.4 281.8 278.1 268.1 231.7 223.0 
1600 395.6 496.1 0.95 0.85 0.89 266.2 279.5 278.0 263.4 228.9 219.9 
1650 393.8 467.7 0.95 0.87 0.92 262.2 275.8 277.5 258.6 225.8 216.5 
1700 390.1 441.7 0.95 0.90 0.94 258.1 271.2 276.5 253.8 222.2 212.8 
1750 387.2 417.8 0.96 0.92 0.96 253.9 266.0 275.7 249.0 218.8 209.2 
1800 384.9 396.0 0.96 0.95 0.99 249.6 260.8 275.1 244.2 215.4 205.7 
1850 383.3 375.9 0.96 0.97 1.01 245.3 255.3 274.7 239.3 212.2 202.3 
1900 382.3 357.3 0.96 1.00 1.03 240.9 249.7 274.4 234.4 209.0 199.0 
1950 381.7 340.2 0.97 1.02 1.06 236.2 243.8 274.2 229.6 205.8 195.7 
2000 381.5 324.3 0.97 1.05 1.08 221.8 237.9 274.1 224.7 202.7 192.5 
2050 381.4 309.6 0.97 1.07 1.11 217.7 232.1 274.1 219.9 199.5 189.2 
2100 379.8 295.9 0.97 1.10 1.13 213.6 226.2 273.7 215.0 196.1 185.8 
2150 378.0 283.2 0.97 1.12 1.16 209.5 220.4 273.2 210.2 192.7 182.4 
2200 376.6 271.3 0.97 1.14 1.18 205.5 214.7 272.8 205.4 189.2 179.1 

1016 1500 396.5 561.9 1.34 1.12 0.84 349.9 351.9 412.7 418.7 307.2 303.5 
1550 395.8 527.4 1.34 1.16 0.87 340.7 344.8 412.3 404.4 300.7 297.2 
1600 395.6 496.1 1.34 1.20 0.89 348.7 336.8 412.2 390.3 294.3 291.1 
1650 393.8 467.7 1.34 1.23 0.92 337.6 328.2 411.3 376.3 287.4 284.7 
1700 390.1 441.7 1.35 1.27 0.94 327.5 319.5 409.5 362.4 279.8 277.8 
1750 387.2 417.8 1.36 1.30 0.96 318.5 310.3 408.0 348.8 272.5 271.1 
1800 384.9 396.0 1.36 1.34 0.99 310.0 301.4 406.9 335.3 265.3 264.7 
1850 383.3 375.9 1.36 1.38 1.01 302.1 294.5 406.1 322.1 258.3 258.4 
1900 382.3 357.3 1.36 1.41 1.03 294.5 287.8 405.6 309.2 251.4 252.2 
1950 381.7 340.2 1.36 1.45 1.06 287.4 281.4 405.3 296.5 244.6 246.2 
2000 381.5 324.3 1.37 1.48 1.08 275.8 275.1 405.2 284.1 237.9 240.2 
2050 381.4 309.6 1.37 1.52 1.11 269.8 269.1 405.1 271.5 230.9 234.3 
2100 379.8 295.9 1.37 1.55 1.13 264.1 263.2 404.3 259.5 223.7 228.2 
2150 378.0 283.2 1.37 1.58 1.16 258.5 257.6 403.4 248.4 216.8 222.2 
2200 376.6 271.3 1.37 1.62 1.18 253.1 252.1 402.7 237.9 210.2 216.4 
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