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Abstract 
The importance of knowing critical loads and post-critical behavior of thin-walled structures motivates the 
development of several scientific and practical studies. Most references are concerned with stability analysis 
for small displacements (first order approach), or with second order stability analyzes, a less precise geometric 
nonlinear strategy. However, very flexible structures or ones that present small loss of stiffness after the first 
critical load need more careful analysis. Here we present a shell numerical formulation capable of carrying 
out stability analysis of thin-walled structures developing large displacements. This formulation uses 
generalized unconstrained vectors as nodal parameters instead of rotations. To make possible a complete 
stability analysis using unconstrained vectors, we present an original strategy that imposes a Conjugate Modal 
Force at the vicinity of critical points, allowing an accurate choice of post-critical paths. Non-conservative 
forces are also considered and results are compared with literature benchmarks, demonstrating the accuracy 
and capacity of the proposed formulation. 
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1 INTRODUCTION 

The stability of thin-walled structures is studied by several important works of today and the last decades. These 
studies are justified by the search for light structures to support high loads, providing savings in natural resources and 
ensuring safety for users. In this sense, the knowledge of the sensitivity of the mechanical behavior of structural elements 
related to imperfections is a research area in constant improvement. Sources of imperfections may come from load 
application, geometry and material defects. Classical studies (Bleich, 1952; Timoshenko and Gere, 1961; Murray, 1986; 
Bazant and Cedolin, 1991) analyzing structures with simple geometry and boundary conditions have shown the 
considerable effect of the presence of imperfections in the achieved critical loads. Among analytical and semi-analytical 
approaches to solve robust plate buckling, Heydari et al. (2017) solved the buckling of circular functionally graded plates 
on elastic foundations, providing proper adhesive functions satisfying boundary conditions. 

The use of numerical methods to analyze structural stability is indispensable when more general geometry and 
boundary conditions are considered. In this sense one may cite, among others, works related to the Finite Strip Methods 
(FSM) and Generalized Beam Theory (GBT). Regarding FSM, Ádány and Schafer (2006a) originally proposed the buckling 
mode decomposition for single-branched open cross-section members. In Ádány and Schafer (2006b) applications 
related to the proposed technique are performed. In Ádány and Schafer (2008) this strategy of modal decomposition 
was extended to general open cross sections. Finally, in Li and Schafer (2010) this formulation is applied in cold-formed 
steel members design. A good review of this subject can be seen in Li et al. (2014). 

Regarding GBT, in Dinis et al. (2006) one can see the formal equations of GBT for general branched cross section, the 
separation of instability buckling modes and applications. In Camotim et al. (2006) an interesting overview of the 
possibilities of future applications of GBT is presented. Gonçalves et al. (2009) present the first order buckling behavior of 
thin-walled members of any cross section using GBT. In Camotiom et al. (2010) one can see a review of GBT, in which all 
aspects of this formulation are mentioned in detail. Bebiano et al. (2015) rationalize and automate the GBT strategy creating 
bases for software configurations. These methods, applied in instability analysis, received a lot of contributions in the last 
years, as for example, Silvestre et al. (2019), Basaglia et al. (2019) and Manta et al. (2020) for GBT and Mirzaei et al. (2015), 
Poorveis et al. (2019) and Shahmohammadi et al. (2019) for FSM. Some interesting works using classical Finite Element 
Method (FEM) and solving stability problems may be cited (Mororo et al., 2015; Pastor and Roure, 2009; Ren et al., 2006). 
Among them, applications related to the stability of thin-walled structures are present, for example, in Anbarasu and 
Sukumar (2014), Ghumare and Sayyad (2017) and Soares et al. (2019). These works verify the presence of limit points and 
bifurcations along the equilibrium path. Almost all computational codes use the Newton-Raphson and/or Arc-Length 
techniques to find the equilibrium path. The instability points along the equilibrium path are usually identified by some 
supporting strategy, as the verification of the tangent stiffness matrix determinant or eigenvalues. 

In the present study, we are interested in developing a specific strategy to deal with equilibrium path and bifurcation 
points by the position based FEM. As far as the authors' knowledge goes, the first study to describe a position based FEM 
is the paper of Bonet et al. (2000) in which pressurized membranes are analyzed. In Coda (2003) this approach is applied 
to solve simple hyperelastic 2D solids and, after that, the last author developed, with co-workers, several variations of 
this formulation. Only mentioning the works that are related with the present study, in Coda and Greco (2004) a 2D 
frame dynamic formulation (still using angles as variables) was presented. When developing its extension to 3D 
applications the unconstrained vector idea arises as an alternative to Euler-Rodrigues or Quaternions. The first work 
using the unconstrained vector that presents (with details) the geometric description is Coda and Paccola (2007). Another 
work that clarifies the understanding of the unconstrained vector kinematics is Coda (2009). Three are the main 
advantages of using the positional unconstrained vector to model 3D bars and shells: (i) As the formulation is total 
Lagrangian, inverse problems are easily solved, see for instance Coda (2015). (ii) As unconstrained vectors are Lagrangian 
variables, there is no incremental updating (necessary when using co-rotational formulations, as an example). Thus, the 
equilibrium is achieved for the full variable, reducing accumulated errors, see example 11.2 at Coda and Paccola (2010), 
(iii) The mass matrix of unconstrained vector formulation is constant, therefore simple time integration algorithms can 
be used in transient analysis, see Coda (2009) or Coda (2015). Other advantages are the natural consideration of cross 
section shear strain; the presence of a numerical chain rule that facilitates the description of initially curved elements; 
and the simple teaching. 

