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ABSTRACT 
The objective of this paper is to present a finite element solution for the wave propagation problems with a 
reduction of the velocity dispersion and spurious reflection. To this end, a high-order two-step direct 
integration algorithm for the wave equation is adopted. The suggested algorithm is formulated in terms of 
two Hermitian finite difference operators with a sixth-order local truncation error in time. The two-node linear 
finite element presenting the fourth-order of local truncation error is considered. The numerical results reveal 
that although the algorithm competes with higher-order algorithms presented in the literature, the 
computational effort required is similar to the effort required by the average acceleration Newmark method. 
More than that, the integration with the lumped mass model shows similar results to the integration using 
the average acceleration Newmark for the consistent mass model, which involves a higher number of 
computational operations. 
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INTRODUCTION 

In the numerical computation of wave equations, numerical wave velocity dispersion and spurious reflections for 
non-uniform meshes are a persistent problem arising from the inadequate discretization of the continuous. Wave 
propagation in discrete systems has been studied since the 17th century as described by Brillouin [1]. A one-dimensional 
lattice of point mass interconnected by springs has served, for example, as a model for sound wave propagation and 
propagation of waves in crystals. A lot of research effort has been devoted to dispersion and spurious reflections in the 
numerical integration of wave equations by finite element method Belytschko and Mullen [2], Liu, Sharan, and Yau [3] 
and Bazant [4]. Idesman [5] presented the optimal reduction in numerical dispersion for wave propagation problems 
using two-dimensional isogeometric elements. 

Direct integration methods have been developed for a long time. One of the pioneers was the Houbolt method [6] 
using backward finite difference operators presenting numerical asymptotic annihilation and stability followed by the 
Newmark bi-parametric method [7] with numerical damping control. The single parametric Wilson method [8] was 
developed with improvements in the numerical damping but presenting initial displacement overshoot. Hilbert, Hughes, 
and Taylor [9] presented a new and efficient method with improvements in numerical dissipation. Bazzi and 
Anderheggen [10] developed a direct integration algorithm with new improved numerical dissipation and Hoff and 
Pahl [11] developed an improved variant of the Wilson method. Johnson [12] introduced the discontinuous Galerkin 
method. Finally, recently Soares Jr. [13] proposes a locally stabilized central difference method of four order accurate. 

The adopted high-order algorithm is formulated in terms of two Hermitian finite difference operators Collatz [14] 
with a sixth-order local truncation error. Because the developed algorithm considers the repeated differentiation of the 
governing equations, additional terms are required. Although the presence of these additional terms increases the 
number of the computational operation, the reduction obtained in the matrix factorization and higher orders of the 
relative radii errors is interesting attributes of the algorithm Laier [15]. More importantly, it should be emphasized that 
the results obtained with the lumped mass model for example are similar to those obtained by the Newmark method 
with the consistent mass model that requires greater computational effort. 

ONE-DIMENSIONAL WAVE EQUATION 

The classical one-dimensional wave equation can be written as (D’Alembert wave equation) 

− =2 IIc u u 0   (1) 

in which 

=
ρ
Ec   (2) 

and where c is the wave velocity of propagation, E  is the modulus of elasticity, and ρ  is the mass density. Roman 
numeral as exponent indicates space derivative and time derivative notation using upper dots are adopted. 

Two main techniques are generally used to solve wave equation (1) (Clough, 1975). The first technique, referred to 
as integration in finite terms, is applied using normal mode superposition (a vibration solution), and the second 
technique, referred to as integration in non-finite terms, is known as the D´Alembert wave solution Achenbach [16]. 

The integration of equation (1) in non-finite terms (wave solution) is given using complex notation by 

( ) ( )u A exp i x t Bexp i x t   = β − ω + β + ω      (3) 

where A and B are the amplitudes of the waves propagating in the positive and negative directions, respectively; β  is 
the wave number, ω  is the wave circular frequency, and i is the imaginary unit. 
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FINITE ELEMENT FORMULATION 

The two-node element formulation, as illustrated in Figure 1, can be summarized by the following matrix equation 
Laier [17]: 

+ + +

−     −          + ρ − =         −              









j j j1 2

2 1j 1 j 1 j 1

u u NM M1 1 0E
M M1 1 u u N 0

  (4) 

where   is the element length, 1M 1 3=  and 2M 1 6=  for the consistent mass model, 1M 1 2=  and 2M 0=  for the 

classical lumped mass model, and = I
j jN Eu  and + += − I

j 1 j 1N Eu  are normal forces at nodes j and j+1, respectively, as 

indicated in Figure 1. 

