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Abstract 
Asymptotic Homogenization (AH) and the Extended Multiscale Finite Element Method (EMsFEM) are both 
procedures that allow working on a structural macroscale that incorporates the effect of averaged 
microscopic heterogeneities, thus resulting in computationally efficient strategies. EMsFEM works directly on 
coupled finite micro and macroscales using numerically built discrete interpolation functions. Periodic Truss 
Metamaterials (PTMMs) are cellular materials formed by the periodic repetition of a truss-like unit cell and 
engineeringly tailored to show a given macroscopic response. In this work we analyze the numerical behavior 
of selected PTMMs that were designed for extreme Poisson ratios using AH theory. As a first issue, we study 
macroscopic structures made of finite unit cells and verify how close their average behavior coincides with 
the material properties predicted by AH. For comparison, we solve the macroscopic plane stress associate 
problems that employ the elastic constitutive tensor obtained by AH. The second issue is concerned with the 
ability of EMsFEM to reproduce the structural behavior of the full macro-micro model. We employ two 
versions of the EMsFEM, adopting linear (LBC) and periodic (PBC) boundary conditions to build the numerical 
interpolation functions. The third and most important aspect discussed in this research concerns evaluation 
of the EMsFEM downscaled displacement fields. We observe that according to the layout of the AH designed 
unit cell, to the use of LBC or PBC and, depending on the boundary conditions present in the macroscopic 
problem, spurious downscaled displacements might occur. Such spurious displacements are due to excessive 
compliance of the corresponding unit cell and can be detected when building the numerical interpolation 
functions. We conclude that the layout optimization of PTMM using AH must be carefully interpreted and that 
EMsFEM is a good tool to detect a macroscopic excessively compliant response at an early design stage. 
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1 INTRODUCTION 

In nature, it is frequent to find organic materials that evolved along time adapting to behave efficiently in 
multipurpose tasks. In the last decades, such materials have been studied with an engineering point of view, inspiring 
researchers to develop metamaterials for multifunctional technological applications (Ashby, 1983; Gibson and Ashby, 
1997). These bio-inspired materials include the so-called periodic truss materials (PTMs), a special class of cellular 
materials made by the periodic repetition of unit cells composed of bar elements. As many porous materials, PTMs show 
a high stiffness/weight ratio and can be tailored for enhanced properties such as, impact energy absorption, bulk 
modulus, shear stiffness, negative Poisson ratio and many others. Lightness coupled to high capability to store strain 
energy are important features for automotive and aerospace industries, for instance (Yan et al., 2006). Moreover, owing 
to their spatial regularity, periodic cellular materials show little dispertion in their macroscopic properties, which can be 
an important engineering requirement. A good review on the development of engineeringly designed PTMs is given by 
Glaesener et al. (2019). Such structures have gained increased practical interest as additive manufacturing technologies 
have emerged (Plocher and Panesar, 2019). Figures 1 (a) and (b) display, respectively, an example of a 3D unit PTM cell 
and the corresponding porous material obtained by its periodic repetition. 

 
Figure 1 3D PTM. (a) unit cell (Muñoz-Rojas et al., 2010); (b) Corresponding material (Guth et al., 2012). 

Engineering problems involving porous or spatially heterogeneous materials are usually solved using a discretization 
method such as the finite element method (FEM). However, the presence of two or more spacial scales may result in 
huge computational efforts. As an example, the analysis of a component made of the material shown in Fig. 1 (b) would 
require introduction of the whole set of bars directly into the numerical model, thus leading to very a large stiffness 
matrix (Liu and Lv, 2017). One way to handle this challenge is to use homogenization procedures, which replace the 
original unit cell by an averaged equivalent continuum material. Among the different approaches developed for 
homogenization along years, the most employed is certainly asymptotic homogenization (AH) although different 
alternatives exist, as discussed by Arabnejad and Pasini (2013). 

The evolution of numerical tools directed to analyze multiscale microstructured materials has made possible also 
to design the microstructure of artificial materials aimed at optimum performance for multifunctional engineering tasks. 
The pioneering works in that sense go back to the 90’s, when Sigmund (1994, 1995) merged truss sizing and continuum 
topology optimization with asymptotic homogenization to find optimum material distributions within the unit cell of 
periodic materials. Yan et al. (2006) optimized truss-made unit cells adopting joint positions as design variables. Muñoz-
Rojas et al. (2010) proposed the layout optimization (simultaneous cross sectional areas and coordinates as design 
variables) of truss-made unit cells for achieving optimum thermo-mechanical periodic truss metamaterials. Guth et al. 
(2012, 2015) optimized the layout of PTMMs including mechanical and thermal isotropic behavior as constraints in the 
optimization problem. All these works aimed at the optimization of material properties for a prescribed condition (shear 
stiffness, for instance) but they did not consider the pointwise response of a component made up of such material. 

Concurrent topology optimization is a technique that allies the macroscopic topology optimization of a component 
with the optimization of its geometrical microstructure (second scale). Hence, it deals directly with the multiscale nature 
of the engineering problem. In its usual formulation, for manufacturability reasons, the microstructure is optimized to 
be constant in the whole component domain (Zhang and Sun, 2006). Liu et al. (2008) proposed a more comprehensive 
approach in which the component domain can be subdivided into design elements with independent material 
microstructures. Two limiting cases arise: if there is only one design element for the whole domain, we recover the usual 
macroscopic topology optimization; on the other hand, if we employ an infinite number of design elements, the approach 
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particularizes to the usual unit cell material design optimization procedure. Adopting a finite number of design elements 
leads to different results where the scale effect between macro and microscale becomes clear. Cheng et al. (2017) and 
Wang at al. (2020) address the problem of concurrent optimization with variable relative density cells, aiming at 
manufacturability with additive manufacturing technologies. Li et al. (2020) presented a conformal gradient lattice 
optimization in which the relative density and orientation of the optimized cell changes according to its location within 
the domain. 

In the brief review afore described, all the works employ asymptotic homogenization. As an alternative to analyze 
efficiently materials that show heterogeneities at a microscale, Zhang et al. (2010 a, b) proposed the Extended Multiscale 
Finite Element Method (EMsFEM), in which the finite nature of the microscale is directly taken into consideration, so 
both traditional (Yan et al., 2015) and concurrent optimization (Jun et al. 2015) can be handled in a natural way. 

In this work, we use the EMsFEM to study structures made up of PTMMs that were optimized for maximum and 
minimum Poisson ratios using asymptotic homogenization (Guth et al., 2012). We verify that as asymptotic 
homogenization assumes an infinitesimal microscale (unit cell dimension) and is strain-driven, it is uncapable to detect 
important phenomena that can be naturally captured with EMsFEM. In particular, we focus in the problems caused by 
excessive compliance shown by some PTMMs, which can be detected in the EMsFEM by the presence of unexpected 
large downscaled displacements within unit cells when the material is subjected to external loading. While this 
phenomenon is not likely to occur in continuum topology optimization, care must be taken when the unit cell 
optimization is performed using pin-jointed truss elements. 

We organize this article in the following way: Sections 2 and 3 briefly review the theoretical bases of AH and EMsFEM 
for PTMs; Section 4 presents the unit cells previously obtained by Guth et al. (2012) for extreme Poisson ratios; in Section 
5 we show the EMsFEM numerical interpolation functions obtained for each of the unit cells presented in Section 4; in 
Section 6 we discuss numerical results comparing the AH and EMsFEM procedures. Finally, in Section 7 we close the 
article with concluding remarks. 

2 ASYMPTOTIC HOMOGENIZATION (AH) 

In this method, the macro and microscales (x  and y  respectively) are related by y = x/  where the parameter 
  tends to zero, so that the microscale is assumed to be infinitesimal with respect to the macroscale. Furthermore, at a 
given macroscopic point P, the microscale is idealized by a Representative Volume Element (RVE) or unit cell. Figure 2 
illustrates a situation where the unit cell is composed of 8 bars, connecting 5 points. Each bar has its own Young modulus 
and cross section area, and the rest of the cell domain is void, so at this scale the domain is clearly heterogeneous. 
Asymptotic homogenization allows to model the average material behavior of the cell (represented in Fig. 2 by the 
homogenized elastic tensor HE ), and replace it at the macroscopic point P. 

 
Figure 2 A continuum domain with microscopic heterogeneities modeled by asymptotic homogeneization. The unit cell is composed 

of a truss-like structure. 