More recently, the unconstrained vector kinematics has been successfully applied in various structural problems 
(Coda et al., 2020; Siqueira and Coda, 2016; Pascon and Coda, 2013). Other recent works using the positional FEM based 
on unconstrained vectors instead of finite rotations may also be mentioned (Coda, 2015; Paccola et al., 2016; Coda et al., 
2017). The use of unconstrained vectors in the analysis of structures composed of non-smooth surfaces - as occurs in the 
usual analysis of metal profiles - exposes the problem of the non-uniqueness of the normal versor at corners and edges. 
This problem has been solved in Soares et al. (2019) enabling the technique to solve more complex structural problems. 
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In order to make possible the stability analysis using unconstrained vectors, in this study we present an original 
strategy that imposes a Conjugate Modal Force at the vicinity of structural critical points, allowing an accurate choice of 
post-critical paths by the arc-length method including non-conservative loads (Crisfield, 1981; Feng et al., 1996). The 
proposed strategy uses the primary idea of imposing perturbations at the vicinity of instability points (Wagner and 
Wriggers, 1988; Shi, 1996; Fujji and Okazawa, 1997) to find post-critical paths. In this work, the perturbation is originally 
expressed as forces conjugated to the instability modes at the critical point. The chosen conjugate force is appropriately 
applied and removed with the only objective of overcoming bifurcations. 

The organization of the work begins with the kinematics description of the adopted finite element. Then the 
constitutive law is described and the equilibrium equations (in their weak form and considering the presence of non-
conservative forces) are presented. The applied Arc-Length method is also described using a background of the positional 
formulation and the proposed perturbation methodology. The perturbation force calculated from eigenvectors is 
described at the end of the theoretical sections. Numerical examples explore equilibrium paths that have bifurcations, 
including pressurized tubes, proving the accuracy and applicability of the proposed technique. 

2 POSITIONAL MAPPINGS – KINEMATICS 

Coda and Paccola (2008) first presented the isoparametric positional shell element, adopted here. The nodal 
parameters are generalized vectors, positions and transverse strain variation. It is worth noting that the transverse strain 
variation is introduced to make the kinematics free from volumetric locking when using 3D complete constitutive models. 

Observing Figure 1 it is easy to identify that the positional FEM is a Total Lagrangian formulation, as, by means of 
the initial mapping 0  (Eq. (1)) and the current mapping 1  (Eq. (2)) one writes the change of configuration function   
by the composition presented in Eq. (3), which states that the initial configuration is the reference one. The initial and 
current mappings are given by: 

0
1

0
2 3 1 2,( ) ( ) ,( )

2
k k k kh

       x n   (1) 

1 20
1 2 3 1 2 3 1 2( ) ( ), , ,( ) ( )

2
k k m m k kh

a               y v   (2) 

in which 0h  is the initial shell thickness, k  is the shape function of node k , kx  and ky  are, respectively, nodal positions 

at initial and current configurations of node k , kn  is the normal unit vector of node k  at the initial configuration, kv  is 
the generalized vector of node k  at current configuration, ma  is the thickness strain variation of node m  and 

1 2 3, ,( )    is the dimensionless coordinate vector. Furthermore, repetition of indexes k  and m  indicates 
summation over element’s nodes, which are highlighted in Figure 1. 

 
Figure 1 Mapping of initial and current configurations from a dimensionless space. 
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As mentioned, the change of configuration function is written as: 

1 0 1( )    (3) 

In order to achieve objective strains (Ogden, 1984) it is important to calculate the gradient of the change of 
configuration function. This gradient is denoted here by symbol A , and can be written as follows: 

1 0 1( )A A A  (4) 

in which 
0 0 0   A   

 and 
1 1 1   A   

. 
From Eq. (4) one calculates the Green-Lagrange strain tensor (Ogden, 1984) as: 

0 1 1 0 11 1
( () ( )

2
)

2
T T T             E A A I A A A A I  (5) 

in which I  is the second order identity tensor. The unknowns of the problem are nodal current positions, nodal 
unconstrained vectors and nodal strain variation values, clearly present in 1  (Eq. 2). 

3 CONSTITUTIVE RELATIONS 

Due to the thickness strain variation, the use of a complete 3D constitutive law does not imply locking. Thus, the 
Saint-Venant-Kirchhoff constitutive Law is adopted and the corresponding specific strain energy is written as: 

1
: :

2
u  E EC  (6) 

in which 2 (1 2 )G        I IC ℑ  is the fourth order elastic constitutive tensor, G  is the shear elastic modulus, 

  is the Poisson ratio and ℑ  is the identity tensor of fourth order. 
The energy conjugate of the Green-Lagrange strain (Eq. (5)) is the second Piola-Kirchhoff stress S , defined from the 

derivative of Eq. (6) regarding the Green-Lagrange strain as: 

:
u

 


S E
E

C  (7) 

As usual, see (Ogden 1984), the constitutive elastic tensor can be recovered by the second derivative of the specific 
strain energy, Eq. (6), regarding Green-Lagrange strain, i.e., 

2u


  E E
C  (8) 

4 EQUILIBRIUM EQUATIONS 

Before introducing non-conservative loads, the equilibrium equations can be obtained from the principle of 
stationary mechanical energy. The total mechanical energy is written as: 

U P    (9) 

in which U  is the internal strain energy and P  is the potential of external conservative forces, defined as: 
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0

0( )dU u


    (10) 

0 0

0 0 0 0d dP
 

      p b   (11) 

in which 0  is the solid domain at initial configuration, 0  is the boundary of 0 , 0p  is the distributed applied load 

vector, 0b  is the vector of volume forces and   is the change of configuration function at surfaces or lines. It is important 
to stress that non-conservative forces will be introduced only at Eq. (20). 