 
Figure 1 Two node Finite Element 

By considering equation (4), the equilibrium of a generic node j, as shown in Figure 2, which consists of the finite 
element version of the wave equation (1), can be expressed by 

− + − +
ρ

− + − + + + =


  

2

j 1 j j 1 2 j 1 1 j 2 j 1( u 2u u ) (M u 2M u M u ) 0
E

  (5) 

 
Figure 2 Finite Element Equilibruium 

Note that equation (5) is a differential-difference equation (differential in time and difference in space) in which the 
space variable x is replaced by the discrete variable j  where j=0,1… and  is the space increment. 

LOCAL TRUNCATION ERROR OF THE NUMERICAL EQUILIBRIUM 

Taking into account equation (1) and Taylor expansion of the function involved, the equation (5) permits to write 
[17] [18]: 

( )− + − +− + − + + + = + − + 

2 II II II IV 4
j 1 j j 1 2 j 1 1 j 2 j 1 j 2( u 2u u ) (M u 2M u M u ) 0 u M 1 12 ...   (6) 

Equation (6) indicates that both for the consistent mass model ( IV 4
j5u 12 ) and for the lumped mass model  

( IV 4
ju 12−  ) the local truncation error is fourth-order. 

u j

j Nj+1

j+1

j+1

u

jN

j+1j-1 j

u j+1u ju j-1
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HIGH ORDER TIME INTEGRATION 

To reduce wave velocity dispersion and spurious reflection in the numerical integration of the wave equation, the 
following coupled Hermitian high-order two-step version of the time integration algorithm suggested by Laier [15] is 
considered: 

( ) ( ) ( )

( ) ( ) ( )

− + − + − +

− + − + − +

∆
− + + ∆ − + ∆ − + = + +

∆
− + + ∆ − + ∆ − + = + +

    

       

6 6
2 k

k 1 k k 1 k 1 k 1 k 1 k k 1 6

7 6
2 k

k 1 k k 1 k 1 k 1 k 1 k k 1 7

d u t12 u 2u u 6 t u u t u 2u u 0 ...
12dt

d u t12 u 2u u 6 t u u t u 2u u 0 ...
12dt

  (7) 

where t∆  is the time step. Equation (7) indicates that the coupled algorithm presents the sixth-order of convergence. 
On the other hand, the two-step version of the average acceleration Newmark method presents the fourth-order of local 
truncation error. 

Note that equation (7) is a difference equation involving four unknown functions (u , u , u  and u ) in which the 
time variable t is replaced by the discrete variable k t∆  where k=0,1… and t∆  is the time increment. 

VELOCITY DISPERSION ANALYSIS 

The numerical integration presents two kinds of error: the first error called local error depends on the order of the 
approximation polynomial of the function to be integrated Smith [18], and the second called global error consists of the 
eigenvalue error and the eigenvector error. Although the solution of the wave equation (1) results in non-dispersive 
propagation (the velocity of propagation does not depend on the frequency), the numerical solution depends on the 
frequency of the wave resulting in dispersive propagation. 

Equation (5) and its first-time derivative can be expressed as follows 

− + − +
ρ

− + − + + + =


     

2

j 1 j j 1 2 j 1 1 j 2 j 1( u 2u u ) (M u 2M u M u ) 0
E

  (8) 

and equation (7) results in the following linear system of difference equations: 

( ) ( ) ( )
( ) ( ) ( )

2
k 1 k k 1 k 1 k 1 k 1 k k 1

2
k 1 k k 1 k 1 k 1 k 1 k k 1

2
j 1 j j 1 2 j 1 1 j 2 j 1

2
j 1 j j 1 2 j

12 u 2u u 6 t u u t u 2u u 0

12 u 2u u 6 t u u t u 2u u 0

( u 2u u ) t (M u 2M u M u ) 0

( u 2u u ) t (M u

− + − + − +

− + − + − +

− + − +

− +

− + + ∆ − + ∆ − + =

− + + ∆ − + ∆ − + =

− + − + ψ∆ + + =

− + − + ψ∆

    