In order to obtain the homogenized properties, we expand the displacement field in the two scales x  and y  as 

     0 1, , u x y u x u x y   (1) 
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where 1u  is periodic in the dimension Y  of the unit cell, and índices 0 and 1 refer to macro and micro contributions. 
We assume no traction on the internal borders of the unit cell, so that the principle of virtual work is expressed as 

: 0           d d d V
  

          b u t u u      (2) 

where   and   are the stress and strain tensors, respectively, b  is the body force, t  is the surface force acting on   (the 
border of   ), u  is the virtual displacement field and V  is the set of kinematically admissible set of virtual 
displacements. 

Now we define the operator 

() ()1
2

k l
x

l kx x
          

 (3) 

and after some algebraic manipulations we obtain the macroscopic equation (Muñoz-Rojas et al., 2010) 

0 0 0 0 0: :H
x x d d d

  

        u E u b u t u     (4) 

where 

1
: ( )H

Y

dY  yE E I
Y

   (5) 

is the homogeneized (or macroscopic) elastic tensor. Equation (5) can also be presented, in component form, as 

1
(

kl
pH

ijkl ijkl ijpq
qY

E E E dY



        x)
Y

 (6) 

where kl
p  is the set of characteristic displacements, obtained as the solution of the microscopic equation 

1 1: :: : 0y y y

Y Y

dY dY  u E u E I     . (7) 

More details can be found in Guedes and Kikuchi (1990), Hassani and Hinton (1998) and Muñoz-Rojas et al. (2010). 

2.1 Numerical determination of   

For PTMs, using Voigt compact notation, a numerical approximation of   can be obtained using linear 3D bar finite 
elements to solve Eq. (7) (Yan et al., 2006) 

    
 

    
 
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 

P

K P P P

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or 

[ ][ ] [ ]AH K P  (9) 

with 
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] [ ][ ][[ ]
e

AH T e

e

dY


 K B D B  and [ ]
e

T e

e

dY


  [ ] [ ][ ]P B D I  (10 - 11) 

where [ ]B  is the strain-displacement matrix, [ ]D  is the local 1-D constitutive matrix of the bar element rotated to the 

global system of reference, [ ]AHK  is the homogenized global stiffness matrix and [ ]P  is a matrix containing, in each 
column, one of the global load cases that arise in the homogenization process. Each global load case corresponds to a 
unit strain applied in a given direction on the unit cell (Yan et al, 2006; Muñoz-Rojas et al., 2010). 

2.1.1 Periodic boundary conditions for AH 

In order to solve Eq. (8) we apply periodic boundary conditions at the borders of the unit cell, so that displacements 
at opposite sides are constrained to be equal. In this work we adopt the condensation method, which demands classifying 
all the degrees of freedom (components of vector { }kl in Eq. (8)) as being either independent (domain and boundary 
master degrees of freedom) or dependent (boundary slave degrees of freedom). 

Consider the example in Fig. 3. The unit cell displayed has p nodes on both upper and lower faces, and q nodes on 
each of the lateral sides. 

 
Figure 3 Periodic boundary conditions used for AH. 

Dropping the upper indices kl  in { }kl , the kinematic constraints that relate the displacements on the upper and 
lower sides of the unit cell are given by 

     _ 1,2,...,
u u

bottom nodesi p i
v vi p i

i p


                          

 
   , (12) 

and the constraints that relate displacements on the right and left sides, by 

     _ 1,2,...,
u u

left nodesj q j
v vj q j

j q


                          

 
   , (13) 

where 
u

  and 
v

  stand for displacements in the x  and y directions, for each of the columns of [ ] . The degrees of 
freedom of the nodes in the sets _left nodes  and _bottom nodes  are named independent or master degrees of freedom. 
The degrees of freedom of the remaining nodes on the boundary are called dependent or slaves since, as shown in Eqs. 
(12) and (13), they are linked to the master ones by kinematic constraints that can be easily set using a Boolean matrix 

 
  T , such that 

    m


    T   , where (14) 
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

                               





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 . (15) 
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Considering Eq. (14), in the particular case where there are n  boundary degrees of freedom and 1 constraint 
equation (one degree of freedom), the Boolean matrix   T  will have dimension   ( 1)n n x . In the example given in 
Fig. 4, the constraint imposes the value of the degree of freedom J to be equal to the value of the degree of freedom I. 
Generalization of this example to nc  constrained degrees of freedom yields 

 

 

( )x( )

( )x( )

n nc n nc

d nc n nc

 



 
        

I
T

T
, (16) 

where ordering has been reorganized by gathering together independent and dependent degrees of freedom. 

 
Figure 4 Boolean matrix   T  for the condition when the value of the degree of freedom J is constrained to equal the value of the 

degree of freedom I. 

We also define _domain nodes  as the set of all the nodes located in the domain. Thus, we can arrange all the 

components of the global characteristic vector{ }kl , respecting the periodic boundary conditions as 
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 
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 
 (17) 

or 

 { } [ ] T  , (18) 

where [ ]T  is the extended Boolean matrix comprising boundary and domain degrees of freedom. 
Replacing Eq. (18) into Eq. (9) and pre-multiplying both sides by [𝑻𝑻]𝑇𝑇 leads to 

[ [AH  ] 

K P  , where (19) 

][ ][ ]AH T AH [ ][K T K T  and (20) 

[ ]  [ ]T [ ]P T P  (21) 

For avoiding rigid body motion, it suffices to additionally constrain the displacements of one of the cell vertices to 
be zero. Due to periodicity all the vertices will also be constrained. After    is determined, the whole set of 
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characteristic displacements [ ]  is recovered by means of Eq. (18). Once the characteristic displacements are calculated 
they are replaced in Eq. (5) or (6) to obtain the homogenized elastic tensor (and the corresponding compact notation 
matrix [ ]HE ). In this method the homogenized tensor corresponds to an infinitesimal unit cell (a continuum point), which 
is not the same assumption to be considered for the EMsFEM. With this approach, the macrostructure can be modeled 
using a plane stress finite element, whose stiffness matrix is given by 

1 1
2

1 1

[ ] [ ] [ ]d T H Jtd d 
 

 

  [ ]k B E B  (22) 

where [ ]HE  is the constitutive matrix obtained via asymptotic homogenization, and 1t   since the width of the unit 
cell is given by the diameter of the thicker bar and is linked to the other cell dimensions. All the dimensions within the 
cell tend asymptotically to zero but keep the relative density constant by scaling proportionally the volume ocuppied by 
the bars and the total volume of the unit cell. In order to deal with this, we evaluate Eqs. (5) and (6) performing division 
by the area of the unit cell rather than the volume |Y|, and making 1t   in Eq. (22). Hence, the numerical values in 
[ ]HE must be adequately interpreted. For the evaluation of 2[ ] dk  we employ linear plane stress quadrilateral elements 
and integration is performed numerically by Gauss-Legendre quadrature using a 2x2 integration rule (full integration). 

3 EXTENDED MULTISCALE FINITE ELEMENT METHOD (EMsFEM) 

Hou and Wu (1996) proposed the Multiscale Finite Element Method (MSFEM) as a numerical tool for the solution 
of multiscale problems with reduced computational effort. The key idea relies on the use of numerically built discrete 
base (or interpolation) functions, which are defined on a finitely sized Representative Volume Element (RVE) or Unit Cell 
(UC). Therefore, the interpolation functions obtained incorporate automatically the influence of heterogeneities within 
the unit cell. Hence, the microscale information is introduced into the macroscale in the form of a stiffness matrix, which 
emulates the continuum, thus reducing drastically the number of degrees of freedom of the system to be solved. 
Zhang et al. (2009) used the idea of MSFEM to solve a coupled multiscale problem related to consolidation of saturated 
porous media, and called their method CMSFEM. In 2010 the same authors presented the Extended Multiscale Finite 
Element Method (EMsFEM), in which the construction of numerical interpolation functions take into account the coupled 
effects on displacements when applied to multidimensional problems (Zhang et al, 2010 a,b). The EMsFEM and AH share 
similarities but it is fundamental to remark that in the EMsFEM the macro/microscale ratio is finite while in AH it is not. 