The shape functions used to model surfaces or lines will be called k , associated to node k  of a discrete element 

on 0 , in contrast with the previous notation k  used in Eq. (1) and Eq. (2). Then, the function  can be written as: 

k k y  (12) 

The principle of stationary mechanical energy states that at equilibrium the first variation of Eq. (9) is null, i.e.: 

0U P       (13) 

From now on y  will be a nodal parameter vector that contains ky , kv  and ka  of each node k , thus, the equilibrium 
condition can be set defining in Eq. (13) a variation regarding y  as: 

0
U P

 
           

y
y y

 (14) 

with 

0 0

0 0d d:
( ) intuU

 


 

  
  

 
E

S f
y y y


 (15) 

0 0

0 0 0 0d d extP

 

 
  

    
  

  p b f
y y y

 
 (16) 

being intf  and extf  the internal and external forces, conjugate quantities of strain and external potential energies, see 
Eqs. (10) and (11) and S  is Piola-Kirchhoff stress (Eq. (7)). 

As y  is arbitrary and, to make possible the arc-length implementation, the external force extf  is written in Eq. (16) 
as a control parameter  , and the system of equilibrium equations is written as: 

int ext f f 0  (17) 

in which intf  is defined in Eq. (15). 
Equation(17) is nonlinear regarding y  and can be solved by iterative strategies, as Newton-Raphson or Arc-Length 

methods. In this study, the Arc-Length is employed in order to make possible the analysis of the complete equilibrium 
path, passing through critical and bifurcation points. The specific use of the arc-length method with the positional 
formulation is presented in Section 5. 

It is important to show the Hessian matrix H  of the mechanical energy   (Eq. (9)), necessary to develop the 
solution process, as well as, to calculate critical loads. When only conservative forces are present, the Hessian matrix is 
written as: 
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0 0

2 2

0 0d: :: d
intU

 

    
    

        
 

f E E E
H S

y y y y y y y
C  (18) 

in which C  is the constitutive stress tensor (Eq. (8)). 
When non-conservative forces are present, the Hessian matrix becomes: 

int ext


 

 
 
f f

H
y y

 (19) 

in which the last term is described in the following section. 

4.1 Non-conservative load – follower pressure 

One of the objectives of this work is to study the influence of follower pressure on the instability behavior of thin-
walled pipes. Therefore, it is necessary to extend the formulation presented in Coda and Paccola (2008) - briefly described 
above - to consider non-conservative forces. It is assumed that the pressure is always normal to the shell surface in the 
current configuration and that its intensity p  is a constant value. Non-conservative forces can be introduced into 
equilibrium (Eq. (17)) via the energy variation, Eq. (14), as: 

( ) d
S

SP    p y   (20) 

in which ( )p y  is the following pressure that depends on the current position y . S  is the area of the current 

configuration, over which the pressure is applied, and   is defined in Eq. (12). 
For one element  , Eq. (20) becomes: 

   d( ) k k

S

p SP     n y y


 (21) 

in which ( )n y  is the normal unit vector of the shell element mid surface. 

As ky  is arbitrary, Eq. (21) can be added to the external force extf , see Eq. (17), and is written for a node k  of a 
finite element   as: 

( ) ( d)ext k k

S

Sp  f n y


  (22) 

The unit normal vector is calculated as: 

( )





u v
n y

u v
 (23) 

being 1( )k k   u y  and 2( )k k   v y  tangent (to the shell surface) vectors and the symbol ×  vector product. 

The integral of Eq. (22) is performed here from the parametric dimensionless space 1 2( ),  . Denoting by d  the 

infinitesimal area of the parametric space, knowing that 1 dd dS J    u v  and using Eq. (23), the non-

conservative force becomes: 

(( ) )dext k kp 


  f u v


  (24) 
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which simplifies the numeric operation. Applying index notation for node k  and direction i  of element  , Eq. (24) is 
rewritten as: 

1 2

( )d d) (ext k k k
i ipq ipq pp q qu v yp yf p

 
  

   
 

 

                      
 
 



 (25) 

in which ipq  is the Levi-Civita cyclic permutation tensor of order 3 with , 1,2,3p q  . In Eq. (25) indexes   and   indicate 

summation on element nodes. 

The non-conservative contribution to be considered in the Hessian matrix is achieved from the derivative of Eq. (24) 
regarding positions zy  of node z  of a finite element  , that is: 

( )
d

ext k
k

z z z
p 



              
f u v

v u
y y y



  (26) 

Considering Eq. (25) and after some algebraic manipulations over Eq. (26) results: 

1 2 1 2

d
( )ext k z

ki
i p pz

zf
p y

y

 





   
 

   


                      



  (27) 

Equation (27) contains both symmetric and antisymmetric parts to be added to matrix H . As mentioned by 
Schwlizerhof and Ramm (1984) and Iwata et al. (1991) the antisymmetric part of H  has negligible effect in the solution 
of the linear system of equations present in the non-linear solution strategy. It is worth clarifying that the Hessian matrix 
only regulates the convergence rate of the iterative solver. Moreover, Schwlizerhof and Ramm (1984) and Iwata et al. 
(1991) also conclude that the antisymmetric part of Eq. (27) has a negligible effect on eigenvalues/eigenvectors 
determination. From this reasoning, in the present work, only the symmetric part of Eq. (27) is added to the total Hessian 
matrix and the conclusions of Schwlizerhof and Ramm (1984) and Iwata et al. (1991) are verified at the example section. 

5 SOLUTION PROCESS - ARC-LENGTH 

In specialized literature (Wempner, 1971; Riks, 1972; Crisfield, 1981), the arc-length strategy has been used and 
improved to solve equilibrium paths that present snap-troughs and snap-backs. In this section we show how to use it 
together with the positional FEM. 