       

  

    1 1 j 2 j 12M u M u ) 0− ++ + = 

  (9) 

Note that the equation (9) is a system of difference equations in space (discrete variable j ) and in time (discrete 
variable k t∆ ) involving four unknown functions (u , u , u  and u ), where 

ρ  Ψ = =  
 ∆



22

2
a
bE t

  (10) 

with 
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Ta
t

b

=
∆
λ

=


  (11) 

where a is the time mesh parameter, b is the space mesh parameter, T is the wave period and cTλ =  is the wavelength. 
Note that the Courant number is the ratio b a  (Belytshk0 and Mullen [2]). 

The solution of the difference equation (9) for given wave circular frequency ω  (a frequency domain analysis) can 
be expressed by Laier [17] 

( )
( )
( )
( )

n

n

n

n

u A exp i j k t

u Bexp i j k t

u Cexp i j k t

u Dexp i j k t

 = − β − ω ∆ 
 = − β − ω ∆ 
 = − β − ω ∆ 
 = − β − ω ∆ 















  (12) 

where A, B, C, and D are the amplitudes of the corresponding waves and nβ  is the numerical wave number. The equations 
in (12) establish the following relationships (Euler´s Formula): 

[ ]
[ ]

[ ]
[ ]

k 1 k k 1 n

j 1 j j 1 n n

k 1 k 1 n

j 1 j 1 n n

u 2u u A exp( i j )exp(ik t) 2cos( t) 2

u 2u u A exp( i j )exp(ik t) 2cos( ) 2

u u A exp( i j )exp(ik t) 2isin( t)

u u A exp( i j )exp(ik t) 2isin( )

− +

− +

− +

− +

− + = − β ω∆ ω∆ −

− + = − β ω∆ β −

− = − β ω∆ ω∆

− = − β ω∆ β



 



 

  (13) 

By considering the equation (13) and substituting the equation (12) in the difference equation (9), the following 
eigenvalue problem is obtained after some algebraic manipulation: 

( )
( )

( ) ( )( )
( ) ( )( )

n 2 n 1

n 2 n 1

2

3

24cos( t) 24 12isin( t) 2cos t 2 0
0 24cos( t) 24 12isin( t) 2cos t 2

x2cos 2 0 2 M cos M 0

0 2cos 2 0 2 M cos M

A 0
B t 0

C t 0
0D t

 ω∆ − ω∆ ω∆ −
 ω∆ − ω∆ ω∆ − 
 β − − Ψ β +
 

β − − Ψ β +  
   
   ∆   =   ∆   
    ∆ 

 

 

  (14) 

where i is the imaginary unit and ( )β ncos  is the eigenvalue. The corresponding eigenvector can be expressed as 

follows: 
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( ) ( )
( )

( )
( )( ) ( )

( )

2 n 1 n

2 n 1

n

2 n 1

n 2 n 1 n
22

2 n 1

1
2cos( t) 2 12 M cos( ) M cos( ) 1

i
12 sin( t) M cos( ) M

cos( ) 1
M cos( ) M

cos( ) 1 2cos( t) 2 12 M cos( ) M cos( ) 1
i

12 sin( t) M cos( ) M

 
 

 ω∆ − ψ β + + β −  
 ψ ω∆ β +  β − 
 ψ β +
 
  β − ω∆ − ψ β + + β −  
 ψ ω∆ β +  

 







  



  (15) 

After the mesh parameters, a and b are assumed (11), the following expression can be formulated: 

 ψ =  
 

π
ω∆ =

2a
b
2t
a

  (16) 

and the numerical wave number nβ can be obtained from equation (14). The characteristic equation of the eigenvalue 
problem (14) in this case is expressed as 

( ) ( )2
n nd1cos d2cos d3 0β + β + =    (17) 

where for lumped mass model ( 1M 1 2=  and 2M 0= ) one has 

( )( )
( )( ) ( ) ( )

( )( ) ( )