3.1. Numerically built discrete interpolation functions 

The microscale structural response is accounted for using numerically built discrete interpolation functions, which 
must reproduce how the unit cell nodes respond to a unit displacement applied to each of its vertices in the directions 
of the global system of reference. This is achieved by defining a FEM problem to be solved at the unit cell level. The 
boundary conditions adopted in this problem deserve special discussion and are commented in deeper detail in 
subsections 3.1.1 ad 3.1.2. The system to be solved is 

   _[ ]
u u




K u F , (23) 

where the matrix [ ]K  is formed by summing up the stiffness contribution of each bar within an arbitrary cell of the 
macroscopic structure, as shown in Fig. 5. A generic cellular structure including macro and microscales is presented in 
Fig. 5 (a) and the cell domain corresponding to Eq. (23) is depicted in the detail 5(b). Different boundary conditions can 
be considered to solve the finite element problem defined in the cell (Peric et al., 2011; Otero et al., 2018). In this work 
we compare two alternatives: linear (Hou and Wu, 1996; Zhang et al., 2010a) and periodic (Xia et al., 2006; Zhang et al., 
2010b; Liu and Lv, 2017). The external force vector is set to zero. The nodal displacements  u  provide the numerically 
built discrete interpolation functions, corresponding to Fig. 6 or 7, for instance. Once we obtain the interpolation 
functions for the four vertices, we can develop the stiffness matrix [ ]EK  (of order 8 x 8) of the equivalent EMsFEM 
homogenized finite element, as shown in Fig. 5 (c). This stiffness matrix is then used to model the same structure of Fig. 
5 (a). Clearly the dimension of the problem in Fig 5 (d) can be considerably smaller than the corresponding problem in 
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Fig. 5 (a). The derivation of the interpolation functions for the linear and periodic cases is given in Sections 3.1.1 and 
3.1.2. The procedure for finding the associated matrix [ ]EK  is given in Section 3.1.3. 

 
Figure 5 (a) generic cellular structure containing both macro and micro scales; (b) microscopic truss-like unit cell with its global 

stiffness matrix; (c) EMsFEM equivalent finite element; (d) macroscopic model with considerably less degrees of freedon compared 
to th model in (a). 

3.1.1. Linear boundary conditions for the EMsFEM 

Let the unit cell be the one defined in Fig. 6 by the counter clockwise vertices 1234. Following Zhang et al. (2010 a), 
we apply a unit displacement at node 1 in direction x and impose a linear variation of this displacement from one to zero 
along sides 12 and 14 (Fig. 6b). The nodes on sides 23 and 34 are constrained to zero in the x direction and all the border 
nodes are constrained to zero in y. This problem is solved using the Finite Element Method and the nodal displacements 
provide a numerical (discrete) interpolation function associated to the first degree of freedom (node 1, direction x). An 
analogous procedure is performed to obtain the numerical interpolation functions related to unit displacements 
prescribed in directions x and y for all the 4 vertices, hence making a total of 8 FEM problems. Notice that we must 
calculate the stiffness matrix just once since only the boundary conditions change. Nohtice also that all the borders 
remain straight, a constraint that is known to produce overstiffening, as already reported, in the context of AH, by Sun 
and Vaidya (1996) and Xia et al. (2006), for instance. In our study we include this type of boundary condition to evaluate 
the extent of such overconstraining and for comparison with the results given by periodic boundary conditions. We refer 
to these boundary conditions as LBC. 

 
Figure 6 Scheme for construction EMsFEM using LBC. 

3.1.2. Periodic boundary conditions for the EMsFEM 

One remedy to overcome the overstiffening caused by linear boundary conditions (which enforce straight borders 
after deformation) is superposing a periodic displacement pattern. We will refer to these boundary conditions as PBC. 

Let us consider the unit cell in Fig. 7, the boundary conditions associated to a unit horizontal displacement of node 1 
are displayed in Fig. 7 (b). Such boundary conditions are composed of two parcels: a “linear boundary condition field 
 u ”, in which the left and inferior edge suffer linearly varying displacements and the other edges are fixed (Fig. 7 (c)), 
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and a “superposed periodic boundary condition field  pu ”, in which the nodes on opposite edges must present the 
same displacements, as shown in Fig. 7 (d). Displacements in Fig. 7 (d) are amplified for visual clearness. The compliance 
of the cell in Fig. 7 (a) and (b) is augmented with respect to its LBC counterpart. 

 
Figure 7 Numerical interpolation function obtained for the PBC scheme. 

The interpolation functions now have, as boundary conditions, displacements that consist in the sum of the linear 
 u  and periodic  pu  parcels, and have the general form 

     p 
 u u u , or (24) 

 
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d p d
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


 

                                       0

u uu
u u u

 (25) 

where  u ,  u , and  p u  are displacement vectors containing two degrees of freedom per node,   is the set 

of nodes on the boundary, the bar indicates prescribed values and the subscript p stands for “periodic” displacements. 
The subscripts i and d stand for the faces that contain the independent and dependent degrees of freedom, 

respectively. 
On the other hand, we have 
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0u
T uu u

 (26) 

where   T  is the same Boolean matrix shown in Section 2.1.1. 

Replacing  
i

u  from Eq. (25) into Eq. (26), after some manipulations we get 
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, (27) 

so that the global displacement vector related to the periodic boundary conditions is given by 
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, or (28) 

      G R i 
  u T u u  (29) 
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where  R iu  contains the domain degrees of freedom and the periodic part of the independent boundary degrees 
of freedom. 

Replacing Eq. (29) into Eq. (23) and premultiplying the system by  TT  we obtain the reduced system 

    R R Ri K u F , where (30) 

      T
R K T K T  and       T

R 
  F T K u . (31-32) 

3.1.3 Numerical interpolation functions matrix and homogenized stiffness matrix 

According to the choice of boundary conditions LBC or PBC, and solving the system given by Eq. (23), we obtain all 
the nodal displacements of the discretized cell. This is done for each of the 8 cases of unit displacements (4 vertices and 
2 degrees of freedom). We store all the displacements obtained in the vectors 

   

   
1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) ( ) 

x x yx x yx x yx x yx

y xy y xy y xy y xy y

i N i N i N i N i N i N i N i N i

i N i N i N i N i N i N i N i N i





R

R
 (33) 

where the quantity stored in 1 ( )yxN i is the displacement of node i in the direction y, caused by a unit displacement applied 
to node 1 in direction x. Therefore, the interpolation function matrix  N  can be formed as 

             (1)  (1)  (2)  (2)  ... ... ( )  ( )
TT T TT T T

x y x y x yn n    N R R R R R R  (34) 

where n is the total number of nodes of the fine-scale mesh within a unit cell. 
Consider the arbitrary e-th bar element of the unit cell depicted in Fig. 8. The bar has two nodes, p and q. For the 

element e, the strain energy can be evaluated by 

      2e e e1
2
k L    (35) 

where 
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 and  

   

 

e e
e

e
E A

k
L

  (36-37) 

where E  is the Young modulus, A  is the cross section area and L  is the element length. 

 
Figure 8 A particular element “e” connecting nodes “p” and “q”. 

The macroscale (vertex) displacements  Eu'  are related to the microscale displacements  (e)u  by the 

interpolation functions matrix, 
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    (e)
Eu N u'  (38) 

Using Eqs. 34 and 38 we obtain 
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R pu
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u . (39) 

Further, using Eq. (36) and (39) it turns out that 
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G , (41) 

and introducing Eq. (36) into (37) we get the element strain energy expression 

         e e e1

2 E
T T

E k        
' G Gu u' . (42) 

Adding up the strain energy of all the bar elements in the cell, the total strain energy is 

             e e e e

1 1
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 

 
    
 

 u G G u  (43) 

where M is the total number of elements within the unit cell. 
From Eq. (43) we extract the cell homogenized stiffness matrix 

       e e e

e 1

[ ]
M

T
E k


 K G G , (44) 

to be used in a finite element analysis to model the macroscale. The heterogeneities present at the microscale are 
incorporated in the cell [ ]EK , resulting in a direct linkage between macro and microscales. Notice that in contrast to AH, 
we do not deal with a homogenized material point, so there are no macroscopic strains or stresses, only macroscopic 
displacements. If stress and strain values are necessary, they are computed at the element level, whose displacements 
are obtained using Eq. (38). 

Remark 
In all the examples studied in this work, we explicitly show the interpolation functions obtained for linear and periodic 

boundary conditions as well as the corresponding stiffness matrices (in the Appendix 1). The purpose is twofold: 

(i)  on one hand we want to emphasize that linear boundary conditions always render overstiff unit cells, which in some 
cases might show a locking numerical pitfall; 
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(ii)  on the other hand we want to remark that especially for metamaterials, which are tailored for a given behavior, internal 
nodes might suffer spurious1 large displacements and deformations even for small displacements of the cell vertices. This 
happens in a number of examples trated in this study, which were verified against singularities by evaluation of the stiffness 
matrix eigenvalues. This issue requires attention because in such cases results are shown not to be trustfull. 