Considering the possibility of having non-conservative external forces and considering that vector y  is a position 
trial, the residual vector (that is null at equilibrium, see Eq. (17)) is given as a function of   and y  as: 

( ) ( )( , ) int ext  g y f y f y  (28) 

In the arc-length method, the following restriction equation - that represents a circumference arc (Figure 2) - is 
provided to limit the range of position correction and load intensity, 

2 2 2s       y y  (29) 

in which s  is the arc radius and   is a factor that adjusts dimensions as   is dimensionless. 
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Figure 2 Circumference arc representing the additional restriction. 

A tip to choose a value for   in Eq. (29) is to use the ratio between the first position and force increments (Eq. 
(30)), because at this stage structural problems are well behaved, thus one writes: 

0

0









y
 (30) 

The iterative procedure consists of two stages: the prediction stage and the correction stage. The prediction stage 
is performed in the first iteration of each incremental step and determines the arc radius to be used in the iterative 
process. The correction stage starts from the known arc and performs the search for the solution of Eq. (28) using the 
Newton-Raphson method including the arc effect (Eq. (29)). In what follows these two stages are given in detail. 

5.1 Prediction stage 

Let be 1ky  and 1k   a pair that corresponds to equilibrated position at an increment step 1k  . In order to find 

a first prediction solution for step k , one increments this solution by ky  and k  found by a linearization of the 
residuum, Eq. (28), written as follows: 

1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )k k k k k k k k k k k k     
       

 
          

 
g g

g y y g y y y y 0
y

 (31) 

in which 

1 1 1 1 1 1 1( , ) ( , ) ( ) ( )
int ext

k k k k k k k        
  





 


g f f

H y y y y
y y y

 (32) 

1 1 1( , ) ( )ext
k k k

   


 

g

y f y
                       (33) 

As 1ky  and 1k   satisfy the equilibrium, one has 1 1( , )k k  g y 0 . The position increment ky can be achieved 
from Eq. (31) as: 

1
1 1 1 ( , ) ( )ext

k k k k k 
     y H y f y  (34) 
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however  k  is unknown and needs the radius of the arc to be solved. 

At the beginning of the first step ( 0k  ), 0  is prescribed by the user and 0y  is easily calculated by Eq. (34). 
Thus, the initial radius is simply given by: 

2 2
0 0 0 0s        y y  (35) 

For subsequent steps ( 0k  ) the radius can be updated using the number of iterations of the previous step as a 
controlling factor when compared to an acceptable one dn  (prescribed by the user), resulting: 

1
1

d
k k

k

n
s s

n






        
 (36) 

in which 1kn   is the number of iterations performed in step 1k   and   is a parameter that adjusts the desired rate. 

Knowing the radius ks , Eqs. (35) and (36), the current increment k  is achieved substituting Eq. (34) into 
Eq. (29), i.e.: 

2
1 1

k
k T T

k k

s


 


  

 y y
 (37) 

in which 1
T
ky  (Eq. (38)) is the position in step 1k  , given by: 

1
1 1 1 1( , ) ( )T ext

k k k k
    y H y f y  (38) 

The signal choice in Eq. (37) should ensure an advance in the equilibrium path. A safe and automatic way to find this 
signal (Eq. (39)) is using the recent history of the equilibrium path evolutions, as proposed by Feng et al. (1996): 

   2
1 1 1sign sign T

k k kk         y y  (39) 

After achieving k , Eq. (37), the increment ky  is achieved by Eq. (34). With k  and ky  known one updates 

the load factor 1k k k      and the position 1k k k  y y y  and goes to the correction stage. 

5.2 Correction stage 

At the prediction stage one finds the first trial for position and load factor. Using these values a new residuum 
( , )k kg y  appears and its nullity must be imposed using 

( , ) ( , ) ( , ) ( , )k k k k k k k k k k k k       


 
      

 
g g

g y y g y y y y 0
y

 (40) 

in which, recalling Eqs. (32) and (33), the following terms are detached: 

( , ) ( , ) ( ) ( )
int ext

k k k k k k k  
  


 

 


g f f
H y y y y

y y y
 (41) 

( , ) ( )ext
k k k




 

g

y f y  (42) 
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For this correction stage, one keeps the radius ks  fixed. Therefore, the additional constraint equation imposes 
that the correction to be determined remains on the circumference arc. This is done by rewriting Eq. (29) as: 

2 2 2( ) ( ) ( )k k k k k k ks              y y y y  (43) 

After some algebraic manipulations, Eq. (43) can be written as a quadratic equation regarding ky  and k , as: 

2 2 22(  ) 0k k k k k k k              y y y y  (44) 

Equation (44) can be solved neglecting high order terms of ky  and k , i.e., 

2  0k k k k       y y  (45) 

From Eqs. (40), (41) and (42) one writes ky  as a function of k  as: 

1( , ) ( () , )ext
k k k k k k k         y H y f y g y  (46) 

Substituting Eq. (46) into Eq. (45) and isolating k , one finds: 

1

1 2

( , ) ( , )

( ( ), )

k k k k k
k ext

k k k k k

 


  





     
       

y H y g y

y H y f y
 (47) 

With the value of k , one achieves ky  by Eq. (46). With these vales k  and ky  are updated, as well as k

and ky . The correction procedure continues until k  or ky  - defined by Eqs. (46) and (47) - become sufficiently small 
regarding an adopted tolerance. In this work the chosen tolerance test is done as follows: 

k tol



y

x
 (48) 

in which the value adopted for the tolerance is usually 81.0 10tol   . 