2

2 2

2 2 2

d1 16 cos t 1

d2 cos t 1 96 64 288s in t

d3 cos t 1 576 96 80 288s in t

= ω∆ −

= ω∆ − ψ + + ω∆

 = ω∆ − ψ − ψ − − ω∆ 

  (18) 

It is important to emphasize that the numerical wave number nβ   (the eigenvalue of equation (14)) for a given 
frequency is related to the exact wavenumber by 

β = β n
n

c
c

  (19) 

where nc  is the numerical wave velocity. Similarly, for a given wavenumber β , the eigenvalue of equation (14) is the 

numerical wave circular frequency nω  that is related to the exact wave circular frequency by 

n
n

c
c

ω = ω   (20) 

Finally, it is important to mention that the eigenvalue problem (14) presents two excluding solutions. 
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WAVE DISPERSION RESULTS 

Table 1 presents the eigenvalue results (17) for relative numerical error for wave velocity for a given frequency and 
provides a comparison of the results for the relative numerical wave velocity error for the lumped mass model using the 
proposed high-order integration algorithm expressed by 

nc c
c
−

ε =   (21) 

with the results for the consistent mass model using the Newmark average acceleration method (results in brackets). 
The numerical results indicate that for the fine mesh ( a 50>  and b 50> ) the numerical wave velocity dispersion 

obtained by the adopted algorithm considering the lumped mass model are similar to the results obtained by the average 
acceleration Newmark method that considers the consistent mass model, for which the amount of operations is two 
times greater. 

Table 1 Relative numerical wave velocity error 

a 
b 

100 50 25 10 
100 1.65 10-4 -6.59 10-4 -2.64 10-3 -1.69 10-2 

(1.65 10-4) (-3.28 10-4) (-2.29 10-3) (-1.57 10-2) 
50 1.65 10-4 6.63 10-4 -2.64 10-3 -1.69 10-2 

(1.15 10-3) (6.58 10-4) (-1.31 10-3) (-1.47 10-2) 
25 1.70 10-4 6.64 10-4 2.65 10-3 -1.69 10-2 

(5.10 10-3) (4.61 10-3) (2.63 10-3) (-1.08 10-2) 
10 3.76 10-4 8.70 10-4 2.86 10-3 1.71 10-2 

(3.29 10-2) (3.24 10-2) (3.04 10-2) (1.66 10-2) 

SPURIOUS WAVE REFLECTIONS 

For a uniform mesh, the numerical integration of the wave equation (1) results in a dispersive wave, but with the 
same velocity of propagation throughout the entire domain for a given wave frequency. However, for irregular mesh, 
there is a reflection at the interface of elements with different lengths considering that there are different numerical 
impedances. 

Consider a non-uniform finite element mesh in a configuration similar to the configuration shown in Figure 3. By 
considering an incident wave with unit amplitude traveling from left to right and arriving at the interface, spurious 
reflected wave and transmitted are generated. 

 
Figure 3 Non-uniform Finite Element Mesh 

The incident wave be expressed as follows 

[ ]in inu exp i( k t j )= − ω ∆ −β    (22) 

L

~ j= - 1

reu

tr

j=0

u

~j= + 1

inu


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where j=0,-1,-2…, inβ  is the numerical wave number of the incident wave (Jiang and Rogers 1991). Thus, the spurious 
reflected wave is given by 

[ ]re re inu A exp i( k t j )= − ω ∆ + β    (23) 

where reA is the amplitude of the spurious reflected wave. The transmitted wave is expressed as follows 

[ ]tr tr tru A exp i( k t j )= − ω ∆ −β    (24) 

where j=0,1,2…, trA  is the amplitude of the transmitted wave and trβ  is the numerical wave number of the transmitted 
wave (Figure 3). 