4 GUTH’S PERIODIC TRUSS METAMATERIALS 

All the unit cells studied here were borrowed from Guth et al. (2012), who employed sequential quadratic 
programming (SQP) (Schittkowski, 2006) and AH theory to obtain PTMs optimally tailored for extreme Poisson ratios. Guth 
took as initial design a symmetric square unit cell formed by truss elements with Young modulus and cross section areas 
given by E = 210 [GPa] and A = 10-5 [m2], respectively. The length of the square unit cell adopted was equal to 0.1 [m]. The 
unit cell, the metamaterial and the homogenized elastic tensor [ ]HE obtained by asymptotic homogenization are shown 
in Fig. 9. The Poisson ratios obtained by Guth use the relation 

1122

1111

H

H

E
E

  . (45) 

Notice that the numerical value of the components of [ ]HE  must be interpreted according to the discussion in 
Section 2.1.1. In order to display the tensor components per unit volume, the values presented in the forthcoming figures 
should be divided by the diameter of the thicker bar in the unit cell. As it is not possible to include the complete data for 
all the cells analyzed in this article, interested readers wishing to reproduce results can contact the authors. 

 
Figure 9 Initial material design. (a) unit cell, (b) macroscopic material and (c) corresponding elastic homogenized tensor 

(Guth et al., 2012). 

The homogenized elastic tensor [ ]HE  refers to an arbitrary point of a continuum homogeneous material subjected 
to plane stress conditions, equivalent to the porous material shown in Fig. 9 (b). In order to have a visual representation 
of the anisotropy level corresponding to the homogenized elastic tensors, we employ normalized diagrams showing the 
effect of rotations on 1111

HE  and 1212
HE . The reference for normalization is the largest value of the tensorial component in 

a 360° rotation, as displayed in Fig. 10. 
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Figure 10 Polar plot of the component 1111

HE  rotated in the plane XY and normalized by max
1111E   (Guth et al., 2015). 

 
1 The term “spurious” here is used in the context that such displacements have no relation with the physical pattern obtained in the full micro-macroscale model. 
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Analyzing [ ]HE  and the polar plots in Fig. 11, we can see that the obtained homogenized material shows orthotropic 
behavior. The optimization for maximum and minimum Poisson ratios were performed under two constraints: (i) 
mechanical isotropy and (ii) a constant value for the total volume occupied by the bars. 

 
Figure 11 Polar plots for the elastic tensor (Guth 2012): (a) 1111

HE  component rotated and normalized with respect to

1111 0.1150HE GPa  ; (b) 1212
HE  component rotated and normalized with respect to 1212 0.0440H GPa   . 

Noteworthy, in Guth unit cells the diagonal bars ovelap. Although not physically realistic, this type of modeling is 
frequent in truss topology optimization. We keep diagonals overlapping so that Guth’s results can be adopted as 
references. A recent truss topology optimization work that prevents overlapping can be found in Cui and Huang (2018). 

4.1. Discussion on Guth’s optimum unit cells for extreme Poisson ratios 

Guth’s studies consider the traditional asymptotic homogenization procedure, which we described briefly in Section 
2. In this method, the cells are subjected to imposed strain fields under periodic boundary conditions. Hence, the 
displacements suffered are always under control. In addition, the macroscopic (homogenized) properties do not take into 
consideration boundary effects, which are always present in pratical situations. Under these assumptions, Guth 
performed his optimization studies for maximum and minimum Poisson ratios taking as design variables: (i) only the 
elements cross section and (ii) the cross section and the nodal coordinates simultaneously. 

Another issue of importance concerns the strategy to enforce isotropy in the opimum designs. The usual way to ensure 
isotropic behavior is, by construction, respecting a number of geometric symmetries of the unit cell. Following Neves et al. (2000), 
Guth did not enforce direct geometric conditions but relaxed this requirement and imposed isotropy by the introduction of a 
number of constraints in the optimization problem. This way, isotropy is not always satisfied exactly, but the domain of unit cells 
to be explored is enlarged and the isotropy violation in the final design is generally negligible for engineering purposes. Polar plots 
are included to emphasize that some unit cells studied are by no means intuitively isotropic, but the combination of their layout 
and spatial periodicity leads to a quasi-isotropic behavior, which can be considered isotropic for engineering purposes. 
Notwithstanding one has to consider that the isotropic behavior obtained by Guth corresponds to an infinitesimal unit cell and in 
the EMsFEM the microscale is finitely sized (as explained in Section 3). Hence, we perform numerical tests to evaluate if the 
application of EMsFEM (coarse mesh) to such asymmetric cells also leads to the same material behavior in different directions. 

4.1.1 Maximum Poisson ratio: only areas as design variables 

In this case, the optimum unit cell and the corresponding isotropic metamaterial are displayed in Figs. 12 (a) and 
(b). The Poisson ratio achieved is  0.99 (the physical upper limit attainable for any 2D material is 1.0). The macroscopic 
(homogenized) elastic tensor is depicted in Fig. 12 (c), where the components are truncated at the fourth decimal digit. 
The polar plots in Fig. 13 show that the shear component is somewhat distant from the perfect circle that would 
characterize isotropy. However, the diagrams are nondimensional, and the normalizing value for the shear component 
is four orders of magnitude smaller than the axial counterpart. Therefore, the shear stiffness is comparatively negligible 
and the material can be considered isotropic for engineering purposes. 
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Figure 12 Initial material design. (a) unit cell, (b) macroscopic material and (c) corresponding elastic homogenized tensor 

(Guth 2012). 

 
Figure 13 Polar plots for the elastic tensor (Guth 2012): (a) 1111

HE  component rotated and normalized with respect to 

1111 0.0739HE GPa  ; (b) 1212
HE  component rotated and normalized with respect to 1212 0.00001HE GPa  . 

4.1.2 Maximum Poisson ratio: simultaneous adoption of areas and nodal coordinates as design variables 

In this case, the result for the optimum unit cell is shown in Fig. 14. The Poisson ratio of the isotropic metamaterial obtained 
is the same as in the previous case,  0.99. The truncated homogenized elastic tensor is displayed in Fig. 14 (c). Notice that this 
unit cell layout is far from being intuitively isotropic. Notwithstanding, the polar plots in Fig. 15 confirm isotropy. 

 
Figure 14 Initial material design. (a) unit cell, (b) macroscopic material and (c) corresponding elastic homogenized tensor 

(Guth et al., 2012). 

 
Figure 15 Polar plots for the elastic tensor (Guth 2012): (a) 1111

HE  component rotated and normalized with respect to

1111 0.0537HE GPa  ; (b) 1212
HE  component rotated and normalized with respect to 1212 0.000004HE GPa  . 
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4.1.3 Minimum Poisson ratio: only areas as design variables 

This cell was obtained in Guth’s work aiming at an extreme auxetic material. The cell was optimized from the initial 
layout shown in Fig. 9 considering only the cross section of the bars as design variables. Mechanical isotropy was enforced 
as an optimization constraint. The unit cell obtained is displayed in Figs. 16 (a), the macroscopic material in Fig. 16 (b) 
and the homogenized constitutive tensor obtained via AH in Fig. 16 (c). Although the unusual cell layout precludes an 
intuitive perception of isotropy, the polar plots in Fig. 17 confirm this behavior. Different from the cases 4.2 and 4.3, 
which aimed at Poisson ratio maximization, in this case the axial and shear homogenized components have the same 
order of magnitude. Hence, this material is able to withstand efficiently both, axial and shear loading. The Poisson ratio 
predicted by AH is   -0.99. The minimum theoretical value attainable for 2D materials is   -1. 

 
Figure 16 Initial material design. (a) unit cell and (b) macroscopic material, (c) corresponding elastic homogenized tensor 

(Guth 2012). 

 
Figure 17 Polar plots for the elastic tensor (Guth 2012): (a) 1111

HE  component rotated and normalized with respect to 

1111 0.0080HE GPa  ; (b) 1212
HE  component rotated and normalized with respect to 1212 0.0080HE GPa  . 

4.1.4 Minimum Poisson ratio: simultaneous adoption of areas and nodal coordinates as design variables 

The PTM considered in this section was tailored for minimum Poisson ratio, as the one in section 4.1.3. In this case, however, 
both coordinates and cross section areas were adopted as design variables. The Poisson ratio achieved was   -0.99. The 
optimization was constrained for mechanical isotropy but leaded to a non-symmertic unit cell which would hardly be visually 
interpreted as isotropic (Fig. 18a). The AH homogenized constitutive tensor is shown in Fig. 18 (c), and its isotropic nature can be 
is confirmed by the polar plots in Fig. 19. Similar to the case 4.1.3, the axial and shear homogenized components have the same 
order of magnitude. Thus, this material is able to support both, axial and shear loading. 