6 SOLVING BIFURCATION POINTS 

At bifurcation points of the equilibrium path, or even at simple critical points, the Hessian matrix, which largely 
controls the solution search, becomes singular. Thus, in order to obtain paths beyond a bifurcation points, the conjugate 
perturbation force strategy is applied here in the context of the positional FEM. This perturbation is imposed as external 
forces perf  energetically conjugate to the current instability modes. In this section, the strategy to apply the chosen 
perturbation force in the Arc-Length solution process is presented and the achievement of the correct perturbation force 
is described in the next section. 

In order to keep the good behavior of the solution process, this force is gradually introduced and the residuum of a 
step k  (see Eq. (28)) is written as: 

( , ) ( ) ( ) ( )int ext per
k k k k k k p      g y f y f y f  (49) 
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where p  is the value of   at step p  in which the perturbation force has been calculated. As k  grows the influence of 

the perturbation force increases. After Eq. (57) the criterion to determine step p  is established. 

The perturbation force is applied at the interval perp k p n   , being pern  the number of steps in which perf  

is allowed to act. For perk p n   the perturbation force is removed and Eq. (28) is recovered. The value of pern  can 

be given by the user or, alternatively, can be calculated by the same strategy defined to achieve the step p . Usually a 
small pern  value is sufficient. After withdrawing the perturbation force the analysis continues on the corresponding post-

critical branch. 

As the new term ( perf ) does not depend upon y , the derivative of the residuum (Eq. (49)) regarding y does not 
change, see Eq. (19). However, the derivative regarding the load factor   becomes: 

 )(( , ) ext per



  


g

y f y f  (50) 

In short, for step k  respecting the interval perp k p n    the arc-length is applied considering Eq. (49) and all 

other equations presented in Sections 5.1 and 5.2 are used replacing ( )extf y  by ( )ext perf y f . 

7 FINDING THE PERTURBATION FORCE 

As mentioned in the previous section, the solution of the bifurcation points is accomplished by the temporary 
introduction of the perturbation force perf , see Eq. (50). In this section, it is presented our strategy to calculate perf  as 
generalized forces conjugate to the instability modes near critical points over the equilibrium path. Thus, one starts 
describing how these modes are calculated using the positional FEM and then the calculation of perturbation forces are 
presented. 

A bifurcation (or a critical point) occurs when 2 0    for some  y 0 . This means that at critical points the 
Hessian matrix H , Eq. (41), must have at least one null eigenvalue, which implies that its determinant is necessarily zero. 
It is important to recall that the Hessian matrix H  can be divided into three parts, see Eqs. (18) and (19). The first part is 

EH  called elastic part, the second is GH  called geometric and the third part LH  is related to the non-conservative load. 
Moreover, GH  and LH  are dependent of the load level. We introduce an auxiliary load parameter   into the 
composition of the Hessian matrix only to calculate the following expression: 

 det 0E G L     H H H  (51) 

In this expression, if 1   the load level corresponds to the critical load, which implies det( 0) H . If det( 0) H  
the load level is subcritical and the imposition of Eq. (51) returns 1  , as the necessary load to enforce equality should 
be greater than the current one. In short, for Eq. (51)   is an eigenvalue that assumes 1 for critical loads, i.e., corresponds 

to admit that the current load level   is the critical one. The calculation of EH , GH  and LH  are made by the following 
formulae, already discussed: 

0

0: d:E









 
E E

H
y y
C  (52) 

0

2

0d:G






  
 

E
H S

y y  (53) 
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ext
L 




 
f

H
y

 (54) 

Equation (51) can be better represented as a generalized eigenvector problem, i.e.: 

 ( ) ( )
E G L

i i     H H H u 0  (55) 

in which ( ) ( )),( i i u  corresponds to i-th eigenvalue/eigenvector pair associated to the step k  of the arc-length analysis, 

(0)  is the smaller eigenvalue and internal Hessian tensors are given by Eqs. (52), (53) and (54). 

The numerical solution of Eq. (55) is made by the solver ARPACK (Sorensen et al., 2008), that has efficient routines 
for sparse matrices. 

The criterion used to define the quasi-critical level p  in this work is calculating the eigenvalues ( )i  at the end of 

each arc-length step k . The smaller eigenvalue (0)  is always greater than 1 and, as close it becomes to the unit, as near 

the critical load factor k  becomes to the critical load. In this sense, the perturbation load perf  is calculated here only 

once when (0) 1.1   and this load level is assumed to be p  (used in Eq. (49)), or equivalently this step is the quasi-

critical one, i.e., p . 

Instead of calculating (0)  for all levels of  , as it is done in this work, the value of the determinant of the total 

Hessian matrix (usually provided by solvers of linear systems) can be used as an indicative of the necessity of (0) . 

For k p  the described procedure in Section 6 allows the solution method to follow the best branch of the 
equilibrium path, and it is no longer necessary to solve the eigenvalue problem if no other bifurcation is expected. 

The perturbation force applied as described in Section 6, and summarized by Eq. (49), is achieved here from the 
eigenvector ( )iu  that corresponds to the chosen quasi-critical mode (usually related to the smaller eigenvalue (0) ). To 

calculate this force it is necessary to create a fictitious configuration, as: 

( )

( )

iper
p

i

 
u

y y
u

 (56) 

in which i  is the chosen mode (usually 0i  ),   is a scale factor that adjusts the intensity of the applied perturbation 
force and py  is the structure configuration at step p . 