To calculate the spurious reflection amplitude reA  and transmitted wave amplitude trA , one should consider the 
displacement compatibility at the interface (node j), which is expressed by 

= +tr reA 1 A   (25) 

and the equilibrium at node j, which is written as 

{ } { }

{ }

2
1 0 1in

1 2 2
0 1 2 in 1 0

2
tr o

1 2 2
2 tr 1 1

u u t ucos( ) 11 11 1 M M
u u M cos( ) M t u

cos( L) 1 t uM M 0
M cos( L) M t u

− −

+

+

     ∆β −   − + − + ψ +      α α β + ∆       
 β − ∆ ψα = β + ∆  





  (26) 

in which 

[ ]
( )

( )

1 in in

0 re tr

1 tr tr re tr

L

u exp(i ) A exp( i ) exp( i k t)

u 1 A exp( i k t) A exp( i k t)

u A exp( i L)exp( i k t) 1 A exp( i L)exp( i k t)

−

+

α =

= β + − β − ω ∆

= + − ω ∆ = − ω ∆

= − β − ω ∆ = + − β − ω ∆



    (27) 

Note that the following relationship between eigenvector components is also considered (see equation (14)) 

( )
2

2 1

cos( ) 1C t A
M cos( ) M

β −
∆ =

Ψ β +




  (28) 

By substituting equation (25) in the equation (26) the following expression is obtained after some algebraic 
manipulation: 

2
1 in tr

re
2

1 in tr

(1 P )(1 P )sin( ) sin( )
A

( P 1)(1 P )sin( ) sin( )

− α
− β + β α

α=
α −

− β + β α
α

 

 

  (29) 
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where 

2 in
1

1 in 1

2 tr
1

1 tr 1

M (cos( ) 1)P
M cos( ) M
M (cos( ) 1)

P
M cos( ) M

β −
=

β +

β α −
=

β α +









  (30) 

Note that reA  is evaluated as a real component because the imaginary component disappears. 
Table 2 includes a comparison of results of the spurious wave reflection amplitude with the results of those by 

average acceleration Newmark method, considering the consistent mass model for an illustrative range of time and space 
mesh parameters, as presented in the brackets. 

The results listed in Table 2 indicate that the magnitude of the relative error of the reflected spurious wave 
amplitude is the same as that obtained by the integration of the consistent mass model using the average acceleration 
Newmark method. 

Table 2 Relative spurious wave amplitude 

α  a=b=100 a=b=50 a=b=25 a=b=10 
0.10 -2.444 10-4 -9.791 10-4 -3.940 10-3 -2.574 10-2 

(-0.8149 10-4) (-3.268 10-4) (-1.320 10-3) (-0.8870 10-2) 
0.25 -2.314 10-4 -9.272 10-4 -3.732 10-3 -2.444 10-2 

(-0.7717 10-4) (-3.094 10-4) (-1.250 10-3) (-0.8406 10-2) 
0.50 -1.852 10-4 -7.420 10-4 -2.990 10-3 -1.974 10-2 

(-0.6174 10-4) (-2.476 10-4) (-1.001 10-3) (-0.6747 10-2) 
0.75 -1.082 10-4 -4.331 10-4 -1.749 10-3 -1.170 10-2 

(-0.3602 10-4) (-1.445 10-4) (-0.5843 10-3) (-0.3958 10-3) 
1.10 5.136 10-5 2.081 10-4 8.379 10-4 5.819 10-3 

(1.729 10-5) (0.6937 10-4) (2.809 10-4) (1.922 10-3) 
1.25 1.309 10-4 5.580 10-4 2.267 10-3 1.590 10-2 

(0.4631 10-4) (2.859 10-4) (0.7532 10-3) (0.5182 10-2) 
1.50 3.091 10-4 1.242 10-3 5.065 10-3 3.680 10-2 

(1.029 10-4) (0.4132 10-3) (1.677 10-3) (1.166 10-2) 
2.0 7.420 10-4 2.990 10-3 1.233 10-2 9.929 10-2 

(2.471 10-4) (0.9928 10-3) (0.4044 10-2) (2.896 10-2) 

CONCLUSION 

The wave velocity dispersion and spurious wave reflections at the interfaces of finite elements of different lengths 
(non-uniform mesh) predicted by the adopted high-order algorithm are examined here. 

It should be emphasized that the numerical results indicate that the numerical wave velocity dispersion considering 
the lumped mass model is similar to the results of the integration by the average acceleration Newmark method for the 
fine mesh ( a 50≥  and b 50≥ ) considering the consistent mass matrix, for which the amount of computational 
operations is two times greater. In other words, the use of high-order direct integration algorithm can be highly 
advantageous in many cases. 

More than that, the magnitude of the spurious reflection also presents the same order of error as that obtained 
with the average acceleration Newmark integration for the consistent mass model. 
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