 
Figure 18 Initial material design. (a) unit cell, (b) macroscopic material and (c) corresponding elastic homogenized tensor 

(Guth 2012). 
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Figure 19 Polar plots for the elastic tensor (Guth 2012): (a) 1111

HE  component rotated and normalized with respect to 

1111 0.0120HE GPa  ; (b) 1212
HE  component rotated and normalized with respect to 1212 0.0120HE GPa  . 

5 DETERMINATION OF EMsFEM INTERPOLATION FUNCTIONS FOR GUTH’S PERIODIC TRUSS METAMATERIALS 

In this section we show and discuss the numerical interpolation functions obtained for each unit cell using LBC and 
PBC boundary conditions. While the lower compliance produced by the LBC (when compared to PBC) is visually observed 
in the Figures for all the cases, this effect is displayed quantitatively in the corresponding stiffness matrices presented in 
the Appendix 1. The overstiffening produced by LBC has a strong influence in modeling macroscopic components, in 
some cases leading to numerical locking, as reported in Section 6. As a quantitative measure of stiffnening, we compute 
the percentual difference beween the LBC and PBC stiffness matrices measured by the Frobenius norm, i.e., 

100
LBC PBC
E E

K PBC
E

E


 
K K

K
 (46) 

and 

 2E EijK K  , (47) 

where KE  is the ratio of the Frobenius norm between unit cells. 
Special attention is given to the case 5.3, corresponding to the unit cell for maximum Poisson ratio with areas and 

coordinates as design variables. The interpolation functions of this particular unit cell display unexpected excessive 
displacements for nodes inside the cell. We suggest a possible explanation for this response and anticipate difficulties 
for modeling a macroscopic component with this cell. 

5.1 EMsFEM Interpolation functions for the initial cell 

The numerical interpolation functions obtained for the initial cell by application of linear and periodic boundary 
conditions are displayed in Figs. 20 and 21, respectively. The stiffness difference is not very significant, as confirmed by 
the numerical values of the corresponding homogenized stiffness matrices, in the Appendix 1. The ratio of the Frobenius 
norm is /LBC PBC

E EK K  = 1.054, that is, a percentage stiffening KE  of only 5.4%. As a consequence, the application 
of LBC or PBC do not to affect much the results for macroscopic problems modelled with the EMsFEM in Section 6. 

5.2 EMsFEM interpolation functions for the cell corresponding to maximum Poisson ratio – only areas 

The numerical interpolation functions obtained for this cell by application of linear and periodic boundary conditions 
are displayed in Figs. 22 and 23 evincing visually a larger stiffness associated to linear boundary conditions. The stiffness 
difference can be appreciated quantitatively in the Appendix 1, which shows the numerical values of the corresponding 
homogenized stiffness matrices. The stiffness difference can be quantified by the Frobenius norm, which provides a 
justification to the LBC overstiffening suffered in the macroscopic problem in Section 6. In this case, the ratio of the 
Frobenius norm is /LBC PBC

E EK K  = 1.068, that is, a small percentage stiffening KE = 6.8%. 
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5.3 EMsFEM interpolation functions for the cell corresponding to maximum Poisson ratio – areas and coordinates 

The numerical interpolation functions obtained for this cell by application of linear and periodic boundary conditions 
are displayed in Figs. 24 and 25. The larger stiffness associated to the linear boundary conditions can be visualized in the 
Figures and analyzed quantitavely in the homogenized stiffness matrices presented in the Appendix 1. In this case, the 
ratio of the Frobenius norm is very significant /LBC PBC

E EK K = 1.467 or KE  = 46.7%. 
An explanation to the strange displacements reported in Figs. 24 and 25 is given in Fig. 26. As the unit cell of this PTMM 

has some bars disposed almost collinearly, a simple vector decomposition reveals that very large axial forces are exerted on 
them, causing large stresses and strains, resulting in excessive displacements. We remark that an eigenvalue analysis was 
performed on the stiffness matrices, excluding the possibility of singularity. It is important to realize that AH was not capable 
of detecting this numerical pitfall, as it only becomes apparent when considering a finite dimension of the microscale. On 
the other hand, the phenomenon is easily perceived in the EMsFEM approach by simple observation of the interpolation 
functions. Another issue to remark is that the unit cells obtained by Guth were optimized under the assumption of geometric 
linearity, so we also limit the EMsFEM analyses to this condition (in which large displacements are not allowed). 

 
Figure 20 Numerical interpolation functions obtained for LBC. 

 
Figure 21 Numerical interpolation functions obtained for PBC. 

 
Figure 22 Numerical interpolation functions obtained for LBC. 
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Figure 23 Numerical interpolation functions obtained for PBC. 

 
Figure 24 Numerical interpolation functions obtained for LBC. 

 
Figure 25 Numerical interpolation functions obtained for PBC. 

 
Figure 26 Force decomposition showing large axial resultants on nearly collinear bars. 

5.4 EMsFEM interpolation functions for the cell corresponding to minimum Poisson ratio – only areas 

The numerical interpolation functions obtained for this cell by application of linear and periodic boundary conditions 
are displayed in Figs. 27 and 28. The Appendix1 displays the corresponding stiffness matrices showing significant 
differences. The Frobenius norm of these matrices puts in evidence a severe numerical stiffening for linear boundary 
conditions, with a ratio /LBC PBC

E EK K  = 2.81 or or KE  = 181%. Accordingly, the macroscale problem studied in 
Section 6 shows that the EMsFEM-LBC fails at providing a good approximation for the full micro-macroscale model. 
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5.5 EMsFEM interpolation functions for the cell corresponding to minimum Poisson ratio – areas and coordinates 

The numerical interpolation functions obtained for this cell by application of linear and periodic boundary conditions 
are displayed in Figs. 29 and 30. The Appendix 1 displays the corresponding stiffness matrices showing that not only the 
magnitude of stiffness components differ considerably but their signal may change. The ratio of the Frobenius norm is 

/LBC PBC
E EK K  = 2.15, corresponding to a percentual stiffening of KE  = 115%. Implications for modelling 

macroscopic structures are foreseen. In fact, application of this cell in the macroscale problem studied in Section 6 
evinces that the EMsFEM-LBC causes locking for vertical displacements. 

 

Figure 27 Numerical interpolation functions obtained for LBC. 

 

Figure 28 Numerical interpolation functions obtained for PBC. 

 

Figure 29 Numerical interpolation functions obtained for LBC. 
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Figure 30 Numerical interpolation functions obtained for PBC. 

6 MACROSCOPIC EVALUATION OF THE PTMMs POISSON RATIO USING THE EMsFEM 

The EMsFEM is employed to evaluate the macroscopic behavior of a rectangular plate made up of PTMM cells. The 
dimension of the plate is 1 × 0.6 m (length × height) and the FEM discretization is shown in Fig. 31. Each finite element 
equals one unit cell. The plate is subjected to traction by prescribed uniform unit horizontal displacements 0.1ux at 
both lateral edges. In order to evaluate the Poisson ratio for each of the unit cells depicted in the Figure, we calculate 
the horizontal/vertical displacement ratio in a selected subdomain inside the plate. We compare the results with the 
values predicted by asymptotic homogenization (Guth, 2012), emphasizing that due to to the finite dimension of the 
microscale, such results are not necessarily coincident. The Poisson ratio given by Guth is obtained by relations between 
the homogenized tensor components. We also verify the Poisson ratio introducing the homogenized constitutive tensors 
found by Guth (and presented in Section 5) in the plane stress FEM formulation given by Eq. (21). In this case we keep 
the same finite element size Δ used by the EMsFEM but the size of the unit cell tends to zero. The Poisson ratio obtained 
this way is given in the bottom of Figs. 32-36. 

 

Figure 31 FEM discretization macro and micro scale problem. 

6.1 Initial cell 

The results for this cell are shown in Fig. 32. The real physical situation is given by the full-bar model, where the 
upper and lower plate edges are free to move. The Poisson ratio is estimated over the indicated area, resulting in  
0.2353. The EMsFEM-LBC approximation presents a result of  0.2391, whereas the value obtained using the EMsFEM-
PBC is  0.2353, in exact agreement with the full bar model. Both EMsFEM alternatives provide good approximations 
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for the displacement field pattern (isocolor map) and quantitative values. The use of a plane stress FEM model with the 
AH elastic tensor also leads to  0.2353 and similar displacement distribution. 