The perturbation force is the necessary force to reach configuration pery  (Eq. (56)) from configuration py , i.e.: 

0

0: d ( )
per

per int
p



       


E

y
f S y

y
f  (57) 

Differently from what is described by Eq. (57), in Soares et al. (2019) for a very simple example the authors 
calculated the perturbation force at the beginning of the analysis, i.e., for small displacements, and kept this force along 
the entire equilibrium path analysis. However, poor results were achieved for the study of bifurcation points, post critical 
behavior and equilibrium paths. Here the force f per  is calculated and applied in Eqs. (49) and (50), so that this force is 
used only at the vicinity of the current critical configuration. Therefore, this strategy enables the Arc-Length method to 
accurately overcome bifurcations and find post-critical branches of the equilibrium path, including the presence of non-
conservative loads. 
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8 NUMERICAL EXAMPLES AND DISCUSSIONS 

In this section, numerical examples show the effectiveness of the proposed formulation to determine equilibrium 
paths beyond a bifurcation point. In the first example, the consulted reference Garcea (2001) imposes imperfections via 
concentrated forces. In this work (using the strategy presented in Sections 6 and 7) the same problem is solved with and 
without previous imposed imperfections, easily finding post-critical paths. The second example is presented to consider 
the presence of non-conservative loads. The difference of equilibrium paths regarding the presence (or not) of the non-
conservative following pressure is analyzed. The third example solves a more complicated thin-walled structure stability 
analysis. In this example, it is shown the large difference of the achieved critical loads when considering small and large 
displacements. The adopted tolerance for all examples (Eq. (48)) is 81.0 10tol   . 

Meshes are generated by the software Gmsh (Geuzaine and Remacle, 2009) and visualizations are made by the 
software Paraview (Ahrens et al., 2005). 

8.1 Channel section 

This dimensionless example deals with the compression analysis of a channel section profile. It is used to verify the 
determination of critical loads and to compare the resulting equilibrium paths. Garcea (2001) studied this example 
numerically and the adopted static scheme and dimensions are presented in Figure 3. Garcea (2001) also defined the 
following material properties: 62.1 10E    and 0.3  . 

Considering that u , v  and w  are displacements in x , y  and z  directions, respectively, the displacement boundary 
conditions are: (0, , 0) ( , , 0) (0,0,0) ( ,0,0) ( / 2,0,0) 0w y w y v v u       . In all cases the distributed loads are 

0( 0 1.)x xq   and 0( ) 1.xq x   
 while the load factor   varies automatically. 

 
Figure 3 Static scheme and cross section details. 

In addition to the acting compression force, situations involving the presence of imperfections proposed by Garcea 
(2001) are analyzed. These imperfections are represented by two concentrated forces acting on points A  and B  of the 
central section of the structural element. Point C  will be used only to measure the displacement Cu . Three 
imperfections cases are considered and defined in Figure 4. In this figure it is also presented the adopted discretization 
with 5275 nodes and 1120 cubic triangular finite elements. 

 
Figure 4 This work discretization and imposed imperfections by Garcea (2001). 
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Firstly, a small displacement stability analysis is performed. The achieved critical loads for the three imperfections 
are compared in Tables 1, 2 and 3. In order to calculate relative differences, the values achieved by Garcea (2001) using 
Nastran are taken as reference. Results present very good agreement if considering differences among kinematics. It is 
observed that, in general, the values obtained here are lower than the reference values, emphasizing the adequacy of 
the adopted discretization. 

Table 1 Eigenvalues for flexural imperfection. 

Mode 
Garcea (2001) 

Positional FEM Dif (%) Mode type 
Mixed Frozen Nastran 

1 1291.6 1292.2 1298.2 1291.5 0.52 Flexural 
2 1396.0 1192.5 1195.2 1188.9 0.53 Torsional 
3 1994.4 1992.8 1919.4 1909.0 0.54 Local (3 half-waves) 
4 2046.4 2044.7 2094.5 1955.1 6.66 Local (4 half-waves) 

Table 2 Eigenvalues for local imperfection. 

Mode 
Garcea (2001) 

Positional FEM Dif (%) Mode type 
Mixed Frozen Nastran 

1 1293.2 1289.9 1296.1 1289.4 0.52 Flexural 
2 1409.5 1387.7 1391.2 1383.9 0.52 Torsional 
3 3150.7 3134.3 3084.8 3083.1 0.06 Local (13 half-waves) 
4 3150.9 3148.6 3097.4 3088.6 0.28 Local (14 half-waves) 

Table 3 Eigenvalues for torsion imperfection. 

Mode 
Garcea (2001) 

Positional FEM Dif (%) Mode type 
Mixed Frozen Nastran 

1 1264.9 1289.9 1296.0 1289.4 0.51 Flexural 
2 1833.9 1711.8 1715.6 1706.3 0.54 Torsional 
3 2808.5 2912.1 2842.4 2837.4 0.18 Local (7 half-waves) 
4 2823.9 1930.0 2863.5 2855.5 0.28 Local (8 half-waves) 

Using the arc-length strategy associated with the positional FEM, the equilibrium path is achieved for the three 
presented imperfections. In all cases the same arc-length parameters are adopted, i.e., 4dn  , 1.0   and 

0 1.0  . 

For the case without imperfections, the procedure proposed in this work is used to go through the equilibrium path. 
It is important to mention that reference does not solve this case. For the stable initial branch, before the bifurcation 
point, a fixed radius is chosen based on the number of desired steps to overcome this branch. The adopted radius for 
this branch is 0.005s  . 

At each step of the initial branch, a stability analysis, based on the eigenvalue problem, is performed. When the 
smallest eigenvalue becomes smaller than 1.1 , the analysis is considered to be sufficiently close to the critical point, 
and an automatically calculated perturbation force is applied. In this step it is attributed p   and the perturbation 

position pery  is achieved by Eq. (56), assuming 0.001  . The automatic perturbation force is applied during 3 steps 
( 3pern  ) overcoming bifurcation, as expected. 