6.2 Optimized cell for maximum Poisson ratio – area 

For this cell and objective, Guth’s optimization considered only the element cross section areas as design variables, 
obtaining a nearly symmetrical layout. The AH prediction for an infinitesimal microscale indicates isotropic behavior with 
a Poisson ratio  0.99. Figure 33 shows results for the finitely microscaled full bar model, whose Poisson ratio is 
evaluated as  0.9997 over the depicted region. The EMsFEM-LBC and EMsFEM-PBC approximations provide    
0.5316 and  0.9998, respectively. A significant overstiffening is observed for the LBC as foreseen in Section 5.2. 
Downscaling confirms a good agreement between the EMsFEM-PBC and the full bar model both in displamement 
distribution and values. 

6.3 Optimized cell for maximum Poisson ratio - area and coordinates 

This case, shown in Fig. 34, deserves special attention. The unit cell is asymmetrical, far from being intiuitively 
isotropic. Notwithstanding, for an infinitesimal microscale, the AH predicts isotropy and a Poisson ratio  0.99. 
Evaluation of the Poisson ratio in the selected region of the full-bar domain results in  0.9978. The EMsFEM-LBC 
shows overstiffening again (with  0.4979) whereas the EMsFEM-PBC leads to a qualitatively fair agreement with the 
full bar model for locations apart from the borders (  0.9996). For this unit cell, spurious values are detected for 
downscaled EMsFEM-LBC displacements. Hence, with this EMsFEM alternative it is not possible to predict local failure 
nor to perform nonlinear analyses. 

6.4 Optimized cell for minimum Poisson ratio – area 

This example concerns the unit cell designed for mimimum Poisson ratio when only areas are adopted as 
design variables. For an infinitesimal cell with this layout, the AH performed by Guth predicts   -0.99. However, 
due to size and border effects, Fig. 35 shows that result obtained for the full bar model (10 x 6 cells) is very 
different,   -0.677 when evaluated over the highlighted region. Furthermore, EMsFEM-LBC provides a 
completely erroneous result dominated by a rigid rotation, leading to   -0.1720. On the other hand, the Poisson 
ratio given by EMsFEM-PBC is   -0.9929, and is in in closer accordance with AH than with the 10 x 6 full bar 
model. This probably happens because the kinematic periodic boundary conditions imposed in EMsFEM-PBC are 
able to reproduce better the AH periodic boundary conditions than the free edge displacements of the full model. 
So, if the goal is reproducing the full bar model none of the EMsFEM versions are satisfactory. In order to obtain 
a better insight into the problem we perform a similar analysis, this time containing 60x30 cells, keeping the 
same cell dimensions. These additional results are included in the Figure, where it is observed that far enough 
from the border, the Poisson ratio obtained is very close to -1. 

6.5 Optimized cell for minimum Poisson ratio - area and coordinates 

In Fig. 36 we show the behavior of the material generated by the periodic repetition of Guth’s unit cell designed for minimum 
Poisson ratio when both areas and coordinates are adopted as design variables. The Poisson ratio predicted by AH is   -0.99, 
whereas the value calculated with basis on the selected region of the full bar model (10 x 6 cells) is   -0.7443. The EMsFEM 
should approach the full bar model but the results obtained for the EMsFEM-LBC and for the EMsFEM-PBC are   -0.0513 and 
  -0.9968, respectively. As in case 6.4, nor of the EMsFEM versions is satisfactory. The EMsFEM-LBC locks and the EMsFEM-
PBC tends to the AH solution rather than to the full bar model. Again, this fact stems from size and border effects. As for the cell 
in Fig. 35, a 60 x30 cells structure is studied, keeping the cell size and the macroscopic proportions. For this mesh and far enough 
from the border, we verify that the Poisson ratio obtained is   -0.9986. 
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Figure 32 Poisson ratio evaluated using EMsFEM - initial cell plane stress FEM fully integrated linear quadrilateral element (AH) - 

𝜈𝜈 = 0.23532. 

 
Figure 33 Max. Poisson ratio evaluated using EMsFEM – only areas l plane stress FEM fully integrated linear quadrilateral 

element (AH) - 𝜈𝜈 = 0.99975. 
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Figure 34 Max. Poisson ratio evaluated using EMsFEM – areas and coordinates plane stress FEM fully integrated linear quad. 

element (AH) - 𝜈𝜈 = 0.99975. 

 
Figure 35 Min. Poisson ratio evaluated using EMsFEM – only areas plane stress FEM fully integrated linear quad. element (AH) - 

 ν = −0.9930. 
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Figure 36 Min. Poisson ratio evaluated using EMsFEM – areas and coordinates plane stress FEM fully integrated linear quad. 

element (AH) - 𝜈𝜈 = −0.9977. 

6.6 Evaluation of Poisson ratio of the PTMMs rotated 90o clockwise 

According to Guth (2012) all the unit cells in this work would behave isotropically if inifinitesimal. Figure 37 displays 
a summary of the Poisson ratios obtained in the problem described in Section 6.5, but this time with each cell rotated 90 
degrees clockwise. We remark that only approximate isotropy would be expected owing to size and border effects. 
Numerical experiments confirm approximately the same Poisson ratios. The Figure does not prove isotropy, it evaluates 
only two points in the respective polar plots. However, the coincidence of these results offers confidence in the AH 
isotropic prediction even for the finitely sized microscale of our problems. 

 
Figure 37 Evaluation of Poisson ratio for each cell rotated 90 clockwise for isotropy check. Although three cells are extremely non 

symmetric, the same Poisson value is confirmed in two directions. 

7 CONCLUDING REMARKS 

In this article we make a review of two tecnhiques commonly used to analyze the structural response of 
heterogeneous materials: asymptotic homogenization (AH) and the Extended Multicale Finite Element Method 
(EMsFEM). We use these methods to study periodic truss metamaterials (PTMMs) previously developed by Guth et al. 
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(2012) to present extreme Poisson ratios and behave isotropically. The metamaterials were obtained under the premises 
of AH, where the unit cell becomes infinitesimal and corresponds to a single material point. Numerical experiments were 
conducted in order to study the effect of a finitely sized microscale and the capability of the EMsFEM to approximate the 
macroscale physical behavior with a reduced model. To this end, two versions of the EMsFEM were implemented: the 
EMsFEM-LBC and the EMsFEM-PBC. The difference between them resides in the interpolation functions employed (linear 
and periodic boundary conditions). Some conclusions can be summarized: 

(i)  The macroscale problem defined for evaluation of the Poisson ratio consists of a coarse mesh, therefore size and border 
effects can be of great importance and this depends strongly on the unit cell and in macroscale boundary conditions; 

(ii)  In the case of the cells aimed at maximum Poisson ratio, the EMsFEM-PBC was able to reproduce adequately the 
full bar model. On the other hand, the EMsFEM-LBC led to a pronounced overstiffening effect, as expected; 

(iii)  In the case of the cells aimed at minimum Poisson ratio, nor the EMsFEM-LBC nor the EMsFEM-PBC were able to 
approximate the structural response of the full bar model. The former showed overstiffness and the later tended to 
the AH solution. Future analyses will study the oversampling technique (Zhang et al, 2010a); 

(iv)  Linear and periodic boundary conditions were applied to build numerical interpolation functions for each of the 
PTM unit cells in this work. Visual observation and the Frobenius norm of the homogenized EMsFEM stiffness 
matrices proved to be helpful to interpret the macroscopic behavior in each case. 

(v)  One of the unit cells, the one optimized for maximum Poisson ratio with areas and coordinates as design variables, 
showed spurious displacements in the interpolation functions. These spurious displacements are due to excessive 
compliance of the unit cell and could not be detected by AH. The reason is that the AH procedure is strain-driven 
and also assumes an infinitesimally sized unit cell. Spurious displacements can preclude the correct evaluation of 
failure criteria and nonlinear analyses using EMsFEM. On the other hand, they mean that the cell is excessively 
compliant and that large displacements are prone to occur in the domain of the full bar model. Hence, care must 
be taken before using PTMMs optimized via AH; 

(vii)  All the optimized unit cells studied in this work lead to isotropic macroscopic materials, provided the unit cell is 
infinitesimal. Three of them are completely asymmetric and isotropy is counterintuitive for finitely sized unit cells. 
We performed numerical tests to check the Poisson ratios for a 90 degree rotation of the unit cell, obtaining 
coincident results even though the micro/macro scale ratio is not small in the examples.; 

8 ACKNOWLEDGEMENTS 
The author Elias Jagiello acknowledges the support of the company Metal Crruzado for allowing partial leave of his 

regular duties in order to develop doctoral studies at Santa Catarina State University - UDESC. 

Author's Contributions: all authors contributed equally. 

Editor: Marco L. Bittencourt. 

References 
Arabnejad, S., Pasini, D. (2013). Mechanical properties of lattice materials via asymptotic homogenization and comparison 
with alternative homogenization methods. Int J Mech Sci 77:249–62. 

Ashby, M.F. (1983).The mechanical properties of cellular solids. MTA 14: 1755–1769. 

Cheng, L., Zhang, P., Biyikli, E., Bai, J., Robbins, J., To, A. (2017). Efficient design optimization of variable-density cellular 
structures for additive manufacturing: theory and experimental validation. Rapid Prototyp J 23(4):660–677 

Cui, H., An, H., Huang, H. (2018). Truss topology optimization considering local buckling constraints and restrictions on 
intersection and overlap of bar members. Structural Multidisciplinary Optim. 58(2):575–594. 

Gibson L. J., Ashby M. F. (1997). Cellular solids: Structure and properties. 2nd ed. United States: Cambridge solid state science 
series. 

Glaesener, R., Lestringant, C., Telgen, B., Kochmann, D.M. (2019). Continuum models for stretching- and bending-dominated 
periodic trusses undergoing finite deformations, Int. J. Solids Struct 171:117-134. 



An Extended Multiscale Finite Element Method (EMsFEM) Analysis of Periodic Truss Metamaterials 
(PTMM) Designed by Asymptotic Homogenization. 

Elias Jagiello et al. 

Latin American Journal of Solids and Structures, 2021, 18(2), e347 26/30 

Guedes, J.M., Kikuchi, N. (1990). Preprocessing and postprocessing for materials based on the homogenization method with 
adaptive finite element methods. Computer Methods in Applied Mechanics and Engineering 83:143-198. 

Guth, D.C. (2012). Optimization of truss-like cellular materials, including isotropy constraints, for thermomechanical 
applications, Master's Dissertation (in Portuguese), Universidade do Estado de Santa Catarina, Brazil. 

Guth, D.C, Luersen, M.A., Muñoz-Rojas P.A. (2012). Optimization of periodic truss materials including constitutive symmetry 
constraints, Mat.-wiss. u.Werkstofftech 43(5): 447-456. 

Guth, D.C, Luersen, M.A, Muñoz-Rojas, P.A. (2015). Optimization of three-dimensional truss-like periodic materials considering 
isotropy constraints, Struct Multidisc Optim 52:889–901. 

Hassani, B., Hinton, E. (1998). A review of homogenization and topology optimization I - Homogenization theory for media 
with periodic structure. Computers and Structures 69:707-717. 

Hou, T.Y., Wu, X.H. (1996). A multiscale finite element method for elliptic problems in composite materials and porous media. 
Journal of computational physics 134(1):169–189. 

Jun, Y., Wenbo, H., Zunyi, D. (2015). Structure/material concurrent optimization of lattice materials based on extended 
multiscale finite element method, Journal for Multiscale Computational Engineering 13(1): 73–90. 

Li, D.W., Liao, W.H., Dai, N., Xie, Y.M. (2020). Anisotropic design and optimization of conformal gradient lattice structures, 
Computer- Aided Design, 119 - 102787.  

Liu, H., Lv, J. (2017). An equivalent continuum multiscale formulation for 2D geometrical nonlinear analysis of lattice truss 
structure, Compos. Struct 160:335–348. 

Liu, L., Yan, J., Cheng, G. (2008). Optimum structure with homogeneous optimum truss-like material, Computers and 
Structures 86:1417–1425. 

Muñoz-Rojas, P.A., Carniel, T.A., Silva, E.C.N., Öchsner, A. (2010). Optimization of a unit periodic cell in lattice block materials 
aimed at thermo-mechanical applications, in A. Öchsner and G.E. Murch (eds.), Heat Transfer in Multi-Phase Materials, Adv 
Struct Mater 2, Springer-Verlag Berlin Heidelberg. 

Neves, M.M., Rodrigues, H., Guedes, J.M. (2000). Comput. Struct 76(1-3): 421-429.  

Otero, F., Oller, S., Martinez, X. (2018). Multiscale computational homogenization: review and proposal of a new enhanced-
first-order method, Arch. Comput. Methods Eng 25(2):479–505. 

Peric, ́D., de Souza Neto, E.A., Feijoó, R.A., Partovi, M., Molina, A.J.C. (2011). On micro-to-macro transitions for multi-scale 
analysis ofnon-linear heterogeneous materials: unified variational basis and finite element implementation. Int J Numer 
Methods Eng 87(1–5):149–170. 

Plocher, J., Panesar, A. (2019). Review on design and structural optimisation in additive manufacturing: towards next-
generation lightweight structures. Mater Des 183 - 108164. 

Schittkowski, K. (2006). NLPQLP: A Fortran implementation of a sequential quadratic programming algorithm with distributed 
and non-monotone line Search - User's guide, Version 2.2, Report, Department of Computer Science, University of Bayreuth. 

Sigmund, O. (1994), Materials with prescribed constitutive parameters: an inverse homogenization problem, lnt. J. Solids 
Structures 31(17):2313-2329. 

Sigmund, O. (1995). Tailoring materials with prescribed elastic properties, Mechanics of Materials 20  351-368 

Sun, C.T., Vaidya, R.S. (1996). Prediction of composite properties from a representative volume element. Composite Science 
and Technology 56:171–179. 

Xia, Z.H., Zhou, C.W., Yong, Q.L., Wang, X.W. (2006). On selection of repeated unit cell model and application of unified 
periodic boundary conditions in micromechanical analysis of composites. Int J Solid Struct 43(2):266–78. 

Yan, J., Cheng, G., Liu, S., Liu, L. (2006). Comparison of prediction on effective elastic property and shape optimization of truss 
material with periodic microstructure. International Journal of Mechanical Sciences 10:400-413. 

Yan, J., Yang, S., Duan, Z., Yang, C. (2015). Minimum compliance optimization of a thermoelastic lattice structure with size-
coupled effects. Journal of Thermal Stresses, 38(3):338-357. 



An Extended Multiscale Finite Element Method (EMsFEM) Analysis of Periodic Truss Metamaterials 
(PTMM) Designed by Asymptotic Homogenization. 

Elias Jagiello et al. 

Latin American Journal of Solids and Structures, 2021, 18(2), e347 27/30 

Zhang, H.W, Fu, Z.D., Wu, J.K. (2009). Coupling multiscale finite element method for consolidation analysis of heterogeneous 
saturated porous media. Advances in Water Resources 32(2):268-279. 

Zhang, W., Sun, S. (2006). Scale-related topology optimization of cellular materials and structures, Int. J. Numer. Meth. Engng; 
68:993–1011. 

Zhang, H.W., Wu, J.K., Fu, Z.D. (2010a). Extended multiscale finite element method for mechanical analysis of periodic lattice 
truss materials. Journal for Multiscale Computational Engineering 8:597–613. 

Zhang, H.W, Wu, J.K, Lü, J., Fu, Z.D. (2010b). Extended multiscale finite element method for mechanical analysis of 
heterogeneous materials, Acta Mech Sin 26:899–920. 

Wang, C., Gu, X., Zhu, J., Zhou, H., Li, S., Zhang, W. (2020). Concurrent design of hierarchical structures with three-dimensional 
parameterized lattice microstructures for additive manufacturing. Structural and Multidisciplinary Optimization 61:869–894. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



An Extended Multiscale Finite Element Method (EMsFEM) Analysis of Periodic Truss Metamaterials 
(PTMM) Designed by Asymptotic Homogenization. 

Elias Jagiello et al. 

Latin American Journal of Solids and Structures, 2021, 18(2), e347 28/30 

APPENDIX 1 

In this Appendix we list the stiffness matrices obtained in Section 5 for the EMsFEM with loinear and periodic 
boundary conditions. We also present their Frobenius norms with the percentual differences. 