In this example, the result of the analysis without imposing the predefined imperfections is used for comparison 
with the other situations. In Figure 5 the equilibrium paths for flexural imperfection, achieved for points A , B  and C  
(Figure 3) are presented. 
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Figure 5 Equilibrium paths for points A, B and C - flexural imperfections and without imperfection. 

Note that, in this case, the value of the flexural imperfection force, imposed by Garcea (2001), is high, as the 
critical load achieved with imperfection is much smaller than without imperfection. It is also observed that the 
equilibrium paths obtained here are similar to the paths presented by the reference, validating the implemented 
formulation. In this example the importance of large displacement analysis is evident. As the two kinematic presented 
in Garcea (2001) - called Mixed or frozen - are based on selected instability modes, the reference formulation is not 
capable to compute a good post critical behavior. The QUAD4 element is a linear Kirchhoff theory element with several 
modifications to relax excessive constraints as reduced order integration for shear terms, enforcement of curvature 
compatibility, and the augmentation of transverse shear flexibility to account for a deficiency in the bending strain 
energy (MacNeal 1978). Therefore, the QUAD4 results serve as a reference value and the use of our formulation 
certainly gives results that are more accurate. To corroborate with accuracy, our element models initially curved 
surfaces, includes the influence of transverse shear and uses full integration. Moreover, as mentioned in the 
introduction, as unconstrained vectors are Lagrangian variables there is no incremental updating (necessary when 
using co-rotational formulations, as an example) and the equilibrium is achieved for the full variable, reducing 
accumulated errors. 

Results for local imperfection, case 2, are shown in Figure 6. It is observed that the curves are closer to the obtained 
path without the presence of imperfections, indicating the choice of small imperfection values. It is noted again that the 
paths obtained here have good adherence with the reference results, especially when compared to Nastran, whose 
nonlinear procedure does not involve expansion of modes. 
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Figure 6 Equilibrium paths for points A, B and C - local imperfections and without imperfection. 

Finally, graphics for torsion imperfections, case 3, are presented in Figure 7. The interpretation of results is similar 
to the other cases. 

For all cases with imperfection the peaks of the equilibrium paths obtained here are located slightly below those 
obtained by the reference. This confirms the prediction observed from the analysis of eigenvalues. This effect is also seen 
in the post-critical paths, which are always below the paths of Nastran, which is the reference result that comes closest 
to the formulation proposed here. As mentioned before, this is due to the flexibility conferred to our model by the use 
of high-order elements and Mindlin-like kinematics. 

 
Figure 7 Equilibrium paths for points A, B and C - torsion imperfections and without imperfection. 
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Table 4 presents the values of the critical loads obtained from the stability analysis along the equilibrium path. The 
result achieved by Garcea (2001) using the software Nastran is used as a reference to calculate relative differences. In 
this table one observes that the proposed formulation presents more flexible results than all other analyses made by the 
reference, indicating the good adopted discretization. Thus, we conclude that the formulation is suitable for path 
following stability analysis. 

Table 4 Critical loads achieved along the equilibrium path. 

Imperfection 
Garcea (2001) 

Positional FEM Dif (%) 
Mixed Frozen Nastran 

None – – – 1289.2 – 
Flexural 900.3 908.4 896.3 883.7 1.41 

Local 1246.1 1284.8 1235.4 1223.3 0.98 
Torsional 1128.7 1204.2 1117.0 1105.9 0.99 

In Figure 8 the post-critical configurations for each imposed imperfection are presented. In all cases the current 
configurations present a composition of modes. Case (a) and case (b) present the composition of global flexural and local 
flanges modes. In case (c), there is a composition between global torsion and local flange modes. 

 
Figure 8 Post-critical configurations for (a) flexural, (b) local and (c) torsional imperfections. 

8.2 Pipe under external radial pressure 

This example is the analysis of a pipe subjected to a radial pressure and results are compared with the ones 
presented by Basaglia et al. (2019). The pipe has the following geometrical characteristics: Radius 6r cm  and 

thickness 0.12t cm . Three lengths are used in the analysis: 1 20L cm , 2 50L cm  (short pipes) and 

3 400L cm  (long pipe). In all situations the transversal displacements at the supports are restricted (rigid diaphragm). 

The material presents the following properties: 210E GPa  and 0.3  . To calculate the stress distribution 

necessary to perform the linear analysis of stability it has been applied a radial external pressure of 1.0 MPa . 

This example points out the importance of considering non-conservative loads when treating problems that have 
following pressure (or loads). In Iwata et al. (1991) analytical solutions for linear stability considering conservative and 
non-conservative loads are presented, and are reproduced here as follows: 

3

,1 2 31 4
cr

E t
p

r



 (non-conservative pressure) (58) 

3

,2 2 31 3
cr

E t
p

r



 (conservative radial load) (59) 
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The adopted discretizations used here have 37296 , 40992  and 180096  degrees of freedom for lengths 20 , 50  and 
400 cm , respectively, and use curved elements with cubic approximation. Results are compared with the ones 

presented by Basaglia et al. (2019) considering non-conservative pressure (Table 5) and conservative load (Table 6). The 
instability modes for conservative and non-conservative forces are practically identical, thus only the no-conservative 
modes are depicted in Table 5. 

Table 5 Critical loads ( MPa ) and corresponding instability modes. 

( )L cm
 

Non-conservative pressure 

,1crp
 

Basaglia et al. (2019) 
Positional FEM 

GBT ANSYS 

20 – 3.4149 3.4232 3.3493 
 

 

 

 
50 – 1.4097 1.4184 1.3995 

 

 

 

 
400 0.4615 0.4624 0.4659 0.4626 

 
   

Table 6 Critical loads ( MPa ) conservative pressure. 