7.1. Initial cell 

𝑲𝑲8×8
𝐿𝐿𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

54.68 15.09 −38.38 −1.21 −19.67 −15.09 3.36 1.21
15.09 54.68 1.21 3.36 −15.09 −19.67 −1.21 −38.38

−38.38 1.21 54.68 −15.09 3.36 −1.21 −19.67 15.09
−1.21 3.36 −15.09 54.68 1.21 −38.38 15.09 −19.67
−19.67 −15.09 3.36 1.21 54.68 15.09 −38.38 −1.21
−15.09 −19.67 −1.21 −38.38 15.09 54.68 1.21 3.36

3.36 −1.21 −19.67 15.09 −38.38 1.21 54.68 −15.09
1.21 −38.38 15.09 −19.67 −1.21 3.36 −15.09 54.68⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

 

𝑲𝑲8×8
𝑃𝑃𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

50.63 12.77 −38.61 0.75 −18.89 −12.77 6.86 −0.75
12.77 50.63 −0.75 6.86 −12.77 −18.89 0.75 −38.61

−38.61 −0.75 50.63 −12.77 6.86 0.75 −18.89 12.77
0.75 6.86 −12.77 50.63 −0.75 −38.61 12.77 −18.89

−18.89 −12.77 6.86 −0.75 50.63 12.77 −38.61 0.75
−12.77 −18.89 0.75 −38.61 12.77 50.63 −0.75 6.86

6.86 0.75 −18.89 12.77 −38.61 −0.75 50.63 −12.77
−0.75 −38.61 12.77 −18.89 0.75 6.86 −12.77 50.63⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

‖𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿‖ =  0.20631202 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

‖𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿‖ = 0.19567868 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

𝐸𝐸𝐾𝐾 = 5.4%. 

 
7.2. Maximum Poisson ratio - areas 

𝑲𝑲8×8
𝐿𝐿𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

40.17 17.56 −30.85 8.24 −17.56 −17.56 8.24 −8.24
17.56 40.3 −8.24 8.23 −17.56 −17.56 8.24 −30.98

−30.85 −8.24 40.17 −17.56 8.23 8.24 −17.56 17.56
8.24 8.23 −17.56 40.3 −8.24 −30.98 17.56 −17.56

−17.56 −17.56 8.23 −8.24 40.17 17.56 −30.85 8.24
−17.56 −17.56 8.24 −30.98 17.56 40.3 −8.24 8.23

8.24 8.24 −17.56 17.56 −30.85 −8.24 40.17 −17.56
−8.24 −30.98 17.56 −17.56 8.24 8.23 −17.56 40.3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

 

𝑲𝑲8×8
𝑃𝑃𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

29.77 18.47 −29.77 18.46 −7.17 −18.47 7.17 −18.46
18.47 29.84 −18.46 7.1 −18.47 −7.11 18.46 −29.83

−29.77 −18.46 29.77 −18.47 7.17 18.46 −7.17 18.47
18.46 7.1 −18.47 29.84 −18.46 −29.83 18.47 −7.11
−7.17 −18.47 7.17 −18.46 29.77 18.47 −29.77 18.46
−18.47 −7.11 18.46 −29.83 18.47 29.84 −18.46 7.1

7.17 18.46 −7.17 18.47 −29.77 −18.46 29.77 −18.47
−18.46 −29.83 18.47 −7.11 18.46 7.1 −18.47 29.84⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

‖𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿‖ =  0.17214765 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

‖𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿‖ = 0.16109491 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

𝐸𝐸𝐾𝐾 = 6.8%. 
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7.3. Maximum Poisson ratio – areas and coordinates 

𝑲𝑲8×8
𝐿𝐿𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

48.25 29.84 −35.09 −3.61 −11.09 −9.54 −2.06 −16.68
29.84 50.66 −17.06 −1.91 −9.55 −10.86 −3.22 −37.88

−35.09 −17.06 44.79 −11.79 4.21 2.09 −13.91 26.76
−3.61 −1.91 −11.79 63.89 −16.87 −48.48 32.28 −13.49
−11.09 −9.55 4.21 −16.87 60.11 23.75 −53.24 2.67
−9.54 −10.86 2.09 −48.48 23.75 55.93 −16.3 3.41
−2.06 −3.22 −13.91 32.28 −53.24 −16.3 69.22 −12.76
−16.68 −37.88 26.76 −13.49 2.67 3.41 −12.76 47.97⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

 

𝑲𝑲8×8
𝑃𝑃𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

21.81 14 −21.8 4.9 2.94 −4.91 −2.95 −13.99
14 23.5 −14 −3.21 −6.24 3.21 6.24 −23.5

−21.8 −14 21.79 −4.9 −2.94 4.9 2.94 14
4.9 −3.21 −4.9 36.63 −28.54 −36.63 28.54 3.21

2.94 −6.24 −2.94 −28.54 37.79 28.54 −37.79 6.25
−4.91 3.21 4.9 −36.63 28.54 36.64 −28.53 −3.22
−2.95 6.24 2.94 28.54 −37.79 −28.53 37.8 −6.25
−13.99 −23.5 14 3.21 6.25 −3.22 −6.25 23.51⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

‖𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿‖ = 0.22703051 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

‖𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿‖ = 0.15472082 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

𝐸𝐸𝐾𝐾 = 46.7%. 

 
7.4. Minimum Poisson ratio – areas 

𝑲𝑲8×8
𝐿𝐿𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

57.52 27 −23.04 0.05 −35.02 −34.53 0.53 7.48
27 60.99 6.79 0.89 −33.87 −34.69 0.07 −27.19

−23.04 6.79 34.84 −10.08 −6.19 −1.71 −5.6 5
0.05 0.89 −10.08 49.38 4.87 −39.35 5.15 −10.92

−35.02 −33.87 −6.19 4.87 71.76 36.34 −30.54 −7.34
−34.53 −34.69 −1.71 −39.35 36.34 75.61 −0.08 −1.56

0.53 0.07 −5.6 5.15 −30.54 −0.08 35.61 −5.14
7.48 −27.19 5 −10.92 −7.34 −1.56 −5.14 39.68⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

 

𝑲𝑲8×8
𝑃𝑃𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

14.72 −3.74 −12.7 −1.4 7.52 −0.61 −9.54 5.76
−3.74 17.3 5.9 −12.09 −0.71 9.92 −1.44 −15.13
−12.7 5.9 18.64 −0.76 −13.47 −5.18 7.53 0.04
−1.4 −12.09 −0.76 14.87 3.51 −12.7 −1.34 9.92
7.52 −0.71 −13.47 3.51 16.3 2.43 −10.35 −5.23

−0.61 9.92 −5.18 −12.7 2.43 18.5 3.36 −15.72
−9.54 −1.44 7.53 −1.34 −10.35 3.36 12.37 −0.57

5.76 −15.13 0.04 9.92 −5.23 −15.72 −0.57 20.94⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

‖𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿‖ = 0.21598578 × 109 𝑁𝑁/𝑚𝑚𝑚𝑚; 

‖𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿‖ = 0.76840042 × 108 𝑁𝑁/𝑚𝑚𝑚𝑚; 

𝐸𝐸𝐾𝐾 = 181%. 
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7.5. Minimum Poisson ratio – areas and coordinates 

𝑲𝑲8×8
𝐿𝐿𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

20.16 5.98 −12.74 −7.17 −6.94 −0.23 −0.46 1.43
5.98 34.97 2.12 −5.71 −5.27 −2.39 −2.83 −26.86

−12.74 2.12 21.24 −2.8 0.59 −5.69 −9.08 6.37
−7.17 −5.71 −2.8 13.07 7.58 −3.09 2.39 −4.26
−6.94 −5.27 0.59 7.58 14.86 −1.22 −8.5 −1.08
−0.23 −2.39 −5.69 −3.09 −1.22 9.02 7.15 −3.53
−0.46 −2.83 −9.08 2.39 −8.5 7.15 18.05 −6.71

1.43 −26.86 6.37 −4.26 −1.08 −3.53 −6.71 34.67⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

 

𝑲𝑲8×8
𝑃𝑃𝐿𝐿𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12.54 −1.74 −5.93 −5.94 −1.74 −0.66 −4.85 8.34
−1.74 8.68 7.73 −0.81 0.12 −5.17 −6.12 −2.68
−5.93 7.73 11.28 −0.05 −3.59 −5.28 −1.74 −2.39
−5.94 −0.81 −0.05 4.9 4.13 1.09 1.87 −5.18
−1.74 0.12 −3.59 4.13 7.85 1.21 −2.51 −5.47
−0.66 −5.17 −5.28 1.09 1.21 4.85 4.73 −0.76
−4.85 −6.12 −1.74 1.87 −2.51 4.73 9.11 −0.48

8.34 −2.68 −2.39 −5.18 −5.47 −0.76 −0.48 8.64⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

× 106 𝑁𝑁/𝑚𝑚𝑚𝑚 

‖𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿‖ = 0.84625235 × 108 𝑁𝑁/𝑚𝑚𝑚𝑚; 

‖𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿‖ = 0.39372490 × 108 𝑁𝑁/𝑚𝑚𝑚𝑚; 

𝐸𝐸𝐾𝐾 = 115%. 
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