( )L cm
 

Conservative pressure 

,2crp
 

Basaglia et al. (2019) Positional FEM 
GBT ANSYS 

20 – 3.5273 3.5634 3.5570 
50 – 1.5742 1.5712 1.5703 

400 0.6154 0.6165 0.6176 0.6165 

The achieved results are in accordance with the ones of Basaglia et al. (2019), presenting a more flexible behavior, 
due to the better discretization. Good results for non-conservative pressure confirm the affirmation of Schwlizerhof and 
Ramm (1984) and Iwata et al. (1991) that using the symmetric part of the non-conservative load contribution to the 
Hessian matrix implies sufficient accuracy. It is worth noting that length 400cm  is considered a long cylinder in Table 5, 

and its critical load approaches the analytical solution. 
In order to analyze the path following instability of a very long (infinity) tube, rigid body degrees of freedom are 

eliminated from the discretization presented in Figure 9. This discretization represents only 1cm  of the cylinder with 
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5880  degrees of freedom. In order to reproduce the infinity tube behavior, the components of unconstrained vectors 
regarding X direction are restricted (no curvature due to Poisson effects allowed). 

 
Figure 9 Tube discretization used to determine the equilibrium path. 

To confirm the validity of the new model, a linear stability analysis is performed. The achieved critical loads, 
considering non-conservative and conservative loads are, respectively, 0.4615MPa  and 0.6152MPa . These values are 
practically the same as the analytical solutions. 

The analyses along the equilibrium paths follow the same procedure defined for the previous example. The initial 
load factor increment is 0 0.05  , kept constant until reaching the critical point vicinity. The intensity parameter of 
the perturbation force 0.01    is adopted and its sign defines the two possible post-critical paths after bifurcation. 

In Figure 10 the equilibrium paths (non-conservative and conservative) are shown. Point A (Figure 9) is chosen to 
depict results. As point A is on the symmetry of the deformed structure the displacement along direction Z corresponds 
to the radial displacement. 

 
Figure 10 Equilibrium paths of point A for the pressurized tube. 
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From Figure 10 one observes that, as the problem does not have any imperfection and, before the loss of stability, 
only small displacements take place, the critical loads coincide with the ones achieved using linear analysis. By the 
difference of the critical loads and the post-critical behaviors of the analyzed structure, it is clear that it is important to 
consider the influence of non-conservative loads in the Hessian matrix (or tangent stiffness matrix) for stability analysis 
of thin-walled structures. It is important to mention that, GBT and the Mixed or Frozen methodologies of the previous 
example use selected instability modes, which may cause difficulty in solving general problems, like the one presented 
in the next section. 

8.3 Torus under bending and torsion 

This last example is a torus clamped in one end and subjected to a transverse force acting on the other end, as 
shown in Figure 11. The torus has the following dimensions: 100R cm , 10r cm  and thickness 0.5t cm . The 

applied load 0.1 /q kN cm  is distributed along the perimeter of the free end. The adopted material properties are: 

210E GPa  and 0.3  . 

 
Figure 11 Static scheme - torus subjected to a transverse load. 

The presented discretization (Figure 11) corresponds to 1392  curve cubic elements totalizing 44352  degrees of 
freedom. 

Adopting a small load factor, 1.0  , the buckling loads (small displacements - linear analysis) are achieved and 
presented in Table 7. The corresponding modes are shown in Figure 12. 

Table 7 Buckling loads for torus flexural / torsion. 

Mode Buckling Load ( ) 

1 67.9609 
2 68.4315 
3 75.8721 
4 76.1218 

 
Figure 12 Buckling modes for torus flexural / torsion. 
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A path following analysis is carried out in order to obtain the equilibrium path and to have a more accurate 
determination of the real critical load. The equilibrium path is achieved by the arc-length strategy, and it is depicted in 
Figure 13 for the lower point of the free end. 

 
Figure 13 Equilibrium path - displacement in z direction of the free end. 

From the equilibrium path the achieved critical load factor is 37.7 . This value is 44.5%  smaller than the first 
buckling load factor of Table 7. Therefore, for more general structures a simple linear analysis of buckling loads can lead 
to not safe results. As an illustration, in Figure 14 the last deformed configuration is presented. 

 
Figure 14 Deformed configuration for the last analysis step ( 31.48  ). 

It is worth stressing that it is important to perform path-following large deformation analysis in design of structures 
because, in some cases, inconvenient reduction of stiffness may occur at smaller loads than the ones predicted by simple 
linear buckling analysis. Moreover, the design of bi-stable structures and the solution of inverse problems can be 
improved by the use of path-following strategies. 
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9 CONCLUSIONS 

In this work, a total Lagrangian nonlinear geometric shell formulation with kinematics described by generalized 
vectors and positions (positional FEM) was proposed and applied in the analysis of equilibrium paths passing through 
bifurcation points and considering non-conservative loads. To this end, an original strategy based on Conjugate Modal 
Force at the vicinity of critical points of the structure's equilibrium path was developed. This original way of introducing 
perturbation forces in unconstrained vector Lagrangian FEM was implemented in association with the arc-length 
method. In addition, the necessary terms to consider non-conservative force contributions in the Hessian matrix of the 
structure were deduced for the positional FEM. Examples showed that the proposed formulation is accurate and robust, 
highlighting the use of high-order curved elements. From a practical point of view, two important aspects in the analysis 
of instability of thin-walled structural members have been confirmed, namely: (i) Non-conservative forces significantly 
influence structural critical loads and equilibrium paths. (ii) For flexible structures, linear instability analyses (buckling) 
are not sufficient to predict critical load levels. Future works involve the development of simple and suitable spatial 
connections to model thin-walled structural elements with shell finite elements, bypassing detailed connection 
discretization to model complex structures in geometrical nonlinear regime. 
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